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Abstract We take a new look at the relation between the optimal transport problem
and the Schrodinger bridge problem from a stochastic control perspective. Our aim is
to highlight new connections between the two that are richer and deeper than those
previously described in the literature. We begin with an elementary derivation of
the Benamou—Brenier fluid dynamic version of the optimal transport problem and
provide, in parallel, a new fluid dynamic version of the Schrodinger bridge problem.
We observe that the latter establishes an important connection with optimal transport
without zero-noise limits and solves a question posed by Eric Carlen in 2006. Indeed,
the two variational problems differ by a Fisher information functional. We motivate
and consider a generalization of optimal mass transport in the form of a (fluid dynamic)
problem of optimal transport with prior. This can be seen as the zero-noise limit of
Schrodinger bridges when the prior is any Markovian evolution. We finally specialize
to the Gaussian case and derive an explicit computational theory based on matrix
Riccati differential equations. A numerical example involving Brownian particles is
also provided.
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1 Introduction

We discuss two problems of very different beginning. Optimal mass transport (OMT)
originates in the work of Monge in 1781 [1] and seeks a transport plan that corresponds
in an optimal way two distributions of equal total mass. The cost penalizes the distance
that mass is transported to ensure exact correspondence. Likewise, data for Erwin
Schrodinger’s 1931/32 bridge problem [2,3] are again two distributions of equal total
mass, in fact, probability distributions. Here, however, these represent densities of
diffusive particles at two points in time and the problem seeks the most likely path
that establishes a correspondence between the two. A rich relationship between the
two problems emerges in the case where the transport cost is quadratic in the distance,
and in fact, the problem of OMT emerges as the limit of Schrodinger bridges as the
diffusivity tends to zero. The parallel treatment of both problems highlights the time
symmetry of both problems and points of contact between stochastic optimal control
and information theoretic concepts.

Historically, the modern formulation of OMT is due to Kantorovich [4] and the
subject has been the focus of renewed and increased interest because of its relevance
in a wide range of fields including economics, physics, engineering, and probability
[5-7]. In fact, Kantorovich’s contributions and their impact to resource allocation were
recognized with the Nobel Prize in Economics in 1975, while in the past twenty years
contributions by Ambrosio, Benamou, Brenier, McCann, Cullen, Gangbo, Kinder-
lehrer, Lott, Otto, Rachev, Ruschendorf, Tannenbaum, Villani, and many others have
launched a new fast developing phase; see, e.g., [6—12]. On the other hand, the
Schrodinger bridge problem [2,3] has been the subject of strong but intermittent inter-
est by mostly probabilists and mathematical physicists. Early important contributions
were due to Fortet, Beurling, Jamison, and Follmer [13-16]; see [17] for a survey.
Schrodinger’s original motivation to find a more classical reformulation of quantum
mechanics in terms of diffusion processes was, in a sense, accomplished by Nelson
[18,19]. Another interesting attempt in this direction was put forward in the eighties by
Zambrini [20,21]." Renewed interest in Schrédinger bridges was sparked in the past
twenty years after a close relationship to stochastic control was recognized [27-29]
and a similarly fast developing phase ensued; see the semi-expository paper [30] and
[31-34] for other recent contributions.

Besides the intrinsic importance of OMT to the geometry of spaces and the multi-
tude of applications, a significant impetus for some recent work has been the need for
effective computation [10,35] which is often challenging. Likewise, excepting special
cases [36,37], the computation of the optimal stochastic control for the Schrodinger
bridge problem is challenging, as it amounts to two partial differential equations non-
linearly coupled through their boundary values [17]. Only very recently implementable
forms have become available for corresponding linear stochastic systems [38—42] and

1 Over the years, several alternative versions of stochastic mechanics have been proposed by Fényes,
Bohm-—Vigier, Levy—Krener, Rosenbrock [22-26] to name but a few.
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for versions of the problem involving Markov chains and Kraus maps of statistical
quantum mechanics [34]; see also [43] which deals with the Schrodinger bridge prob-
lem with finite or infinite horizon for a system of nonlinear stochastic oscillators.

The aim of the present paper is to elucidate some of the connections between OMT
and Schrodinger bridges, thereby extending both theories. We follow in the footsteps
of Léonard [30,33], who investigated their relation, and of Mikami and Thieullen
[31,44,45] who employed stochastic control and Schrodinger bridges to solve the
optimal transport problem. In particular, we begin with an elementary derivation of
the Benamou—Brenier fluid dynamic version of the Monge—Kantorovich problem and
provide a parallel time-symmetric fluid dynamic version of the Schrodinger bridge
problem. The latter differs from the approach in [30, Section 4] and underscores that
an important connection with optimal transport exists even without zero-noise limits.
As a side benefit, we note that the particular dynamic formulation of the Schrodinger
bridge problem answers a question posed by Carlen in [46, pp. 130-131]. We then
formulate a generalization of OMT by introducing a corresponding notion of prior and
solve this (fluid dynamic) version of optimal transport with prior. The formulation
allows us to consider zero-noise limits of Schrodinger bridges when the prior is any
Markovian evolution. In particular, employing our results in [39], we specialize to the
case when the prior evolution is a Gauss—Markov process obtaining explicit results.

