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Abstract—We formulate a convex optimization problem n autocorrelation lags and m moments of the logarithm
for approximating any given spectral density with a of the power spectral density (cepstral coefficients). The

rational one having a prescribed number of poles and gpproximation uses the Kullback-Leibler divergence as
zeros ( poles and m zeros inside the unit disc and gz criterion of fit.

their conjugates). The approximation utilizes the Kullbad-
Leibler divergence as a distance measure. The stationarity |t is well known that model approximation and system
condition for optimality requires that the approximant jgentification are closely related subjects. In either, the
matches n + 1 covariance moments of the given power .o vive is to match to high degree of accuracy given
spectrum and m cepstral moments of the corresponding data by a lower order model. The difference between the
logarithm, although the latter with possible slack. The y_ ) . ) . . .
solution coincides with one derived by Byrnes, Enqvist two subjects is that in mOdel_ approxmatlon_ _the_data '?
and Lindquist who addressed directly the question of thoughtto be exact, whereas in system identification their
covariance and cepstral matching. Thus, the present paper Statistical nature is of paramount importance. It is fos thi
provides an approximation theoretic justification of such a reason that some system identification techniques rely on
problem. Since the approximation requires only moments estimated statistics as the preferred form in which data
of spectral densities and of their logarithms, it can also be s to be supplied. Since the optimality conditions for our
used for system identification. approximation problem are only in terms of moments,
our results are relevant to system identification as well.

|. INTRODUCTION . L .
The present paper provides an approximation-theoretic
INITE-DIMENSIONAL models are central to mOStjustification of a procedure proposed in [3], [4] that

modern-day techniques for analysis and design Gy addressed the question of covariance and cepstral
control systems. Yet many problems concerning Mofliaching. This previous work has been in turn part of a
eling of linear systems remain open. A case in poi

Broad program on convex optimization for interpolation

s '_A‘RMA _(autoregressive mov'ing average) modeling,y moment problems initiated in [8] (also see [9]) and
of time-series. In ARMA modeling, least-squares techy \iinued in 5], [6], [7]. In a quite different but yet

niques often lead to inadmissible (unstable) models whilg ;o direction, in [15] we considered the following

most other approaches require non-convex Optimizaﬁgfbblem. Find a spectral density that best approximates
and are based on iterative procedures whose global 5 phiori spectral estimate in the Kullback-Leibler

convergence is not guaranteed. Hence, at least fr%@hse and. at the same time. matches a window of
a theoretical point of view, the problem of ARMAp s rined covariance lags. Though this earlier work uses

modeling remains open [21, page 103]. .. related concepts and methods, it does not lead to a
In the present paper we formulate a convex OptImIZﬁ,]

: . o L i _ 10del reduction procedure since the solution in [15] is
tion for identifying a finite-dimensional approximant o

_ ) in general more complex than the a priori estimate.
a given power spectrum. The formulation involves a fre-

quency domain representation and data which represenin Section Il we formulate and motivate the basic
certain statistical moments of the time series. In fact, fapproximation problem. The optimality conditions for
constructing an ARMA(n,m) model, the data consist ahe approximant are given in Section Ill. Some of the
, technical arguments are deferred to Section V. Then,
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Il. FORMULATION OF THE PROBLEM g e
— W() a(z)
We begin by considering the Kullback-Leibler diver-
gence [18], [10] We
. LI d(e) do
L 160 “v
D(®||®) := /_7r O (") log () 2m Vg

b(z)

as a distance measure between power spectral densities
® and ®. The functional(®, ®) — D(®|®) is convex o 1 Model matchi o
[10] and, assuming that both arguments are normalized = 'ede! matching problem
in the sense that

K
/ q)(eze);l_@ =1, (1) are transfer functions of two finite-impulse-response
o m filters, and{y, : t € Z} is a stationary random process
D(®||®) > 0 with equality if and only if® = ®. produced by passing a white noise indut,} through
Although this is not abona fidemetric, it induces a a filter with transfer functioniV’. The approximation
metric topology and, in fact, a Riemannian metric stru@mounts to matching the power spectra of the two
ture on normalized positive functions; i.e., on probagilitoutputs{u, } and {uv;}.
densities [1], [2] (also see [14]). Therefore, it appears To see this, first note that if(z)WW (z) = b(z), then
natural to consider the problem of approximating a givéhe power spectra of the outputs and v, will be the
® by a & belonging to a suitable class of admissibleame and
spectral densities.
From a systems-theoretic point of view it is natural to
consider approximating@ by a rational spectral density,vIore generally,

