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A convex optimization approach to ARMA
modeling

Tryphon T. Georgiou and Anders Lindquist

Abstract—We formulate a convex optimization problem
for approximating any given spectral density with a
rational one having a prescribed number of poles and
zeros (n poles and m zeros inside the unit disc and
their conjugates). The approximation utilizes the Kullback-
Leibler divergence as a distance measure. The stationarity
condition for optimality requires that the approximant
matches n + 1 covariance moments of the given power
spectrum and m cepstral moments of the corresponding
logarithm, although the latter with possible slack. The
solution coincides with one derived by Byrnes, Enqvist
and Lindquist who addressed directly the question of
covariance and cepstral matching. Thus, the present paper
provides an approximation theoretic justification of such a
problem. Since the approximation requires only moments
of spectral densities and of their logarithms, it can also be
used for system identification.

I. INTRODUCTION

F INITE-DIMENSIONAL models are central to most
modern-day techniques for analysis and design of

control systems. Yet many problems concerning mod-
eling of linear systems remain open. A case in point
is ARMA (autoregressive moving average) modeling
of time-series. In ARMA modeling, least-squares tech-
niques often lead to inadmissible (unstable) models while
most other approaches require non-convex optimization
and are based on iterative procedures whose global
convergence is not guaranteed. Hence, at least from
a theoretical point of view, the problem of ARMA
modeling remains open [21, page 103].

In the present paper we formulate a convex optimiza-
tion for identifying a finite-dimensional approximant of
a given power spectrum. The formulation involves a fre-
quency domain representation and data which represent
certain statistical moments of the time series. In fact, for
constructing an ARMA(n,m) model, the data consist of
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n autocorrelation lags and m moments of the logarithm
of the power spectral density (cepstral coefficients). The
approximation uses the Kullback-Leibler divergence as
a criterion of fit.

It is well known that model approximation and system
identification are closely related subjects. In either, the
objective is to match to high degree of accuracy given
data by a lower order model. The difference between the
two subjects is that in model approximation the data is
thought to be exact, whereas in system identification their
statistical nature is of paramount importance. It is for this
reason that some system identification techniques rely on
estimated statistics as the preferred form in which data
is to be supplied. Since the optimality conditions for our
approximation problem are only in terms of moments,
our results are relevant to system identification as well.

The present paper provides an approximation-theoretic
justification of a procedure proposed in [3], [4] that
directly addressed the question of covariance and cepstral
matching. This previous work has been in turn part of a
broad program on convex optimization for interpolation
and moment problems initiated in [8] (also see [9]) and
continued in [5], [6], [7]. In a quite different but yet
related direction, in [15] we considered the following
problem. Find a spectral density that best approximates
an a priori spectral estimate in the Kullback-Leibler
sense and, at the same time, matches a window of
prescribed covariance lags. Though this earlier work uses
related concepts and methods, it does not lead to a
model reduction procedure since the solution in [15] is
in general more complex than the a priori estimate.

In Section II we formulate and motivate the basic
approximation problem. The optimality conditions for
the approximant are given in Section III. Some of the
technical arguments are deferred to Section V. Then,
in Section IV, we consider a regularized version of
the approximation problem which is more amenable to
numerical computation. Connections to the problem in
[3], [4] will be elaborated upon in Section VI. In a
final section, Section VII, we illustrate the approximation
results with several examples.
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II. FORMULATION OF THE PROBLEM

We begin by considering the Kullback-Leibler diver-
gence [18], [10]

D(Φ̂‖Φ) :=

∫ π

−π

Φ̂(eiθ) log
Φ̂(eiθ)

Φ(eiθ)

dθ

2π

as a distance measure between power spectral densities
Φ̂ andΦ. The functional(Φ̂,Φ) 7→ D(Φ̂‖Φ) is convex
[10] and, assuming that both arguments are normalized
in the sense that

∫ π

−π

Φ(eiθ)
dθ

2π
= 1, (1)

D(Φ̂‖Φ) ≥ 0 with equality if and only if Φ̂ = Φ.
Although this is not abona fidemetric, it induces a
metric topology and, in fact, a Riemannian metric struc-
ture on normalized positive functions; i.e., on probability
densities [1], [2] (also see [14]). Therefore, it appears
natural to consider the problem of approximating a given
Φ by a Φ̂ belonging to a suitable class of admissible
spectral densities.

From a systems-theoretic point of view it is natural to
consider approximatingΦ by a rational spectral density

Φ̂ =
P

Q
,

with P,Q trigonometric polynomials of at most degrees
m and n, respectively. In the special case of MA ap-
proximation, whenn = 0, this approximation problem
reduces to minimizingD(P‖Φ) subject to normalization.
This is a convex optimization problem inm coeffi-
cients of the trigonometric polynomialP . By way of
contrast, while in general̂Φ 7→ D(Φ̂‖Φ) is a convex
functional in infinitely many variables, the functional
(P,Q) 7→ D(P

Q
‖Φ) has finitely many variables but is

not convex. Therefore, to emulate the MA case, instead
of minimizing D(P

Q
‖Φ) we consider the problem to

minimize
S(P,Q) := D(P‖QΦ),

subject to normalization ofP andQΦ as in (1). This is
a convex optimization problem inm+ n+ 1 variables.