The outline of the paper is as follows: In Sect. 2, we derive the Benamou—Brenier
version of the OMT problem. In Sect. 3, we formulate the classical Schrodinger bridge
problem as a stochastic control problem. In Sect. 4, we give a control time-symmetric
formulation of the Schrédinger bridge problem. This leads, in the following Sect. 5,
to a new fluid dynamic formulation of the bridge problem. Section 6 is dedicated
to the optimal mass transfer problem with prior. In Sect. 7, we investigate the zero-
noise limit when the prior is Gaussian. Finally, in Sect. 8, we provide a numerical
two-dimensional example of overdamped Brownian particles, where we display the
zero-noise limit corresponding to OMT with prior.

2 Optimal Mass Transport as a Stochastic Control Problem
2.1 Monge-Kantorovich Optimal Mass Transport

Given two distributions x, v on R having equal total mass, the original formulation
of OMT due to Gaspard Monge sought to identify a transport (measurable) map
T from R" — R" so that the push-forward THu is equal to v, in the sense that
v(-) = u(T~1()), while the cost of transportation fc(x, T (x))p(dx) is minimal.
Here, c(x, y) represents the transference cost from point x to point y, and for the
purposes of the present, it will be c(x, y) = %Hx —y|12

The dependence of the cost of transportation on 7 is highly nonlinear which com-
plicated early analyses of the problem. Thus, it was not until Kantorovich’s relaxed
formulation in 1942 that the Monge’s problem received a definitive solution. In this,
instead of the transport map one seeks a joint distribution I7(u, v) on the product
space R" x R”, referred to as a “coupling” between n and v, so that the marginals
along the two coordinate directions coincide with p and v, respectively. Thence, one
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seeks to determine

1
inf —|lx = y|I’dx (x, y). (1)
inf /R gl

In case an optimal transport map exists, the optimal coupling has support on the
graph of this map [6]. Herein, we consider this relaxed Kantorovich formulation. We
wish first to give next an elementary derivation of the fact that Problem 1 can be turned
into a stochastic control problem as stated in [31, formula(1.6)] and then, to derive an
alternative “fluid dynamic” formulation due to Benamou-Brenier. We strive for clarity
rather than generality. In particular, we (tacitly) assume throughout the paper that u
does not give mass to sets of dimension < n — 1. Then, by Brenier’s theorem [6],
there exists a unique optimal transport plan (Kantorovich) induced by a map (Monge)
which is the gradient of a convex function.

2.2 A Stochastic Control Formulation

As customary, let us start by observing that

1 . O U
2||x yl —Xg}(f”/o 2IIXII dr, 2)
where X\, is the family of cl(o, 11, R") paths with x(0) = x and x(1) = y. Let
x*(@) = (1 — t)x + ty be the solution of (2), namely the straight line joining x and
y. Since x*(¢) is a Euclidean geodesic, any probabilistic average of the lengths of
C! trajectories starting at x at time 0 and ending in y at time 1 gives necessarily a
higher value. Thus, the probability measure on C'([0, 1], R") concentrated on the
path {x*(t); 0 <t < 1} solves the problem

1
1

inf  Ep, [ / _||,-C||2dt}, @)
PyeDlersy o LJo 2

where D! (8., dy) are the probability measures on C([0, 1], R") whose initial and
final marginals are Dirac measures concentrated at x and y, respectively. Since (3)
provides another representation for %Hx — ylI%, (1) is equivalent to

1
1

inf / inf  Ep, [/ —||5c||2dt]d7t(x,y). 4)
mell (1) JR1 xR PryeD! (5,8 |Jo 2

Now observe that if Py, € D', dy) and w € I1(j, v) then
P = / Pyydm(x, y)
R? xR"

is a probability measure in D' (x, v), namely a measure on C'([0, 1], R”) whose
one-time marginal at 0 and 1 are specified to be u and v, respectively. Conversely,
the disintegration of any measure P € D! (u, v) with respect to the initial and final
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positions yields Py, € DL, dy) and w € II(w,v). Thus, the original optimal
transport problem is equivalent to

|
inf Ep [/ —||5c||2dz]. (5)
PeD!(u,v) 0o 2

So far, we have followed [30, pp. 2-3]. Instead of the “particle” picture, we can also
consider the hydrodynamic version of (2), namely the optimal control problem

D = y1? = inf /llu (U (0), || dr
2 Y _vlenV'v 0o 2 o ’ ’
() = v (@), 1), x(0) =x, (6)

where the admissible feedback control laws v(-, -) in V), are continuous and such that
x(1) = y.