2

et )
b( ) - P (629) . (2)

a(e’)

we seek to determine the coefficients of

& — P a(z) and b(z) so as to minimize the Kullback-Leibler
T Q’ divergence
with P, @ trigonometric polynomials of at most degrees w - |b(e'?)|? do
: : ) |b(e")|“log | —F—F— | —
m and n, respectively. In the special case of MA ap . D(c®)|a(e?)2 ) 27

proximation, whenn = 0, this approximation problem -

reduces to minimizingd(P||®) subject to normalization. Petween the power spectral densitigige””)|* and
This is a convex optimization problem im coeffi- ®(¢")la(e’”)[? of u; andu,, respectively, with the coeffi-
cients of the trigonometric polynomiaP. By way of Cients ofb(z) anda(z) being normalized so that the vari-
contrast, while in generab — D(&|®) is a convex ances[” [b(e”)[*df/2r and [T ®(e")a(e)[*d0 /27
functional in infinitely many variables, the functionaP'€ both equal to one. With this normalization, the
(P,Q) — D(%H@) has finitely many variables but isKullback-Leibler divergence is nonnegative, and it is

not convex. Therefore, to emulate the MA case, inste&@ro if and only if (2) holds, as indicated earlier.
of minimizing D(gH‘I’) we consider the problem to The above formalism has already been considered in

minimize the context of least-squares estimation [19] (see also
S(P,Q) := D(P||Q®), [20]). In this earlier work, a model matching problem
is also motivated based on the configuration in Figure 1.
subject to normalization oP andQ® as in (1). This is The matching criterion is to minimize the error variance
a convex optimization problem im + n + 1 variables. E{|u, — v;|?}, instead of a distance between the power
This approximation problem can be regarded asspectra ofu; andwv,;, as done in the present work. In-
model matching problem. We illustrate this in Figureerestingly, the authors of [19] discovered that this least
1, whereWV is the outer spectral ob; i.e., squares model matching yields a stable filter. However,
B(e?) = |W ()P their problem requires as data the Markov parameters of
the filter in addition to spectral moments. An interesting
with TV analytic and invertible in the open unit diSc:= wrinkle to this connection is that for minimum-phase

{z: |2| < 1}, filters there is a bijective relation between Markov pa-
. ) rameters and cepstral coefficients [4] (i.e., moments of
a(z) = aot+arz 4.+ anz the logarithm of the spectral density). It is this latter set

b(z) = bo+biz b4 Fbpz ™ of coefficients that enter in the present work.
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As we shall see below, the problem of minimizingver® x Q subject to the normalization condition
the distance between the spectral densitig™)|?
and ®(¢"”)|a(e’?)|> becomes a convex problem when /@de =1 (6a)
expressed in terms of the coefficients of the pseudo- L
polynomials (trigonometric polynomials) The normalization

Q(z) = a(x)alz™) poz/Pduzl (6b)
1 En: ko o,k also prescribed in Section Il is already included in the
- B} 3 -
i k:1qk(z =) 33 Gefinition of P,

We denote byP, and Q. the subsets off and Q,

and respectively, for whichP(e?) > 0 and Q(e??) > 0 for

P(z) = b(z)b(="Y) all 6. We also denote b§?P := PP, andoQ := Q~\P,

L the corresponding boundaries. For future reference we
= po+ 5 Zpk(zk +27F). (3b) also define the hyperplane
k=1 » n

Also, as we shall see in the next section, the optimal ra- H o= {Q | Q(e”) = a0 + Z gk cos ko
tional approximant turns out to be specified by a number k=1
of moment constraints of the given power spectrum and and /Q(I) dp = 1} . (7
of its logarithm, which need to be matched (exactly or

approximately in a suitable sense). Indeed, the optimalityoreover, we shall say that the pdiP, Q) € P x Q has
conditions are expressed in terms of the covariance lagaximal degreef either deg P = m or deg@Q = n or
both.

e = /COS kO ®(eYdu, k=0,1,... n, (4a) Theorem 1:Consider the functional

and the cepstral coefficients S(P.Q): PxQ—R
defined on nonnegative trigonometric polynomi&ls)

Cp = /cos kO log (I)(ﬁie)d,u, k=0,1,...,m, (4b) of degreesn andn, respectively, as specified in (5), and

the set of minimizing solutions

where from this point on, for notational convenience A A A A . .

we usedy to denote the normalized Lebesgue measute {(7,Q) | S(P, @) = minS(P, Q) subject to (6a).

df /2w, and we suppress the limits of integration, whicfthen the following hold:

will always be from—m to 7. Interestingly, the optimality  (5) The sets is nonempty.

conditions (4) coincide with those for a different opti(jj) The ratio P/Q defines the same function for all

mization problem stated in [3], [4], as we have already (P,Q) € 8.

indicated, and will further elaborate upon in Section Viiiiy If a pair (P,Q) € § is relatively prime and has

maximal degree, ther§ contains only this one

[1l. OPTIMALITY CONDITIONS element.
If a pair (P, Q) € 8§ does not have maximal degree
and P € P4, then § contains more than one
element.
If a pair (P,Q) € 8 is not coprime and® € P,
then§ contains more than one element.