This approximation problem can be regarded as a
model matching problem. We illustrate this in Figure
1, whereW is the outer spectral ofΦ; i.e.,

Φ(eiθ) = |W (eiθ)|2

with W analytic and invertible in the open unit discD :=
{z : |z| < 1},

a(z) = a0 + a1z
−1 + . . .+ anz

−n

b(z) = b0 + b1z
−1 + . . .+ bmz

−m

W (z) a(z)

b(z)

yt

wt

ut

vt

Fig. 1. Model matching problem

are transfer functions of two finite-impulse-response
filters, and{yt : t ∈ Z} is a stationary random process
produced by passing a white noise input{wt} through
a filter with transfer functionW . The approximation
amounts to matching the power spectra of the two
outputs{ut} and{vt}.

To see this, first note that ifa(z)W (z) = b(z), then
the power spectra of the outputsut and vt will be the
same and

∣

∣

∣

∣

b(eiθ)

a(eiθ)

∣

∣

∣

∣
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= Φ(eiθ). (2)

More generally, we seek to determine the coefficients of
a(z) and b(z) so as to minimize the Kullback-Leibler
divergence

∫ π

−π

|b(eiθ)|2 log

(

|b(eiθ)|2

Φ(eiθ)|a(eiθ)|2

)

dθ

2π

between the power spectral densities|b(eiθ)|2 and
Φ(eiθ)|a(eiθ)|2 of ut andvt, respectively, with the coeffi-
cients ofb(z) anda(z) being normalized so that the vari-
ances

∫ π

−π
|b(eiθ)|2dθ/2π and

∫ π

−π
Φ(eiθ)|a(eiθ)|2dθ/2π

are both equal to one. With this normalization, the
Kullback-Leibler divergence is nonnegative, and it is
zero if and only if (2) holds, as indicated earlier.

The above formalism has already been considered in
the context of least-squares estimation [19] (see also
[20]). In this earlier work, a model matching problem
is also motivated based on the configuration in Figure 1.
The matching criterion is to minimize the error variance
E{|ut − vt|

2}, instead of a distance between the power
spectra ofut and vt, as done in the present work. In-
terestingly, the authors of [19] discovered that this least-
squares model matching yields a stable filter. However,
their problem requires as data the Markov parameters of
the filter in addition to spectral moments. An interesting
wrinkle to this connection is that for minimum-phase
filters there is a bijective relation between Markov pa-
rameters and cepstral coefficients [4] (i.e., moments of
the logarithm of the spectral density). It is this latter set
of coefficients that enter in the present work.
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As we shall see below, the problem of minimizing
the distance between the spectral densities|b(eiθ)|2

and Φ(eiθ)|a(eiθ)|2 becomes a convex problem when
expressed in terms of the coefficients of the pseudo-
polynomials (trigonometric polynomials)

Q(z) = a(z)a(z−1)

= q0 +
1

2

n
∑

k=1

qk(z
k + z−k), (3a)

and

P (z) = b(z)b(z−1)

= p0 +
1

2

m
∑

k=1

pk(z
k + z−k). (3b)

Also, as we shall see in the next section, the optimal ra-
tional approximant turns out to be specified by a number
of moment constraints of the given power spectrum and
of its logarithm, which need to be matched (exactly or
approximately in a suitable sense). Indeed, the optimality
conditions are expressed in terms of the covariance lags

rk :=

∫

cos kθΦ(eiθ)dµ, k = 0, 1, . . . , n, (4a)

and the cepstral coefficients

ck :=

∫

cos kθ log Φ(eiθ)dµ, k = 0, 1, . . . ,m, (4b)

where from this point on, for notational convenience,
we usedµ to denote the normalized Lebesgue measure
dθ/2π, and we suppress the limits of integration, which
will always be from−π to π. Interestingly, the optimality
conditions (4) coincide with those for a different opti-
mization problem stated in [3], [4], as we have already
indicated, and will further elaborate upon in Section VI.

III. O PTIMALITY CONDITIONS

Let P andQ be the closed convex sets

P :=

{

P | P (eiθ) = 1 +

m
∑

k=1

pk cos kθ ≥ 0, ∀θ

}

(5a)

and

Q :=

{

Q | Q(eiθ) = q0 +
n
∑

k=1

qk cos kθ ≥ 0, ∀θ

}

(5b)
of nonnegative trigonometric polynomials. Then, the
problem at hand is to minimize the convex functional

S(P,Q) =

∫

P log

(

P

ΦQ

)

dµ

over P × Q subject to the normalization condition
∫

ΦQdµ = 1. (6a)

The normalization

p0 =

∫

Pdµ = 1 (6b)

also prescribed in Section II is already included in the
definition of P.

We denote byP+ and Q+ the subsets ofP and Q,
respectively, for whichP (eiθ) > 0 andQ(eiθ) > 0 for
all θ. We also denote by∂P := PrP+ and∂Q := QrP+

the corresponding boundaries. For future reference we
also define the hyperplane

H :=

{

Q | Q(eiθ) = q0 +

n
∑

k=1

qk cos kθ

and
∫

QΦ dµ = 1

}

. (7)

Moreover, we shall say that the pair(P,Q) ∈ P×Q has
maximal degreeif either degP = m or degQ = n or
both.