Following the same steps as before, we get that the optimal transport problem is
equivalent to the following stochastic control problem with atypical boundary con-
straints

: : 1 v 2
ngI/O @ @), Ol7de ¢, (7a)
V(@) =v(xV(@),1), as., x0)~pu, x(1)~nv. (7b)

Finally, suppose du(x) = po(x)dx, dv(y) = p1(y)dy and xV(t) ~ p(x, t)dx. Then,
necessarily, p satisfies (weakly) the continuity equation

9
8—’:+v-(vp)=0 ®)

expressing the conservation of probability mass. Moreover,

1 1
E[/ l||v<x”(r>,r>||2dr]=/ / Lo, 1P, drdx.
0o 2 R Jo 2

Hence, (7) turns into the celebrated “fluid dynamic” version of the optimal transport
problem due to Benamou and Brenier [10]:

(1nf)/ / —|lv(x, t)|| p(x, t)drdx, (9a)
P,V n

3— + V- (vp) =0, (9b)
p(x,0) = po(x), P, 1) =p1(y). (9c)

The variational analysis for (7) or, equivalently, for (9) can be carried out in many
different ways. For instance, let Py ,, be the family of flows of probability densities
p={p(,1);0 <t < 1}satisfying (9c) and let V be the family of continuous feedback
control laws v(-, -). Consider the unconstrained minimization of the Lagrangian over
Poopr XV
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1
E(p,v)=/ / Bllv(x,t)llzp(x,t)+A(x,t)(a—p+V-(vp))}dtdx, (10)
R JO Jat

where A : R” x [0, 1] = Risa C! Lagrange multiplier. Integrating by parts, assuming
that limits for x — oo are zero, and observing that the boundary valuesatr = 0,7 = 1
are constant over P, ,,, we are left to minimize

T 5 I
//[—Ilv(x,t)ll +(———V/\-v))]p(x,t)dtdx (11)
riJo [2 ot

over Pyyp, % V. Following a two-step optimization procedure as in, e.g., [47], we
consider first pointwise minimization with respect to v for a fixed flow of probability
densities p = {p(-,1); 0 <t < 1} in Py, . Pointwise minimization of the integrand
at each time ¢ € [0, 1] gives that

vi(x, 1) = VA(x, 1), (12)

which is continuous. Plugging this form of the optimal control into (11) yields

o 1 )
nm=—/"/ b—+4ww}pwnmw. (13)
RrR? Jo t 2

In view of this, if A satisfies the Hamilton—Jacobi equation

or 1
Z 4+ VA =0, 14
o T3 VAl (14)
then J (p) is identically zero over P, ,, and any p € P,,,, minimizes the Lagrangian
(10) together with the feedback control (12). We have therefore established the fol-
lowing [10]:

Proposition 2.1 Let p*(x, t) witht € [0, 1] and x € R" satisfy

8 *
% + V- (VYp®) =0, p*(x,0) = po(x), as)

where r is a solution of the Hamilton—Jacobi equation

W Ly =
5 HolIVYIP=0 (16)

for some boundary condition ¥ (x, 1) = Y1(x). If p*(x,1) = p1(x), then the pair
(p*, v*) with v*(x,t) = Vi (x,t) is a solution of (9), provided that the boundary
conditions in the integration by part step vanish as || x|| — oo.

In general, one cannot expect to have a classical solution of (16) and has to be
content with a viscosity solution [48]. See [49] for a recent contribution in the case
when only samples of pg and p; are known.
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3 Schrodinger Bridges as a Solution to a Stochastic Control Problem

After some background on finite energy diffusions and the formulation of the
Schrodinger bridge problem, we present a stochastic control reformulation.

3.1 Finite Energy Diffusions

We follow [15-17]. Let §2 := C([0, 1], R") denote the family of n-dimensional con-
tinuous functions, W, denote Wiener measure on 2 starting at x at r = 0. If, instead
of a Dirac measure concentrated at x, we give the volume measure as initial condition,
we get the unbounded? measure

W .= / W, dx

on path space, which is called stationary Wiener measure (or, sometimes, reversible
Brownian motion). It is a useful tool to introduce the family of distributions D on £2
which are equivalent to it. By Girsanov’s theorem [50], under Q € D, the coordinate
process x(f, ) = w(t) admits the representations

de(r) = B2dt + dw, (1), B2 is F;" — adapted, (17)
dxe(t) = B2t + dw_(1), B2 is F; — adapted, (18)

where F;" and F;” are o- algebras of events observable up to time ¢ and from time
t on, respectively, and w_, wy are standard n-dimensional Wiener processes [51].
Moreover, the forward and the backward drifts ,33?, 59 satisfy