The following observation is needed throughout.
} Lemma 2:The setsP andQ N H are compact.

Let P andQ be the closed convex sets (v)

P._ {P | P(eie) — 1+Zm:pkcosk9 >0, VG} (5a) W)
k=1

and

Proof: Since the elements @t are nonnegative and
their constant term is one, their remaining coefficients

(5b) .
of nonnegative trigonometric polynomials. Then, the e also bounded by one. Therefafeis compact. Next

. L . we show thaNH is also compact. Since is the power
problem at hand is to minimize the convex functional . L
spectral density of a purely nhondeterministic process, the

s(r.) = [ P P J Toeplitz matrix formed out of the first + 1 moments
el % \ag)™* T0,71,...,T, IS positive definite, and the corresponding

Q.= {Q | Q(ew) = qo +qucosk9 >0, Vo

k=1



nth Szegd polynomiab,(z) (see, e.g., [16]) is devoid If in addition P € P, then(P, Q) satisfies the cepstral

of roots on the circle. Moreover, since matching conditions
/eikeil_ sdp =1k, k=0,1,...,n, /cosk@logfd,u:ck, k=1,...,m. 9)
|on(e)]| Q
and @ is a trigonometric polynomial of degree, it Conversely, anyP, Q) € P x (2 N H) which satisfies
follows that both sets of the moment conditions (8) and (9) belongs
0 0 to 8. In general, allowing for the case whefe € 9P,
1 = /Q(e )@ (e™)dp any (P, Q) € § satisfies the modified cepstral matching
. 1 1 condition
= /Q(e’e)ﬁdﬂ > ey p
|on(e?)] coskflog G =i+ gy, k=1,....m, (10)

where M = max{|4pn(ei9)\2 : 0 €[0,7]} < co. Hence,
qo is bounded by\/ and so are the remaining coefficient
of Q). ConsequentlyQ N H is compact as claimed. &
We are now in a position to prove statements (i)-(iii
of Theorem 1. Proofs of the remaining statements are P
/ log —dp — go

gvhere the slack variablesg, ¢o, . . ., g, are the same for
all (P,Q) € 8, and where the vectdio, g1,---,9m) IS
She unique maximizer of

deferred to Section V. (11)

Proof of Theorem 1, statements (i)-(iii)SinceS is g hiact to (10) and subject to the nonnegativity of the
convex andP x (Q N ) is compact (Lemma 2), thereToepIitz matrix

exists a minimizing point. This establishes statement ().

SinceS is a convex functional, the s§tof minimizers 90 g1 oo Om
is convex. If(Py, Qo) and(P1, Q1) are both inS, then so T g1 9o gm—1 12
is the whole interval P;, Q) € 8 for 7 € [0,1]. There- 9| : ; : (12)

fore, the second derivative 8 P;, Q) with respect to
7, at any point of the interval, must be zero. In particular, _ .
for 7 = 0 and for6P = P, — P, and6Q = Q, — Qu, In particular,go = —> ;" prgy, and, whenP € P,

I9m Im—-1 - -- 90

we compute that the second derivative is gr = 0 for k = 0,1,...,m. For any(P,Q) € 8 the
5 optimal value
/ QP — P3Q)* b
PyQ3 S(P,Q) = /log @d,u — /logq)du — 9o

If this integral vanishes, then, since the integrand is non- P
negative,Py6Q — QodP = 0. Hence,Py/Qo = P1/Q: = /10g @dﬂ —co — go- (13)
for any two element$P, Qp) and (P, Q1) in 8. This
proves statement (ii). In the last statement of the theorem we see that the

If a pair (P,Q) € 8 is coprime and if at least minimal Kullback-Leibler divergence equals the differ-
one of them has maximal degree, i.e., at least one &ic€ in entropy gain betweeR/Q) and ¢ or, equiv-
deg P = m or deg Q = n holds, then any other elemeng@lently, the difference between their respective zeroth
(P1,Q1) € $ must satisfyP/Q = P,/Q,. If P, and cepstral coefficients, both modified by the slack variable
Q1 have a nontrivial common factor, then one of thgo > 0 wheneverP ¢ JP. Moreover, we see from (8),
two must exceed the corresponding allowable degree dRat@ may not have aroot on the unit circle unléssas
contradicts the assumption th@®, Q) € P x Q. This the same root so that cancellation ensures integrability
completes the proof of statement (ii). m of the fractionP/Q.