Theorem 1:Consider the functional

S(P,Q) : P × Q 7→ R

defined on nonnegative trigonometric polynomialsP,Q
of degreesm andn, respectively, as specified in (5), and
the set of minimizing solutions

S := {(P̂ , Q̂) | S(P̂ , Q̂) = min S(P,Q) subject to (6a)}.

Then the following hold:
(i) The setS is nonempty.
(ii) The ratio P/Q defines the same function for all

(P,Q) ∈ S.
(iii) If a pair (P,Q) ∈ S is relatively prime and has

maximal degree, thenS contains only this one
element.

(iv) If a pair (P,Q) ∈ S does not have maximal degree
and P ∈ P+, then S contains more than one
element.

(v) If a pair (P,Q) ∈ S is not coprime andP ∈ P+,
thenS contains more than one element.

The following observation is needed throughout.
Lemma 2:The setsP andQ ∩ H are compact.

Proof: Since the elements ofP are nonnegative and
their constant term is one, their remaining coefficients
are also bounded by one. Therefore,P is compact. Next
we show thatQ∩H is also compact. SinceΦ is the power
spectral density of a purely nondeterministic process, the
Toeplitz matrix formed out of the firstn + 1 moments
r0, r1, . . . , rn is positive definite, and the corresponding
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nth Szegö polynomialϕn(z) (see, e.g., [16]) is devoid
of roots on the circle. Moreover, since

∫

eikθ 1

|ϕn(eiθ)|
2 dµ = rk, k = 0, 1, . . . , n,

and Q is a trigonometric polynomial of degreen, it
follows that

1 =

∫

Q(eiθ)Φ(eiθ)dµ

=

∫

Q(eiθ)
1

|ϕn(eiθ)|
2 dµ ≥ q0

1

M

whereM = max{
∣

∣ϕn(eiθ)
∣

∣

2
: θ ∈ [0, π]} <∞. Hence,

q0 is bounded byM and so are the remaining coefficients
of Q. Consequently,Q ∩ H is compact as claimed.

We are now in a position to prove statements (i)-(iii)
of Theorem 1. Proofs of the remaining statements are
deferred to Section V.

Proof of Theorem 1, statements (i)-(iii):SinceS is
convex andP × (Q ∩ H) is compact (Lemma 2), there
exists a minimizing point. This establishes statement (i).

SinceS is a convex functional, the setS of minimizers
is convex. If(P0, Q0) and(P1, Q1) are both inS, then so
is the whole interval(Pτ , Qτ ) ∈ S for τ ∈ [0, 1]. There-
fore, the second derivative ofS(Pτ , Qτ ) with respect to
τ , at any point of the interval, must be zero. In particular,
for τ = 0 and for δP = P1 − P0 and δQ = Q1 − Q0,
we compute that the second derivative is

∫

(Q0δP − P0δQ)2

P0Q2
0

dµ.

If this integral vanishes, then, since the integrand is non-
negative,P0δQ − Q0δP = 0. Hence,P0/Q0 = P1/Q1

for any two elements(P0, Q0) and (P1, Q1) in S. This
proves statement (ii).

If a pair (P,Q) ∈ S is coprime and if at least
one of them has maximal degree, i.e., at least one of
degP = m or degQ = n holds, then any other element
(P1, Q1) ∈ S must satisfyP/Q = P1/Q1. If P1 and
Q1 have a nontrivial common factor, then one of the
two must exceed the corresponding allowable degree and
contradicts the assumption that(P1, Q1) ∈ P × Q. This
completes the proof of statement (iii).

The next theorem lists the appropriate optimality con-
ditions under the same assumptions and notation as in
Theorem 1. The proof will be deferred to Section V.

Theorem 3:Suppose a window of covariance lags
(r0, r1, . . . , rn) and a window of cepstral coefficients
(c0, c1, . . . , cm) are computed fromΦ as in (4). Any
(P,Q) ∈ S satisfies the covariance matching conditions

∫

cos kθ
P

Q
dµ = rk, k = 0, 1, . . . , n. (8)

If in addition P ∈ P+, then(P,Q) satisfies the cepstral
matching conditions

∫

cos kθ log
P

Q
dµ = ck, k = 1, . . . ,m. (9)

Conversely, any(P,Q) ∈ P × (Q ∩ H) which satisfies
both sets of the moment conditions (8) and (9) belongs
to S. In general, allowing for the case whereP ∈ ∂P,
any (P,Q) ∈ S satisfies the modified cepstral matching
condition
∫

cos kθ log
P

Q
dµ = ck + gk, k = 1, . . . ,m, (10)

where the slack variablesg1, g2, . . . , gm are the same for
all (P,Q) ∈ S, and where the vector(g0, g1, . . . , gm) is
the unique maximizer of

∫

log
P

Q
dµ− g0 (11)

subject to (10) and subject to the nonnegativity of the
Toeplitz matrix

Tg :=











g0 g1 . . . gm

g1 g0 gm−1
...

...
. ..