1 1
0 [/ 1622dr < oo} —0 [/ 1821%dr < ooi| _1
0 0

For Q, P € D, the relative entropy (Divergence, Kullback—Leibler index) H(Q, P)
of O with respect to P is

_ dg
H(Q,P)=Eg [m d—P} :

It then follows from Girsanov’s theorem [51] that
1 0 P2
H(Q. P) = H(go, po) + Eg [/0 J182 — B2 dr] (192)

1
= H(q1,p1) +Eg [/O 5||ﬁ_Q — ﬁfllzdt} : (19b)

2 Therefore, W is nota probability measure. Its marginals at each point in time coincide with the Lebesgue
measure.
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Here qo, q1 (po, p1) are the marginal distributions of Q (P) at 0 and 1, respectively.
Moreover, ,3_8 and ,B_Q are the forward and the backward drifts of Q, respectively, and
similarly for P.

3.2 The Schrodinger Bridge Problem

Now let pg and p; be two probability densities. Let ID(pg, p1) denote the set of dis-
tributions in D having the prescribed marginal densities at 0 and 1. Given P € D, we
consider the following problem:

minimize H(Q, P) s.t. Q € D(pop, p1)- (20)

This optimization solves a large deviations problem in that it seeks the most likely evo-
lution between the two given marginals [51,52]. If there is at least one Q in D(pg, p1)
such that H(Q, P) < oo, then, under rather mild assumptions on P, pg and pj
[30, Proposition2.5], there exists a unique minimizer Q* in D(pg, p1), called the
Schrodinger bridge from pg to p1 over P. Indeed, let

Py =P[-|x(0)=x,x(1)=y], Qxy=0[ ]1x(0)=x,x(1) =y]

be the disintegrations of P and Q with respect to the initial and final positions. Let
also ;1”, 11€ be the joint initial-final time distributions under P and Q, respectively.
Then [16]

0*() = / Py (O (dxdy),
R xRn

where p* is the unique solution of

. du?
minimize,, o / (ln ) MQ(dxdy) 201
U Jrexre \ dpt
subject to the (linear) constraints

1€ (dx x R") = po(x)dx, pu2(R" x dy) = p1(y)dy. (22)

3.3 A Stochastic Control Formulation

Consider now the case where (the coordinate process under) P is a Markovian diffusion
with forward drift field b i (x, t) and transition density p(s, x, t, y). The density p(x, t)
of P is a weak solution of the Fokker—Planck equation

ap P 1
¥+V-(b+,o)—§A,o_0. (23)
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Moreover, forward and backward drifts are related through Nelson’s duality relation
(18]
bP(x,1) = bL (x,1) — VInp(x, 1). (24)

In this case, the Schrodinger bridge Q* is also Markovian [27,28], with forward drift
field i
b (x,1) = bE (x, 1) + VIng(x, 1), (25)

where the (everywhere positive) function ¢ solves, together with another function ¢,
the system

o) = [ px 1 et Dy, 6)
3.0 = [ PO .19, 00y, @7
with boundary conditions
p(x,0)¢(x,0) = po(x), @x, DP(x, 1) = p1(x).
Moreover, the one-time density o of Q* satisfies the factorization
p(x,t) = @(x,)@(x, 1), Vt € [0, 1]. (28)

We sketch the derivation of (25). Let ¢(x, ) be any positive, space—time harmonic
function, namely ¢ satisfies on R"” x [0, 1]

g P 1
—+b, -V —Ap =0. 29
o + b g0+2 @ (29)
It follows that In ¢ satisfies
31n(p P 1 1 2
a7 +b+-Vln<p+§Aln<p=—§||Vln<p||. (30)

Observe that, in view of (19a), problem (20) is equivalent to minimizing over D(pg, p1)
the functional

1
1(Q)=Eg [/O Ellﬂf—bi(x(t),t)llzdt—lmp(x(l),1)+1n<p(x(0),0)} (31

This follows from the fact that H(Q, P) and (31) differ by a quantity which is constant
over D(po, p1). Note that we do not assume that Q is Markov a priori. Under Q, by
Ito’s rule,

dlng 0 1
dinp(x(t),t) = T+'B+ -Vlnq)+§Aln<p (x(1), t)dt

+ VIng(x(t), Hdw, ().