The next theorem lists the appropriate optimality con-
ditions under the same assumptions and notation as iV. REGULARIZATION AND CEPSTRAL SLACKNESS
Theorem 1. The proof will be deferred to Section V.  1he computation of the minimizer fd is consider-

Theorem 3:Suppose a window of covariance 1aggply more complicated whe#® has roots on the unit
(ro,m1,...,mn) and a window of cepstral coefficientsjrcle: i.e., when? belongs to the boundary 6. There
(co, 1., ¢p) are computed fromd as in (4). Any s therefore a need for a suitable regularization that
(P,Q) € 8 satisfies the covariance matching conditiong, keep the solution in the interior o x Q. Such
strategies have been considered for the problem in [3],

P
/COS ko sap=rp, k=0,1,...,n. () 4] by Per Enquist in his Ph.D. thesis [11], [12]. Here

Q
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we consider the same regularization for our Kullback- The functionalS, remains finite orf? x (Q N K), yet

Leibler functional its first variation becomes unbounded on the boundary.
P This implies, in fact, thatP, @) lies in the interiorP . x
Se(P,Q) :=S(P,Q) — /6103; P(e)dp. (91 NH). To see this we provide the following brief

o _argument. Assume that for somé°, with 6, € [, 7],
By Szegd's theorem [16pg P is integrable on the unit o o poth ofP, Q vanish. Since the sé x (Q N K)

circle, butits derivative is not. This forces the minimin j5 4pyiously convex with a nontrivial interior, there exist
solution to lie in the interior off x Q. _ trigonometric polynomial$P and @ so that

Theorem 4:Suppose a window of covariance lags . .
(ro,71,...,m) and a window of cepstral coefficients (P+0P,Q+0Q) € Py x (24 NH),
(co,c1y. .., cp) are computed frc_)nt_I> a_ls_in (4a) and (_4b), and, in particulargP(¢%) > 0 and 5Q(e%) > 0. But
and lete > 0. The problem of minimizing the functlonalthen, perturbing in the directiof P, 6Q)

Se(P,Q) : PxQ—R o P
| | B 58.(P.Q:oP.6Q) = [ (141085 ) aPa
subject to (6a) has a unique solutio®, Q). This so- ( Q<I>>
lution belongs toP, x 9, and satisfies the covariance J2 1
matching conditions —/aéQdu—s/FcSPdu

/COS k0 Edu e k=01,....n, gives —oo since the first term is finite, whereas at least
one of the other two terms givecc. This argument can
become more rigorous by considering a péath, Q.),
X with o € [0, 1], which starts at an interior point and ends
P 1 at the assumed minimizing poi(P, Q) on the boundary.
/ cos ko log ad“ = te / o8 kefd“ ’ The contradiction is drawn byhgvall)Jating the derivative
k=1,...,m. (14) of Sc(Pa,Qa) at the end point which turns out to be
+o0o. In a similar context this is done in detail in [8,

as well as the modified cepstral matching conditions

Moreover, the optimal value is page 225].
o p In order to establish the moment conditions satisfied at
Se(P,Q) = /log 6dp — ¢ the minimizing point P, @)), we consider the Lagrangian
P
N E/ (1_ % —1og15> du. (15) L(P,Q,)\) := /(Plog@ —elog P)du
Proof: We compute the first variation &, +A (/ QP dp — 1>
P on all of ? x Q, where\ € R is a Lagrange multiplier.
0Se(P,Q; 0P, 6 = 1+log— | 0Pd '
o(P, Q5 0P, 0Q) / ( +log Q<I>> a For all fixed\ > 0, the Lagrangian has compact sublevel
P 1 sets
— [ =6Qdu — —0Pd
/Q @ g/P 8 M, =={(P,Q) | L(P,Q,)) < r}
and the second variation with » € R. To see this let) = nQo with Qg € QN H.
_ 2 Clearly,n > 0. Then, since
R
L(P,Q,\) = [ (P] — Pl —¢elog P)d
(5P)2d (P,Q,\) /( %% 5% ogn — ¢log P)du
e ) T +A (1),

The second variation is positive unleg® = 0 andéQ = (P, Q) € M, if and only if
0. Consequently§. is strictly convex.

The optimization problem in the theorem is equivalent An —logn < 1+ A =8P, Qo).
to finding a pair(P,Q) € P x (QNH), with H as Comparing linear and logarithmic growth, this shows
in (7), that minimizesS;. We have shown earlier thatthatn is bounded from above (and also bounded away
P x (Q N H) is compact. Since in additiof. is strictly from 0). This shows that the sublevel sets are bounded.
convex the optimization problem has a unique solutiddince the Lagrangian is continuous they are all also
(P,Q). closed, and hence compact.