...
gm gm−1 . . . g0











. (12)

In particular,g0 = −
∑m

k=1 pkgk, and, whenP ∈ P+,
gk = 0 for k = 0, 1, . . . ,m. For any (P,Q) ∈ S the
optimal value

S(P,Q) =

∫

log
P

Q
dµ −

∫

log Φ dµ− g0

=

∫

log
P

Q
dµ − c0 − g0. (13)

In the last statement of the theorem we see that the
minimal Kullback-Leibler divergence equals the differ-
ence in entropy gain betweenP/Q and Φ or, equiv-
alently, the difference between their respective zeroth
cepstral coefficients, both modified by the slack variable
g0 ≥ 0 wheneverP ∈ ∂P. Moreover, we see from (8),
thatQmay not have a root on the unit circle unlessP has
the same root so that cancellation ensures integrability
of the fractionP/Q.

IV. REGULARIZATION AND CEPSTRAL SLACKNESS

The computation of the minimizer forS is consider-
ably more complicated when̂P has roots on the unit
circle; i.e., whenP̂ belongs to the boundary ofP. There
is therefore a need for a suitable regularization that
will keep the solution in the interior ofP × Q. Such
strategies have been considered for the problem in [3],
[4] by Per Enqvist in his Ph.D. thesis [11], [12]. Here
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we consider the same regularization for our Kullback-
Leibler functional

Sε(P,Q) := S(P,Q) −

∫

ε log P (eiθ)dµ.

By Szegö’s theorem [16]log P is integrable on the unit
circle, but its derivative is not. This forces the minimizing
solution to lie in the interior ofP × Q.

Theorem 4:Suppose a window of covariance lags
(r0, r1, . . . , rn) and a window of cepstral coefficients
(c0, c1, . . . , cm) are computed fromΦ as in (4a) and (4b),
and letε > 0. The problem of minimizing the functional

Sε(P,Q) : P × Q 7→ R

subject to (6a) has a unique solution(P̂ , Q̂). This so-
lution belongs toP+ × Q+ and satisfies the covariance
matching conditions

∫

cos kθ
P̂

Q̂
dµ = rk, k = 0, 1, . . . , n,

as well as the modified cepstral matching conditions
∫

cos kθ log
P̂

Q̂
dµ = ck + ε

∫

cos kθ
1

P̂
dµ,

k = 1, . . . ,m. (14)

Moreover, the optimal value is

Sε(P̂ , Q̂) =

∫

log
P̂

Q̂
dµ − c0

+ ε

∫ (

1 −
1

P̂
− log P̂

)

dµ. (15)

Proof: We compute the first variation ofSε

δSε(P,Q; δP, δQ) =

∫ (

1 + log
P

QΦ

)

δP dµ

−

∫

P

Q
δQdµ − ε

∫

1

P
δP dµ

and the second variation

δ2Sε(P,Q; δP, δQ) =

∫

(QδP − PδQ)2

PQ2
dµ

+ε

∫

(δP )2

P 2
dµ.

The second variation is positive unlessδP = 0 andδQ =
0. Consequently,Sε is strictly convex.

The optimization problem in the theorem is equivalent
to finding a pair(P,Q) ∈ P × (Q ∩ H), with H as
in (7), that minimizesSε. We have shown earlier that
P× (Q ∩ H) is compact. Since in additionSε is strictly
convex the optimization problem has a unique solution
(P̂ , Q̂).

The functionalSε remains finite onP× (Q ∩ H), yet
its first variation becomes unbounded on the boundary.
This implies, in fact, that(P̂ , Q̂) lies in the interiorP+×
(Q+ ∩ H). To see this we provide the following brief
argument. Assume that for someeiθ0 , with θ0 ∈ [−π, π],
one or both ofP̂ , Q̂ vanish. Since the setP × (Q ∩ H)
is obviously convex with a nontrivial interior, there exist
trigonometric polynomialsδP andδQ so that

(P̂ + δP, Q̂+ δQ) ∈ P+ × (Q+ ∩ H) ,

and, in particular,δP (eiθ0) > 0 and δQ(eiθ0) > 0. But
then, perturbing in the direction(δP, δQ),

δSε(P̂ , Q̂; δP, δQ) =

∫

(

1 + log
P̂

Q̂Φ

)

δP dµ

−

∫

P̂

Q̂
δQdµ − ε

∫

1

P̂
δP dµ

gives−∞ since the first term is finite, whereas at least
one of the other two terms give−∞. This argument can
become more rigorous by considering a path(Pα, Qα),
with α ∈ [0, 1], which starts at an interior point and ends
at the assumed minimizing point(P̂ , Q̂) on the boundary.
The contradiction is drawn by evaluating the derivative
of Sε(Pα, Qα) at the end point which turns out to be
+∞. In a similar context this is done in detail in [8,
page 225].

In order to establish the moment conditions satisfied at
the minimizing point(P̂ , Q̂), we consider the Lagrangian

L(P,Q, λ) :=

∫

(P log
P

QΦ
− ε log P )dµ

+λ

(∫

QΦ dµ− 1

)

on all of P × Q, whereλ ∈ R is a Lagrange multiplier.
For all fixedλ > 0, the Lagrangian has compact sublevel
sets

Mr := {(P,Q) | L(P,Q, λ) ≤ r}

with r ∈ R. To see this letQ = ηQ0 with Q0 ∈ Q ∩H.
Clearly,η > 0. Then, since

L(P,Q, λ) =

∫

(P log
P

Q0Φ
− P log η − ε log P )dµ

+λ (η − 1) ,

(P,Q) ∈Mr if and only if

λη − log η ≤ r + λ− Sε(P,Q0).