@ Springer



680 J Optim Theory Appl (2016) 169:671-691

Using this and (30) in (31), we obtain [53]

1
1(Q)=Eg [/0 Ellﬂi2 — by (x(1),1) = Ving(x(1), t)llzdt] .

where again we assumed that the stochastic integral has zero expectation. Then, the
form (25) of the forward drift of Q* follows. Define

_ D)
p(x, 1)’

~

ox,t

Then, a direct calculation using (29), and the Fokker—Planck equation

ap - |
AV ((bf+v1n¢)p) ~546=0 (32)
yields
99 AR
% v (19) - 2ap=0 (33)

Thus, ¢ is co-harmonic; particularly, it satisfies the original Fokker—Planck equation
(23) just like p(x, t), the one-time density of the “prior” P.

Suppose we start instead with 1 (x, t), a positive, reverse-time space—time harmonic
function, namely 1, satisfies on R" x [0, 1]

W P vy~ Ly
5, Tl VY = Ay =0, (34)

where b” (x) = bF (x) — VInp(x, 1) is the backward drift of P. Consider now the
functional

_ 1
1(Q)=Eg [/0 Ellﬂ_Q —bP (x(1), DIIdt + Inyr(x(1), 1) — In 9 (x(0), 0)} :

Again, minimizing 7(Q) over D(pg, p1) is equivalent to (20). Using Ito’s rule, the
same ‘“completing the square argument” as before yields that the optimal backward
drift is .

b (x,1) = bE(x, 1) — VInyr(x, 1). (35)

Thus, the solution Q* appears, in the language of Doob, an i-path process both in the
forward and in the backward direction of time. We now identify 1. By (28), we have

P(x, 1)
p(x,1)

=@, )Y (x,t)p(x,t), with ¥(x,t) =

p(x,1)

P(x, 1)
p(x, 1)

p(x,t) = @(x, )P(x, 1) = @(x, 1)

, Vtel0,1]. (36)
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Indeed, i, being the ratio of two solutions of the original Fokker-Planck (33), is
reverse-time space—time harmonic; i.e., it satisfies (34) [54]. This agrees with the
following calculation using (35), (24), (36) and (25)
L (x, 1) =bP(x, 1) — Viny(x, 1) = bY(x, 1) = VInp(x, 1) — VIny(x,1)
=bl(x,1) = VIng(x,1) = bL(x, 1) + VIng(x, 1)
—Vne(x,t) — Ving(x, 1)

=b¢ (x.1) = VInj(x. 1),
which is simply (24) for the drifts of Q*. Formula (36) should be compared to [30,
Theorem 3.4].

Finally, there are also conditional versions of these variational problems which are
closer to standard stochastic control problems. Consider minimizing

!
J(u>=JE[/ 5||u<r>||2dr—1n<p1<x<1>>],
t
dx(s) = [bY (x(5), ) + u(x(s), 9] ds +dws(s), ¥ =xas. (D
over feedback controls u such that the differential equation has a weak solution. If
@(x,t) solves (29) with terminal condition ¢ (x), then, the same argument as before
shows that u*(x,t) = VIng(x,?) is optimal and that S(x,t) = —Ing(x,1) =

inf, J (u) is the value function [55] of the control problem. By (30), the Hamilton—
Jacobi—Bellman equation has the form

s . IS I
5, +infu (b++u)-VS+§||u|| +3A45 =0, S )= —Ingi().

4 A Time-Symmetric Formulation of the Schrodinger Bridge Problem
Inspired by a paper by Nagasawa [56], we proceed to derive a control time-symmetric
formulation of the bridge problem. For any Q € D, define the current and osmotic

drifts

o_B2rp o pY-p°
- 2 b - 2 .

Then ,85? =v? +u?, /39 =v9 —u?. Observe that
1 ! 1 : 0 P2 0 P2
H(Q. P) =5 H(qo. po)+ 5 H(q1. p)+ 7 Eo A 1B — BlI”+1IBZ — BZ|I7dr

1 1 1 1
=5H(qo, o) + 3 H(g1, p+5Eo [/0 v — v 2+ uf - u”nzdr} :
(38)
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Since H(qo, po) and H(qi, p1) are constant over D(pg, p1), it follows that the
Schrodinger bridge Q* minimizes the sum of the two incremental kinetic ener-
gies. Finally, we consider minimizing over D(pg, p1) the functional I;(Q) =
% [1 0)+1 (Q)] . By the previous calculation, this is equivalent to minimizing over
D(po, p1) the functional

1
%EQ [/0 (”UQ — P24 - uP||2) dr — ln%(x(l), 1) +In %(x(O), 0)} .

Proposition 4.1 The following current and osmotic drifts are optimal for the above
problem

v (x, ) =v"(x, 1) + %vm %(x, N, u (x,nH=u"(x,1)+ %Vln((pllf)(x, 1.

Proof 1t suffices to notice that v (x,t) and u? (x, t) make the functional equal to
Zero. O

The result of Proposition 4.1 agrees with (25) and (35). A variational analysis with
the two controls v€ and u€ can be developed along the lines of Pavon [57, Sections
HI-1v].