Because the Lagrangian differs frofa(P, Q) by a for all (P,Q) € P x Q. If in addition @ € X, then
linear term, it is strictly convex as well. Therefore, for PO = LIPO.1) > L(P )
each) > 0, the Lagrangian has also a unique minimizing (P, Q) = L(P,Q,1) 2 L(P1,Q1, 1),

point (Py, @) € P x Q. This minimizing point is not and hence, from (19), we conclude that
located on the boundary. To see this note that the first

variation Se(P,Q) = Sc(P1, Q1) (21)
OL(P,Q.X:0P,6Q) = 65.(P,Q;0P,6Q) for all (P,Q) € P x (2N ).
Finally we establish (15). From (16a), we see that
+)\/CI>5Qdu.

P
- : p kO | log — — —= | du =0,
A similar argument as the one given above for the case Z:pk/cos <Og QP p) o=
of S. applies to show thatPy, Q) € P+ x Q. There-
fore, (Py, Q) is the unique solution of the statlonarlty)Nh'Ch can be rewritten as

conditions P e
oL P QP P
D cos ko 1+10g—q)—ﬁ dp =0,
Pk @ Therefore
k=1,2,...,m (16a)
S.(P,Q)= | Plo o d /sloﬁd
oL . Se(P, Q) / g ~—dp — g Pdp
— = /cosk‘@ —— + AP | dp =0, A
O @ log d,u +e P —¢ [ log Pdy
E=0,1,...,n. (16b) 0
The set of equations (16a) can be rewritten as follo®m which (15) readily follows. [
P €
/cos kO log @d“ = ¢+ /cos keﬁdu, V. PROOFS OFTHEOREMS1 AND 3
E=1,2,...,m. (17) In order to prove Theorem 3 we consider what hap-

pens to conditions of Theorem 4 when— 0. We then
which is in harmony with the side condition (6a). To \we first note that, by Theorem 4, for eactthere is a

this end, we form unique minimizer ofS. in P x (2NJ), which we denote
P by (P, Qc). Since? x (2N XH) is compact (Lemma 2),

Z%/COS ko <_§ +>\‘I>> dp there is a sequence in the SgtP.,Q.) | ¢ > 0} that

k=0 converges to a limit pointFy, Qo). For any point in this

_/PdMJF)\/Q(I) d sequence we have that
S:(P,Q) = S(P., Qe)
— 14+ / Q dp,
holds for all (P, Q) in P x (2 N H). By continuity
which equals zero due to (16b), and therefore Se(P,Q) — S(P,Q) and S¢(P:,Q:) — S(Fy, Qo) as

e — 0. Therefore

A=1. (18)
(P>Q) > S(P0>Q0) for all (PvQ) €Px (Qmj{)v
Conversely, forA = 1 the unique solution satisfying the

stationarity conditions also satisfies (6a), and thereforand hence, any such limit poit%, Qo), which need not
be unique, is a minimizer dd. By Theorem 4, any such

L(P1,Q1,1) = Sc(P1, Qq). (19) limit point (P, Qo) satisfies the covariance matching
conditions (8); i.e.,
/coskﬁ&du = /coskHCI)d,u,
Qo
E=01,....n. (22a)

With the choice) = 1 equation (16b) becomes

P
/cos kﬁéd,u =r, k=0,1,...,n. (20)

From the optimization of the Lagrangian we have ) . o
In view of Theorem 1(ii), any(P, Q) € § also satisfies

L(PaQal) EL(Pl,Ql,l) (8)



GEORGIOU AND LINDQUIST: CONVEX OPTIMIZATION FOR ARMA MODELUNG 7

The quantities S—L = /cos k6 (—g + )\CI)) dp
P qk
g = /cosk:@logQ—Od,u—/cosk‘@logfbd,u, = 0, k=0,1,...,n (24b)
0
k=12....m, (22b) hold and hencéP, Q) is a minimizer of the Lagrangian,

are well defined, since the logarithms of trigonometrige form the dual functional

polynomials are always integrable. These are the slack ]

variables in (10) in Theorem 3. Then, again by Theo- J(Ag) = (Pél)lé%XQL(P’Q’)"Q)’
rem 1(ii), any(P, Q) € 8 satisfies (10). It remains to es-

tablish the properties of these slack variables claimedWhich can be written
the theorem. We first show thgt =0fork=1,...,m

when P € P_., and therefore that (9) holds in this case./(%9) = / (10?;