Comparing linear and logarithmic growth, this shows
that η is bounded from above (and also bounded away
from 0). This shows that the sublevel sets are bounded.
Since the Lagrangian is continuous they are all also
closed, and hence compact.
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Because the Lagrangian differs fromSε(P,Q) by a
linear term, it is strictly convex as well. Therefore, for
eachλ > 0, the Lagrangian has also a unique minimizing
point (Pλ, Qλ) ∈ P × Q. This minimizing point is not
located on the boundary. To see this note that the first
variation

δL(P,Q, λ; δP, δQ) = δSε(P,Q; δP, δQ)

+λ

∫

ΦδQdµ.

A similar argument as the one given above for the case
of Sε applies to show that(Pλ, Qλ) ∈ P+ × Q+. There-
fore, (Pλ, Qλ) is the unique solution of the stationarity
conditions

∂L

∂pk

=

∫

cos kθ

(

1 + log
P

QΦ
−
ε

P

)

dµ = 0,

k = 1, 2, . . . ,m (16a)

∂L

∂qk
=

∫

cos kθ

(

−
P

Q
+ λΦ

)

dµ = 0,

k = 0, 1, . . . , n. (16b)

The set of equations (16a) can be rewritten as follows
∫

cos kθ log
P

Q
dµ = ck +

∫

cos kθ
ε

P
dµ,

k = 1, 2, . . . ,m. (17)

Using (16b) we can determine the unique value forλ
which is in harmony with the side condition (6a). To
this end, we form

n
∑

k=0

qk

∫

cos kθ

(

−
P

Q
+ λΦ

)

dµ

= −

∫

Pdµ+ λ

∫

QΦ dµ

= −1 + λ

∫

QΦ dµ,

which equals zero due to (16b), and therefore

λ = 1. (18)

Conversely, forλ = 1 the unique solution satisfying the
stationarity conditions also satisfies (6a), and therefore

L(P1, Q1, 1) = Sε(P1, Q1). (19)

With the choiceλ = 1 equation (16b) becomes
∫

cos kθ
P

Q
dµ = rk, k = 0, 1, . . . , n. (20)

From the optimization of the Lagrangian we have

L(P,Q, 1) ≥ L(P1, Q1, 1)

for all (P,Q) ∈ P × Q. If in additionQ ∈ H, then

Sε(P,Q) = L(P,Q, 1) ≥ L(P1, Q1, 1),

and hence, from (19), we conclude that

Sε(P,Q) ≥ Sε(P1, Q1) (21)

for all (P,Q) ∈ P × (Q ∩ H).
Finally we establish (15). From (16a), we see that

m
∑

k=1

p̂k

∫

cos kθ

(

log
P̂

Q̂Φ
−
ε

P̂

)

dµ = 0,

which can be rewritten as
∫

(P̂ − 1)

(

log
P̂

Q̂Φ
−
ε

P̂

)

dµ = 0.

Therefore

Sε(P̂ , Q̂) =

∫

P̂ log
P̂

Q̂Φ
dµ −

∫

ε log P̂ dµ

=

∫

log
P̂

Q̂Φ
dµ + ε

∫

P̂ − 1

P̂
dµ− ε

∫

log P̂ dµ

from which (15) readily follows.

V. PROOFS OFTHEOREMS1 AND 3

In order to prove Theorem 3 we consider what hap-
pens to conditions of Theorem 4 whenε → 0. We then
use Theorem 3 to complete the proof of Theorem 1.

We first note that, by Theorem 4, for eachε there is a
unique minimizer ofSε in P×(Q∩H), which we denote
by (P̂ε, Q̂ε). SinceP× (Q∩H) is compact (Lemma 2),
there is a sequence in the set{(P̂ε, Q̂ε) | ǫ > 0} that
converges to a limit point(P0, Q0). For any point in this
sequence we have that

Sε(P,Q) ≥ Sε(P̂ε, Q̂ε)

holds for all (P,Q) in P × (Q ∩ H). By continuity
Sε(P,Q) → S(P,Q) and Sε(P̂ε, Q̂ε) → S(P0, Q0) as
ε→ 0. Therefore

S(P,Q) ≥ S(P0, Q0) for all (P,Q) ∈ P × (Q ∩ H),

and hence, any such limit point(P0, Q0), which need not
be unique, is a minimizer ofS. By Theorem 4, any such
limit point (P0, Q0) satisfies the covariance matching
conditions (8); i.e.,

∫

cos kθ
P0

Q0
dµ =

∫

cos kθΦ dµ,

k = 0, 1, . . . , n. (22a)

In view of Theorem 1(ii), any(P,Q) ∈ S also satisfies
(8).