5 Fluid Dynamic Formulation of the Schrodinger Bridge Problem

Let us go back to the symmetric representation (38). In the case where the prior
measure is P = W stationary Wiener measure, we have W=u"=031t basically
corresponds to the situation where there is no prior information. Since the boundary
relative entropies are constant, the problem is equivalent to minimizing

E[/Ol [%uvn% %uun?} dr]

over D(po, p1). Here we discard the superscript Q for simplification. Let us restrict
our search to Markovian processes. By (24), the osmotic drift field u satisfies

uGeny = & D ;b‘(x’ D_ %Vlnp(x,t). (39)

Moreover, the current drift field v satisfies

dp

o1 + V.- (vp)=0. (40)

3 See [30, pp. 7-8] for a justification of employing unbounded path measures in relative entropy problems.
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Thus, the Schrodinger bridge problem becomes

I 1
inf/ / [5||v(x,z)||2+gnvmp(x,r)nz}p(x,ndrdx, (41a)
nJO

(p,v)
L4V ) =0, (416)
px,0) =po(x), p(y,1)=p1(y), (41c)

which should be compared to (9a)—(9b)—(9c). We notice, in particular, that the two
functionals differ by a term which is a multiple of the integral over time of the Fisher
information functional

/||v1np<x,r>||2p(x,r>dx.
Rn

This unveils a relation between the two problems without zero-noise limits [33,44]. In
[46, p. 131], Carlen, while investigating the connections between OMT and Nelson’s
stochastic mechanics [18,19] in the spirit of Madelung [58], posed the question of
minimizing the Yasue action (41a) subject to the continuity equation (41b) for given
initial and final marginals (41c). He states that “. . .the Euler—Lagrange equations for
it are not easy to understand.” The following result answers Carlen’s question.

Proposition 5.1 Let Q* be the solution of the Schrodinger bridge problem with P =
W stationary Wiener measure as prior and marginals (41c). Then, v*, its current
velocity field, and {p* (-, 1); 0 < t < 1}, its flow of one-time marginals, solve Carlen’s
problem.

Proof By the above analysis, minimizing relative entropy on path space is equivalent
to minimizing the Yasue action (41a) subject to the continuity equation (41b) with the
given initial and final marginals. O

Finally, we mention that a fluid dynamic problem concerning swarms of particles
diffusing anisotropically with losses has been studied in [59].

6 Optimal Mass Transport with a “Prior”

Considering the relation we have seen between the fluid dynamic versions of the
optimal transport problem and the Schrédinger bridge problem, one may wonder
whether there exists a formulation of the former which allows for an “a priori” evolution
like in the latter. Relative entropy on path space does not work for zero-noise random
evolutions as they are singular. Indeed, let P. and Q. be the measures on C ([0, 1], R")
equivalent to scaled stationary Wiener measure W,* with forward differentials

dx(t) = BEedt + edw (1),
dx(t) = B2dr + Jedw (7). (42)

4 Measure induced by +/€w(r) on path space £2 with volume measure as initial condition.
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Then, one can argue along the same lines as in Sect. 3 that

1
H(Qe, Pe) = H(qo, po) +Eg, [/0 leﬁ; - ﬁf‘llzdt]-

As € \_ 0, the relative entropy becomes infinite unless Q. = P..> To circumvent this
difficulty, we start with the following fluid dynamic control problem. Suppose we have
two probability densities pg and p; and a flow of probability densities {p(x, 1); 0 <
t < 1} satisfying

ap

ot
for some continuous vector field v(-, -). We take (43) as our “prior” evolution and
formulate the following problem,

+ V. (vp) =0, (43)

1
inf/ / l||ﬁ(x,t)—v(x,t)||2,5(x,t)dtdx, (442)
.0 Jrr Jo 2
L 4v-@h =0, (44b)
px.0) = po(x). A(y.1)=pi(y). (44c)

Clearly, if the prior flow satisfies p(x,0) = po(x) and p(x,1) = pj(x), then it
solves the problem and v* = v. Moreover, the standard optimal transport problem is
recovered when the prior evolution is constant, i.e., v = 0.

Let us try to provide further motivation to study problem (44). Consider the situ-
ation where a previous optimal transport problem (9) has been solved with boundary
marginals pg and p; leading to the optimal velocity field v(x, 7). Here say pg repre-
sent resources being produced to satisfy the demand p;. Suppose now new information
becomes available showing that the actual resources available are distributed accord-
ing to po and the actual demand is distributed according to p;. As we had already set
up a transportation plan according to velocity field v, we seek to solve a new transport
problem where the new evolution is close to the one we would have employing the
previous velocity field. This is represented in problem (44).