P
——10g<I>> du —go — A
To this end, choose an arbitrafy”, Q) < $ and

Q

suppose thaP € P_.. Since the function + Zp’f [/ cos k6 <1Ogg — log q>> dp — gk]
F : P—S(P,Q) k=l
is convex andP is an interior point, the stationarity —I—qu/cos kO AD dp. (25)
condition k=1
oF P . . o
—— = [ coskf(log = — log ®)du = 0 The domain ofJ is clearly nonempty. In fact, in view
Ipr, Q of (22), (Py, Qo) satisfies (24) fox = 1, g1, ..., gm as
holds for P = P. Therefore (9) holds at the poiP, Q) 9diven in (22b) andg, arbitrary subject to the Toeplitz
as claimed in the theorem. condition 7, > 0 ; this can always be satisfied by

The slack variableg;, turn out to be Lagrange mul-selectingg, sufficiently large. Moreover, for any > 0,
tipliers in the corresponding Lagrange relaxed optimiz&A o, Qo) satisfy (24) as well. To see this, note that

tion to which we now turn for their remaining properties/ cos k8 log Ady = 0 for k = 1,2,...,m. More gen-
Consider the Lagrangian erally, let (P, Q) be an arbitrary solution to (24) with
A =1 and a choice of values fag, . . ., g,,. Then again,

L(P,Q, )\ g) == /(P log P — PlogQ — Plog ®)dpu (P,Q) = (AP, Q) is a solution to (24) for the same
Jq1,---,9m andgg sufficiently large.
+A (/ QP du — 1) — /gPdu, (23) In view of (24a) the quantity within square brackets

_ o ) ~_in line two of (25) equals zero. Furthermore, by (24b)
where) € R is a Lagrange multiplier as is the distribuipe quantity in the last line is

tion g, introduced to ensure th@& € P. More precisely,

for eachd, g(e?) could be regarded as the Lagrange < - P
multiplier of the constraintP(e’?) > 0, and hencey is qu/cos kOA®dp = qu/cos M@d“
nonnegative and k=1 =1

/gPdu = > gk = {g.p),
0

Consequently, sinc®/Q = AP, /Q,

wheregg, g1, . . . , g, are Fourier coefficients gfandp =

(1,p1,...,pm). The nonnegativity of the distributions JAg) =logA—X—go+ [ log Py du+1, (26)
implies in particular that the Toeplitz matri¥, defined Q1P

in (12) is positive semidefinite. For reasons that have J\%erePl/Ql depends onyi, ..., gn via (24a) as just

do with the fact that (8) always holds f¢P, Q) € 8, it [ 5teqd.
turns out that a Lagrange term for enforcigge Q is The dual problem amounts to maximizingy To this

not necessary. _ end, note that only the first two terms in (26) depend
Eor all valu_es of th.e Lagrange multiplekssandg for A, so the maximizing value foR is obtained by

Wh'(_:h thgre IS e_l_pan(P, Q) € P x Q such that the maximizing the concave functiolog A — A to obtain the

stationarity conditions optimal value\ = 1. Next, only the third and fourth

oL P terms in (26) depend op. The maximizingg, which

— = kO | log — —log ® | du — ' '

Opk /COS <Og Q 8 > gk we do not need to determine explicitly, will be denoted

= 0, k=12,....m (24a) by g.



A~

Let (P,Q) denote any minimizer of(P,Q) — VI. CEPSTRAL APPROXIMATION SUBJECT TO
L(P,Q, )\, g). Since(g,p) > 0, we have COVARIANCE MATCHING

—90 < 9191 + - + ImPm- A central theme in [3], [4] was to determine a rational

power spectral density which matches a set of prescribed
covariance lags while, at the same time, approximates
a set of given cepstral coefficients. To this end, the

Hence gy in (26) must satisfy the complementary slac
ness condition

. (9.7) = 0. 27) functional
Moreover, with A = A, (24b) implies that

n I(w): =
/Q@du:kz:oqk/cosngdu:/Pd,u:1; ) ;

if
i.e., the side condition (6a) is satisfied. —/log\II(e )du
For any(P, Q) € P x Q satisfying the side condition
(6a) and any(\, g) in the domain ofJ we have

S(P,Q) = L(P,Q,\,§) > L(P,Q, ), §) > J(\, g).

/eik@ log U (e)dp — ¢,

was introduced in [3], [4], to be minimized subject to
the matching conditions

(28a) /eike\ll(ew)du =re, k=0,1,....n
However, it is immediate that
nA A OA R A X . for a given set of covariance lags, 1, ..., r, and cep-
P = L(P = . 28b - SO it
S(P,Q) = L(P,Q,\,9) = J(\, 9) (28D) il coefficients, . .., ¢,,. This cost functional trades

Hence, in particulaB(P, Q) > S(P, Q) for all pairs that off maximization of entropy gain against approximating
satisfy the side condition, establishing minimality, ahd the cepstral coefficients.

is the unique minimizer of (11). Moreover, the optimal The connection to our present work is through the

value becomes dual of this optimization problem, namely to maximize
oA P the concave functional
S(P,Q) :/ log = —log ® | du — go.
Q J(P,Q) = cap1+ -+ CmPm — 7090 — - — Tndn

If P € P,, g must be identically zero, because of the 0 (e')
complementary slackness condition (27); i(@,,P) = 0 - /P(e ) log Q(ew)d/‘ (30)
must be satisfied.