GEORGIOU AND LINDQUIST: CONVEX OPTIMIZATION FOR ARMA MODELING 7

The quantities

gk :=

∫

cos kθ log
P0

Q0
dµ −

∫

cos kθ log Φ dµ,

k = 1, 2, . . . ,m, (22b)

are well defined, since the logarithms of trigonometric
polynomials are always integrable. These are the slack
variables in (10) in Theorem 3. Then, again by Theo-
rem 1(ii), any(P,Q) ∈ S satisfies (10). It remains to es-
tablish the properties of these slack variables claimed in
the theorem. We first show thatgk = 0 for k = 1, . . . ,m
whenP ∈ P+, and therefore that (9) holds in this case.

To this end, choose an arbitrary(P̂ , Q̂) ∈ S and
suppose that̂P ∈ P+. Since the function

F : P 7→ S(P, Q̂)

is convex andP̂ is an interior point, the stationarity
condition

∂F

∂pk

=

∫

cos kθ(log
P

Q̂
− log Φ)dµ = 0

holds forP = P̂ . Therefore (9) holds at the point(P̂ , Q̂)
as claimed in the theorem.

The slack variablesgk turn out to be Lagrange mul-
tipliers in the corresponding Lagrange relaxed optimiza-
tion to which we now turn for their remaining properties.
Consider the Lagrangian

L(P,Q, λ, g) :=

∫

(P logP − P logQ− P log Φ)dµ

+λ

(
∫

QΦ dµ− 1

)

−

∫

gPdµ, (23)

whereλ ∈ R is a Lagrange multiplier as is the distribu-
tion g, introduced to ensure thatP ∈ P. More precisely,
for eachθ, g(eiθ) could be regarded as the Lagrange
multiplier of the constraintP (eiθ) ≥ 0, and henceg is
nonnegative and

∫

gPdµ =
n
∑

0

gkpk =: 〈g, p〉,

whereg0, g1, . . . , gn are Fourier coefficients ofg andp =
(1, p1, . . . , pm). The nonnegativity of the distributionsg
implies in particular that the Toeplitz matrixTg defined
in (12) is positive semidefinite. For reasons that have to
do with the fact that (8) always holds for(P,Q) ∈ S, it
turns out that a Lagrange term for enforcingQ ∈ Q is
not necessary.

For all values of the Lagrange multiplersλ andg for
which there is a pair(P,Q) ∈ P × Q such that the
stationarity conditions

∂L

∂pk

=

∫

cos kθ

(

log
P

Q
− log Φ

)

dµ− gk

= 0, k = 1, 2, . . . ,m (24a)

∂L

∂qk
=

∫

cos kθ

(

−
P

Q
+ λΦ

)

dµ

= 0, k = 0, 1, . . . , n (24b)

hold and hence(P,Q) is a minimizer of the Lagrangian,
we form the dual functional

J(λ, g) := min
(P,Q)∈P×Q

L(P,Q, λ, g),

which can be written

J(λ, g) =

∫ (

log
P

Q
− log Φ

)

dµ − g0 − λ

+
m
∑

k=1

pk

[
∫

cos kθ

(

log
P

Q
− log Φ

)

dµ − gk

]

+

n
∑

k=1

qk

∫

cos kθ λΦ dµ. (25)

The domain ofJ is clearly nonempty. In fact, in view
of (22), (P0, Q0) satisfies (24) forλ = 1, g1, . . . , gm as
given in (22b) andg0 arbitrary subject to the Toeplitz
condition Tg > 0 ; this can always be satisfied by
selectingg0 sufficiently large. Moreover, for anyλ > 0,
(λP0, Q0) satisfy (24) as well. To see this, note that
∫

cos kθ log λdµ = 0 for k = 1, 2, . . . ,m. More gen-
erally, let (P1, Q1) be an arbitrary solution to (24) with
λ = 1 and a choice of values forg1, . . . , gm. Then again,
(P,Q) = (λP1, Q1) is a solution to (24) for the same
g1, . . . , gm andg0 sufficiently large.

In view of (24a) the quantity within square brackets
in line two of (25) equals zero. Furthermore, by (24b)
the quantity in the last line is

n
∑

k=1

qk

∫

cos kθ λΦ dµ =

n
∑

k=1

qk

∫

cos kθ
P

Q
dµ

=

∫

Pdµ = 1.

Consequently, sinceP/Q = λP1/Q1,

J(λ, g) = log λ− λ− g0 +

∫

log
P1

Q1Φ
dµ+ 1, (26)

whereP1/Q1 depends ong1, . . . , gm via (24a) as just
noted.

The dual problem amounts to maximizingJ . To this
end, note that only the first two terms in (26) depend
on λ, so the maximizing value forλ is obtained by
maximizing the concave functionlog λ−λ to obtain the
optimal valueλ̂ = 1. Next, only the third and fourth
terms in (26) depend ong. The maximizingg, which
we do not need to determine explicitly, will be denoted
by ĝ.
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Let (P̂ , Q̂) denote any minimizer of(P,Q) 7→
L(P,Q, λ̂, ĝ). Since〈g, p̂〉 ≥ 0, we have

−g0 ≤ g1p̂1 + · · · + gmp̂m.