Remark 6.1 The particle version of (44) takes the form of a more familiar OMT
problem, namely in the notation of Sect. 2,

inf / c(x, y)dr(x, ), 43)
mell(u,v) JRr xR

where

1
c(x,y) = inf / L(t,x(t), x())dt, L(t,x,%) = [|x —v(x, D> (46)

xeXyy Jo

5 This calculation indicates that there may be a limit as € N\ 0 of inf{e H(Qe¢, Pc)} and, hopefully, in
suitable sense, of the minimizers. This is indeed the case; see [30,33,44] for a precise statement of limiting
results.
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The explicit calculation of the function c¢(x, y) when v # 0 is nontrivial. Moreover,
the zero-noise limit results of [33, Section 3], based on a Large Deviations Principle
[52], although very general in other ways, seem to cover here only the case where
c(x,y) = c(x — y) strictly convex originating from a Lagrangian L(¢, x, x) = c(x).
We mention that in our follow-up paper [41], we deal with optimal transport problems
where the Lagrangian is not strictly convex with respect to x. Finally, we feel that our
formulation is a most natural one in which to study zero-noise limits of Schrédinger
bridges with a general Markovian prior evolution. In the next section, we discuss this
problem in the Gaussian case. The proof of the convergence of the path-space measures
of the minimizers can be done along the lines of Léonard [33] where I"-convergence
of the bridge minimum problems to the OMT problem is established. This, under
suitable assumptions, guarantees convergence of the minimizers.

The variational analysis for (44) can be carried out as in Sect. 2 obtaining the
following result:

Proposition 6.1 If p* satisfying

ap*

o TV Lt V) 1=0, p*(x,0) = po(x), (47)

where r is a solution of the Hamilton—Jacobi equation

oy 1 5
S, Hv VY SIvYIP =0, (48)

is such that p*(x, 1) = p1(x), then the pair (0*(x, 1), V*(x,t) = v(x,t) + Vi (x, 1))

is a solution of the problem (44), provided yr (x, t)v(x, t) p(x, t) vanishes as || x| — 00
for each fixed t.

If v(x,t) = a(t)x, and both py and p; are Gaussian, then the optimal evolution
is given by a linear equation and is therefore given by a Gaussian process as we will
study next.

7 The Gaussian Case

In this section, we consider the correspondence between Schrodinger bridges and
OMT for the special case where the underlying dynamics are linear and the marginals
are normal distributions. To this end, consider the reference evolution

dx(t) = A(®)x(t)dt + Jedw(t), (49)
and the two marginals pg ~ N(mg, Xp) and p; ~ N(m1, X1). In our previous work
[39], we derived a “closed form” expression for the corresponding Schrodinger bridge

as
dx(t) = (A(t) — Hc(t)x(t)dt + m(t)dt + /edw(z), (50)
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where I, () satisfies the matrix Riccati equation
() + AT (t) + e (D) A@) — ITe(t)* = 0 (51)

with the boundary condition I7¢ (0) given by

2 1/2
€ -1 -1/2 (€ 1/2 ~1 ~1 1/2 —1/2
520 + @ My Pro — X, (II + X, @My Z1 My, P1oX, ) DI

and m(t) satisfies
m(t) = &1, 1) M1,0)" (my — D1, 0)my). (52)

Here @19 := @ (1, 0) is the state transition matrix from O to 1 for A(¢) and
1
My = M(1,0) =/ @(1,1)P(1,t)dt
0

is the controllability Gramian, and ) (t,s), M (t, s) are the state transition matrix and
controllability Gramian for A(¢) — I1.(¢).

‘We now consider the zero-noise limit by letting € go to 0. In the case where A(¢) =
0, the Schrodinger bridge solution process converges to the solution of an OMT
problem [30,44]. In general, when A(#) s 0, by taking € = 0 we obtain

Mo(0) = ®ioMy' P10 — 55 2 (24 2wy le;01¢1025/2)”2 517 (53)
and a limiting process
dx(t) = (A(t) — Mo ()x()dt +m()dt, x(0) ~ (mg, Xp) (54)
with ITo(t), m(t) satisfying (51), (52), and (53). In fact, I1y(¢) has the expression
Mo(r) = =M (1, 0)™' @ (1, 0) [ @1oMyg' D10 — (1, 0) M (1,07 (1, 0)
—5; 2z Py gMyg ElMl’()lqhoEé/z)l/zEO_l/z]il ®(t,0)M(t,0)""
—M(t,0)"1, (55)

It turns out that process (54) yields a solution to problem (44) as stated next.

Proposition 7.1 Let p(-, t) be the probability density of x(t) in (54), and v(x,t) =
(A(t) — Iy(t))x 4+ m(t), then the pair (p, V) is a solution of the problem (44) with
prior velocity field v(x,t) = A(t)x.