Conversely, suppose théalf’, Q) € P x Q satisfies bot

h overP x Q. It was shown in [4, Theorem 5.3] that there

(8) and (9). Then in view of (24) exists at least one solutiofP, Q) to this problem, and
oL . . . U = g is the solution of the primal problem. For any
a—m(P’Q’)"O) =0, k=12,...,m, such maximizer(P, @), we have@ € Q. and exact
oL ~ ~ - covariance matching. I € P, there is also exact
a—qk(P,QQ\,U) =0, k=0,1,...,n cepstral matching. In this casé’, ) is unique, and

o o this happens if and only i andQ are coprime. Hence
Therefore, (P,Q) is a minimizer of (P,Q) — there is an analogous set of conclusions for this pair of
L(P,@, A, 0), since this function is convex, so it followsqy | optimization problems to those in Theorem 1.
from (28) that(P,Q) € §, as claimed. This concludes A5 can be seen from the proof of Theorem 1, the
the proof of Theorem 3. _ optimal solution (P, Q) of the optimization problem
The remaining statements (iv) and (v) of Theorem Js section 11l is obtained by minimizingL(P,Q,S\,g),
now follow directly from the fact that anyP, Q) that \ypere the Lagrangiai. is given by (23), and\ = 1

satisfies the moment conditions (8) and (9) is alsofq ; are the optimal solution of the dual problem to
minimizer (Theorem 3). Hence, i € P, and either 5ximize (26). However

(P,Q) € P x (QN H) have a common factor or they

are both degree deficient, then we can introduce or alter 1,(p, Q. X, g) = /plog r du

existing common factors without violating the moment Q

conditions or the normalization (6a) (which can be seen -

as before by summing the covariance moment conditions B Zpk / cos k¢ log & du
after we multiply byg;., respectively). Notice that this n h=0 m

may not be possible wheR € 9P because of the slack =S ¢ / coskO ®dpy —1— ngm’
variables. This concludes the proof of Theorem 1. =0 =0
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which, in view of (4), can be written ARMA(20,16) model. The poles and zeros of the cor-
responding canonical spectral factor are also shown in

L(P.Q:A9) = 7o+ +Tndn the same figure. This is an example of a rather tame

—(c1+g1)p1 — -+ = (em + Gm)Pm “high order” power spectrum which can be easily ap-
P . . .

_ /Plog Zdp—1—co— do. proximated by a low order one. For the appoxmaﬂon

we selectn = 4, m = 5, and hence the approximant

Since ¢p and g, are constant, minimizing P, Q) + corresponding to an ARMA(4,5) model. This indeed

L(P,Q, X, §) over® x Q is equivalent to maximizing S capable of matching perfectly the set of the fibst
covariance samples as well as the set of the first

(c1 +g1)p1 + -+ (cm + G )Pm cepstral coefficients. This “low order” power spectrum
P . . .
oo — - — Ty — /Plog ~du ar_ld its correqundlng pole/ze_ro pattern are superimposed
with those of® in the same figures.

3

over P x Q, which is precisely the dual problem (30) | |
with the cepstral coefficients appropriately modified to y
account for slack variables.

ARMA(6,4)
- = - AR(10)

ARMA(20,16)
- = = ARMA(4,5)

== unit circle

O ARMA(6,4) zeros
*  ARMA(6,4) poles
X ARMA(10) poles

unit circle

O ARMA(20,16) zeros
% ARMA(20,16) poles
& ARMA(4,5) zeros

X ARMA(4,5) poles

Fig. 3.  Power spectrum and AR(10) approximant (above) and
poles/zeros pattern (below)

Fig. 2. High order power spectrum and ARMA(4,5) approximant WWhen a power spectrum has a number of poles and

(above) and poles/zeros pattern (below) zeros near the unit circle, then it may be impossible to
match perfectly all relevant cepstral coefficients with a

low order model (i.e.;n of them for an ARMA(n,m)

This explains the congruity of the optimality Condi'approximant). We highlight the ability of low order

tions and justifies our earlier claims on carrying over t%proximants to follow the “shape” @b in a series of
conclusions on the uniqueness of the extrema. representative cases. The power spectral dedsitiat
we have selected corresponds to an ARMA(6,4) model
VII. SPECTRAL APPROXIMATION. CASE STUDIES  wjith pairs of poles and zeros near each other in the unit
We begin with a power spectral densify of high disc. We displayd together with approximating spectra
order shown in Figure 2, which corresponds to amf lower order ones, AR(10), MA(10), ARMA(2,2), and
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ARMA(6,4)
- = - MA(10)