Hence,g0 in (26) must satisfy the complementary slack-
ness condition

〈ĝ, p̂〉 = 0. (27)

Moreover, withλ = λ̂, (24b) implies that
∫

QΦ dµ =
n
∑

k=0

qk

∫

cos kθ
P

Q
dµ =

∫

Pdµ = 1;

i.e., the side condition (6a) is satisfied.
For any(P,Q) ∈ P × Q satisfying the side condition

(6a) and any(λ, g) in the domain ofJ we have

S(P,Q) = L(P,Q, λ̂, ĝ) ≥ L(P̂ , Q̂, λ̂, ĝ) ≥ J(λ, g).
(28a)

However, it is immediate that

S(P̂ , Q̂) = L(P̂ , Q̂, λ̂, ĝ) = J(λ̂, ĝ). (28b)

Hence, in particularS(P,Q) ≥ S(P̂ , Q̂) for all pairs that
satisfy the side condition, establishing minimality, andĝ
is the unique minimizer of (11). Moreover, the optimal
value becomes

S(P̂ , Q̂) =

∫

(

log
P̂

Q̂
− log Φ

)

dµ− ĝ0.

If P ∈ P+, ĝ must be identically zero, because of the
complementary slackness condition (27); i.e.,〈ĝ, P̂ 〉 = 0
must be satisfied.

Conversely, suppose that(P̂ , Q̂) ∈ P×Q satisfies both
(8) and (9). Then in view of (24),

∂L

∂pk

(P̂ , Q̂, λ̂, 0) = 0, k = 1, 2, . . . ,m,

∂L

∂qk
(P̂ , Q̂, λ̂, 0) = 0, k = 0, 1, . . . , n.

Therefore, (P̂ , Q̂) is a minimizer of (P,Q) 7→
L(P,Q, λ̂, 0), since this function is convex, so it follows
from (28) that(P̂ , Q̂) ∈ S, as claimed. This concludes
the proof of Theorem 3.

The remaining statements (iv) and (v) of Theorem 1
now follow directly from the fact that any(P,Q) that
satisfies the moment conditions (8) and (9) is also a
minimizer (Theorem 3). Hence, ifP ∈ P+ and either
(P,Q) ∈ P × (Q ∩ H) have a common factor or they
are both degree deficient, then we can introduce or alter
existing common factors without violating the moment
conditions or the normalization (6a) (which can be seen
as before by summing the covariance moment conditions
after we multiply byqk, respectively). Notice that this
may not be possible whenP ∈ ∂P because of the slack
variables. This concludes the proof of Theorem 1.

VI. CEPSTRAL APPROXIMATION SUBJECT TO

COVARIANCE MATCHING

A central theme in [3], [4] was to determine a rational
power spectral density which matches a set of prescribed
covariance lags while, at the same time, approximates
a set of given cepstral coefficients. To this end, the
functional

I(Ψ) : =

m
∑

k=1

∣

∣

∣

∣

∫

eikθ log Ψ(eiθ)dµ− ck

∣

∣

∣

∣

−

∫

log Ψ(eiθ)dµ

was introduced in [3], [4], to be minimized subject to
the matching conditions

∫

eikθΨ(eiθ)dµ = rk, k = 0, 1, . . . , n

for a given set of covariance lagsr0, r1, . . . , rn and cep-
stral coefficientsc1, . . . , cm. This cost functional trades
off maximization of entropy gain against approximating
the cepstral coefficients.

The connection to our present work is through the
dual of this optimization problem, namely to maximize
the concave functional

J(P,Q) = c1p1 + · · · + cmpm − r0q0 − · · · − rnqn

−

∫

P (eiθ) log
P (eiθ)

Q(eiθ)
dµ (30)

overP×Q. It was shown in [4, Theorem 5.3] that there
exists at least one solution(P̂ , Q̂) to this problem, and
Ψ̂ = P̂

Q̂
is the solution of the primal problem. For any

such maximizer(P̂ , Q̂), we haveQ̂ ∈ Q+ and exact
covariance matching. IfP̂ ∈ P+, there is also exact
cepstral matching. In this case(P̂ , Q̂) is unique, and
this happens if and only if̂P andQ̂ are coprime. Hence
there is an analogous set of conclusions for this pair of
dual optimization problems to those in Theorem 1.

As can be seen from the proof of Theorem 1, the
optimal solution (P̂ , Q̂) of the optimization problem
of Section III is obtained by minimizingL(P,Q, λ̂, ĝ),
where the LagrangianL is given by (23), and̂λ = 1
and ĝ are the optimal solution of the dual problem to
maximize (26). However,

L(P,Q, λ̂, ĝ) =

∫

P log
P

Q
dµ

−

m
∑

k=0

pk

∫

cos kθ log Φ dµ

=

n
∑

k=0

qk

∫

cos kθΦ dµ− 1 −

m
∑

k=0

ĝkpk,
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which, in view of (4), can be written

L(P,Q, λ̂, ĝ) = r0q0 + · · · + rnqn

−(c1 + ĝ1)p1 − · · · − (cm + ĝm)pm

=

∫

P log
P

Q
dµ− 1 − c0 − ĝ0.