@ Springer



J Optim Theory Appl (2016) 169:671-691 687

Proof To show that the pair (p, v) is a solution, we need to prove i) p satisfies the
boundary condition p(x, 1) = pi(x) and ii) v(x,t) — v(x,t) = V¢ (x,t) for some
¥ with ¢ satisfying the Hamilton—Jacobi equation (48). Here v(x, ) = A(t)x is the
drift of the prior process.

We first show that p satisfies the boundary condition p(x, 1) = p;(x). Since the
process (54) is a linear diffusion with Gaussian initial condition, x(¢) is a Gaussian
random vector for all ¢ € [0, 1]. Let p(-, t) ~ N(n(t), X(t)), then obviously the mean
value n(t) is n(t) = é(t, 0)ymo + fé <1A>(t, T)m(t)dt. We claim that the covariance
X (¢) has the explicit expression

—-1/2 1/2 — — 1/2
(1) = M(1,0)0(0,1) ;" [(20/ B Mgt Z1 My D102y )2 -

2
5Pt M @105y + Zy 2@ (1,00 M(1,0) D (s, 0)23/2] 5, 2®0, M1, 0)

(56)

for + €]0, 1]. This expression is consistent with the initial condition X since
limy\o X (t) = Xp. To see that X'(¢) is indeed the covariance matrix of x(z), we
only need to show that X' (¢) satisfies the differential equation

T(1) = (AQ) — Mo()) T(1) + E(O)(A@) — o(1)).

This can be verified directly from the expression (56) and (55) after some straightfor-
ward but lengthy computations. Now observing that

1
n(l) = & (1, 0)mo +/ &, T)ym(r)dr = m
0

by (52) and ¥ (1) = X from (56), we get that p satisfies p(x, 1) = p;(x). We next
show i). Lety (x, 1) = — 3x' I ()x+m(t) x+c(t) withe(t) = —% [; m(v)'m(t)d7.
Then, in view of (51) and (52), we establish that

oY 1 )
—— 4 v VY + - |Vy > =0.
5 U VY SIVYI
Finally, note that ¥ (x, £)v(x, t)p(x, t) — 0 as ||x|| — oo for any fixed . O

8 Overdamped Brownian Motion in a Force Field: An Example

Herein, we consider highly overdamped Brownian motion in a force field. In a very
strong sense [18, Theorem 10.1], the Smoluchowski model in configuration variables
is a good approximation of the full Ornstein—Uhlenbeck model in phase space. We are
interested in planar Brownian motion in the quadratic potential V (x) = %()cl2 + x%).
Taking the mass of the particle to be one, the evolution of the Brownian particle is
given by the Smoluchowski equation

dx(t) = —VV(x@)dt + Vedw(t), —VV(x)=Ax, A=-31, (57)
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Fig.1 (e =9) Schrodinger 10 -
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where w is a standard, two-dimensional Wiener process. The observed distributions
of the particle at the two end-points in time are normal with mean and variance my =
[-5. —5]/, Yo=1,andm; =[5, 5]/, Yo =1,fort =0andt = I, respectively. We
then seek to interpolate the density of the particle at intermediate points by solving
the corresponding Schrodinger bridge problem where (57) plays the role of an a priori
evolution.

Figures 1 and 2 depict the flow between the two one-time marginals for the
Schrodinger bridge when € = 9 and € = 4, respectively. The transparent tubes rep-
resent the “3o0 region” where (x’ — m;)Et_l(x — my) is < 9. Typical sample paths
are shown in the figures. As € \ 0, the paths of the bridge process resemble those of
the corresponding OMT with prior velocity field v(x, ) = Ax, which is depicted in
Fig. 3. Note that trajectories of OMT without a prior are simply straight lines.
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9 Conclusions

Starting from a stochastic control viewpoint, we considerably extended the connections
between OMT and Schrodinger bridges. We provided in Sects. 4 and 5 time-symmetric
and fluid dynamic formulations of the Schrodinger bridge problem. The latter can
then be seen as an OMT dynamic problem with a cost that involves as extra term
a Fisher information functional. This formulation directly answers a question posed
by Carlen in 2006; see Proposition 5.1. To establish connections between the two
problems in a more general setting, we introduced OMT with prior which, besides
its intrinsic significance, allows direct comparison between OMT and Schrodinger
bridges for certain cases with, e.g., possibly non-strictly convex Lagrangian. The
stochastic control viewpoint for either OMT or Schrédinger bridge problem, besides
unifying the two, allows generalizations of Schrodinger bridges to degenerate and
anisotropic diffusions where no maximum entropy problem may be formulated. In
Sect. 7, we established a zero-noise limit result and derived explicit formulae for the
case (of engineering significance) of Gaussian priors (Proposition 7.1). In Sect. 8, we
provided an illustrative example.
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