10" |

10 b

10° |

107

107}

10°L

107

10°F

— unitcircle
O ARMA(6,4) zeros

unit circle

O ARMA(6,4) zeros
*  ARMA(6,4) poles
O MA(10) zeros

*  ARMA(64) poles
& ARMA(2,2) zeros
X ARMA(2,2) poles

Fig. 4. Power spectrum and MA(10) approximant (above) arfig. 5. Power spectrum and ARMA(2,2) approximant (above) an
poles/zeros pattern (below) poles/zeros pattern (below)

ARMA(4,5), respectively, along with the correspondingS Shown in the last plot.

pole/zero patterns superimposed with thos@ pin sep-

arate graphs below. In all these cases, the approximating

power spectra have zeros on the boundary and are unable VIIl. CONCLUDING REMARKS

to match the cepstral coefficients. This is examplified

for the case that corresponds to an ARMA(2,5) model We have presented a model matching approach to

in Figure 7. It is worthing noting the improvement inspectral density approximation using the Kullback-

matching the actual “shape” @b and comparing theseleibler divergence as a criterion for goodness of fit.

cases. Interestingly enough, the peak can be reproduge@ approach yields @onvex optimizatiorprocedure

relatively accurately with one pair of complex polesor ARMA modeling. The optimality conditions are

This is not the case for the “valley” i® because it is given in terms of moments of the spectral density and

produced by two pairs of complex zeros. For matchirig logarithm. This fact makes the approach potentially

the “valley,” a higher order MA-part is needed. Despit@seful to system identification. Moments of spectral

the fact that the MA-part is of orde¥ in the example density functions are routinely computed in applications

in Figure 6, the approximant does not match the specifigquiring spectral estimation [21]. While statisticaliest

pole zero pattern. mation of covariance lags is reasonably well studied [17],
An alternative set of examples is displayed in Figurdge estimation of cepstral coefficients remains a topic of

9 and 10. In these, we observe the inability of AR mode@irrent research (see e.g., [13]).

to match the “shape” of a rather flat power spectrum with The current paper provides a motivation for the study

significant “valleys.” Despite the fact that the originain [3], [4]. Indeed, while [3], [4] focuses on covariance

spectrum now corresponds to an ARMA(6,6) modehnd cepstral matching, the present work provides an

relatively good fit is achieved with an MA(8) modelapproximation theoretic justification.
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ARMA(6,4) ARMA(6,4)
- - - ARMA(4,5) - = = ARMA(2,5)

35

unit circle
ARMA(6,4) zeros

unit circle

O ARMA(6,4) zeros
% ARMA(6.4) poles
4 ARMA(4,5) zeros
X ARMA(4.5) poles

(]

*  ARMA(64) poles
& ARMA(2,5) zeros
X ARMA(2,5) poles

Fig. 6. Power spectrum and ARMA(4,5) approximant (above) arFig. 8. Power spectrum and ARMA(2,5) approximant (above) an
poles/zeros pattern (below) poles/zeros pattern (below)

i e e and the Hessian is given by
m m,n
1 ] (Ohere + Qt) oy ‘ (Brre + Br—e) gy =0
i LT T
N (Brse + ﬁk—z)k:()’g:l ‘ (Ve + Vk—z),d:o
. where
I 4
- P ¢
I ] k6
-05 T = e (log = — =)d
k / (log 0 P) 2
Al ] . P
k6
wp = /e’ log —du
71.51 15 2 25 3 35 4 4.5 5 . P —"— E
ap = /ezkﬁ—zdlu
Fig. 7. Cepstral coefficients of power spectrum and of ARMB)2 P
approximant 5, = / oiko dp
Q
0o P
T = eme—Qdﬂ
IX. APPENDIX: NUMERICAL ISSUES Q

Proposition 5: Let the convex function) be defined

asiy(p,q) = L(P,Q,1), whereL is the Lagrangian (16). Acknowledgments

Then the gradient oy equals ] ) o
We would like to thank Dr. Per Engvist for bringing

(T1 = Cly ooy T — Cmy 70 — W0, T1 — W1, -+ -7 —wp)' [19] to our attention.
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Fig.
pole/zero patterns (below)

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

ARMA(6,6) approximated by a AR(16)
T T T T

ARMA(6,6)
- = =AR(6)

35

ARMA(6,6) approximated by a AR(16)

unit circle

O ARMA(66) zeros

% ARMA(6,6) poles

x AR(16) poles

9. Power spectrum & AR(16) approximant (above) an#ig.
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