Since c0 and ĝ0 are constant, minimizing(P,Q) 7→
L(P,Q, λ̂, ĝ) over P × Q is equivalent to maximizing

(c1 + ĝ1)p1 + · · · + (cm + ĝm)pm

−r0q0 − · · · − rnqn −

∫

P log
P

Q
dµ

over P × Q, which is precisely the dual problem (30)
with the cepstral coefficients appropriately modified to
account for slack variables.
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Fig. 2. High order power spectrum and ARMA(4,5) approximant
(above) and poles/zeros pattern (below)

This explains the congruity of the optimality condi-
tions and justifies our earlier claims on carrying over the
conclusions on the uniqueness of the extrema.

VII. SPECTRAL APPROXIMATION: CASE STUDIES

We begin with a power spectral densityΦ of high
order shown in Figure 2, which corresponds to an

ARMA(20,16) model. The poles and zeros of the cor-
responding canonical spectral factor are also shown in
the same figure. This is an example of a rather tame
“high order” power spectrum which can be easily ap-
proximated by a low order one. For the appoximation
we selectn = 4, m = 5, and hence the approximant
corresponding to an ARMA(4,5) model. This indeed
is capable of matching perfectly the set of the first5
covariance samples as well as the set of the first5
cepstral coefficients. This “low order” power spectrum
and its corresponding pole/zero pattern are superimposed
with those ofΦ in the same figures.
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Fig. 3. Power spectrum and AR(10) approximant (above) and
poles/zeros pattern (below)

When a power spectrum has a number of poles and
zeros near the unit circle, then it may be impossible to
match perfectly all relevant cepstral coefficients with a
low order model (i.e.,m of them for an ARMA(n,m)
approximant). We highlight the ability of low order
approximants to follow the “shape” ofΦ in a series of
representative cases. The power spectral densityΦ that
we have selected corresponds to an ARMA(6,4) model
with pairs of poles and zeros near each other in the unit
disc. We displayΦ together with approximating spectra
of lower order ones, AR(10), MA(10), ARMA(2,2), and
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Fig. 4. Power spectrum and MA(10) approximant (above) and
poles/zeros pattern (below)

ARMA(4,5), respectively, along with the corresponding
pole/zero patterns superimposed with those ofΦ, in sep-
arate graphs below. In all these cases, the approximating
power spectra have zeros on the boundary and are unable
to match the cepstral coefficients. This is examplified
for the case that corresponds to an ARMA(2,5) model
in Figure 7. It is worthing noting the improvement in
matching the actual “shape” ofΦ and comparing these
cases. Interestingly enough, the peak can be reproduced
relatively accurately with one pair of complex poles.
This is not the case for the “valley” inΦ because it is
produced by two pairs of complex zeros. For matching
the “valley,” a higher order MA-part is needed. Despite
the fact that the MA-part is of order5 in the example
in Figure 6, the approximant does not match the specific
pole zero pattern.

An alternative set of examples is displayed in Figures
9 and 10. In these, we observe the inability of AR models
to match the “shape” of a rather flat power spectrum with
significant “valleys.” Despite the fact that the original
spectrum now corresponds to an ARMA(6,6) model,
relatively good fit is achieved with an MA(8) model,
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Fig. 5. Power spectrum and ARMA(2,2) approximant (above) and
poles/zeros pattern (below)

as shown in the last plot.

VIII. C ONCLUDING REMARKS

We have presented a model matching approach to
spectral density approximation using the Kullback-
Leibler divergence as a criterion for goodness of fit.
The approach yields aconvex optimizationprocedure
for ARMA modeling. The optimality conditions are
given in terms of moments of the spectral density and
its logarithm. This fact makes the approach potentially
useful to system identification. Moments of spectral
density functions are routinely computed in applications
requiring spectral estimation [21]. While statistical esti-
mation of covariance lags is reasonably well studied [17],
the estimation of cepstral coefficients remains a topic of
current research (see e.g., [13]).

The current paper provides a motivation for the study
in [3], [4]. Indeed, while [3], [4] focuses on covariance
and cepstral matching, the present work provides an
approximation theoretic justification.
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Fig. 6. Power spectrum and ARMA(4,5) approximant (above) and
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Fig. 7. Cepstral coefficients of power spectrum and of ARMA(2,5)
approximant

IX. A PPENDIX: NUMERICAL ISSUES

Proposition 5: Let the convex functionψ be defined
asψ(p, q) = L(P,Q, 1), whereL is the Lagrangian (16).
Then the gradient ofψ equals

(π1 − c1, . . . , πm − cm, r0 − ω0, r1 − ω1, . . . , rn − ωn)′
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Fig. 8. Power spectrum and ARMA(2,5) approximant (above) and
poles/zeros pattern (below)

and the Hessian is given by

[
(

αk+ℓ + αk−ℓ

)m

k,ℓ=1

(

βk+ℓ + βk−ℓ

)m,n

k=1,ℓ=0
(

βk+ℓ + βk−ℓ

)n,m

k=0,ℓ=1

(

γk+ℓ + γk−ℓ

)n

k,ℓ=0

]

where

πk =

∫

eikθ(log
P

Q
−
ε

P
)dµ

ωk =

∫

eikθ log
P

Q
dµ

αk =

∫

eikθP + ε

P 2
dµ

βk =

∫

eikθ dµ

Q

γk =

∫

eikθ P

Q2
dµ
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