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Abstract We take a new look at the relation between the optimal transport problem
and the Schrödinger bridge problem from a stochastic control perspective. Our aim is
to highlight new connections between the two that are richer and deeper than those
previously described in the literature. We begin with an elementary derivation of
the Benamou–Brenier fluid dynamic version of the optimal transport problem and
provide, in parallel, a new fluid dynamic version of the Schrödinger bridge problem.
We observe that the latter establishes an important connection with optimal transport
without zero-noise limits and solves a question posed by Eric Carlen in 2006. Indeed,
the two variational problems differ by a Fisher information functional. We motivate
and consider a generalization of optimalmass transport in the form of a (fluid dynamic)
problem of optimal transport with prior. This can be seen as the zero-noise limit of
Schrödinger bridges when the prior is any Markovian evolution. We finally specialize
to the Gaussian case and derive an explicit computational theory based on matrix
Riccati differential equations. A numerical example involving Brownian particles is
also provided.
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1 Introduction

We discuss two problems of very different beginning. Optimal mass transport (OMT)
originates in thework ofMonge in 1781 [1] and seeks a transport plan that corresponds
in an optimal way two distributions of equal total mass. The cost penalizes the distance
that mass is transported to ensure exact correspondence. Likewise, data for Erwin
Schrödinger’s 1931/32 bridge problem [2,3] are again two distributions of equal total
mass, in fact, probability distributions. Here, however, these represent densities of
diffusive particles at two points in time and the problem seeks the most likely path
that establishes a correspondence between the two. A rich relationship between the
two problems emerges in the case where the transport cost is quadratic in the distance,
and in fact, the problem of OMT emerges as the limit of Schrödinger bridges as the
diffusivity tends to zero. The parallel treatment of both problems highlights the time
symmetry of both problems and points of contact between stochastic optimal control
and information theoretic concepts.

Historically, the modern formulation of OMT is due to Kantorovich [4] and the
subject has been the focus of renewed and increased interest because of its relevance
in a wide range of fields including economics, physics, engineering, and probability
[5–7]. In fact, Kantorovich’s contributions and their impact to resource allocationwere
recognized with the Nobel Prize in Economics in 1975, while in the past twenty years
contributions by Ambrosio, Benamou, Brenier, McCann, Cullen, Gangbo, Kinder-
lehrer, Lott, Otto, Rachev, Ruschendorf, Tannenbaum, Villani, and many others have
launched a new fast developing phase; see, e.g., [6–12]. On the other hand, the
Schrödinger bridge problem [2,3] has been the subject of strong but intermittent inter-
est by mostly probabilists and mathematical physicists. Early important contributions
were due to Fortet, Beurling, Jamison, and Föllmer [13–16]; see [17] for a survey.
Schrödinger’s original motivation to find a more classical reformulation of quantum
mechanics in terms of diffusion processes was, in a sense, accomplished by Nelson
[18,19]. Another interesting attempt in this directionwas put forward in the eighties by
Zambrini [20,21].1 Renewed interest in Schrödinger bridges was sparked in the past
twenty years after a close relationship to stochastic control was recognized [27–29]
and a similarly fast developing phase ensued; see the semi-expository paper [30] and
[31–34] for other recent contributions.

Besides the intrinsic importance of OMT to the geometry of spaces and the multi-
tude of applications, a significant impetus for some recent work has been the need for
effective computation [10,35] which is often challenging. Likewise, excepting special
cases [36,37], the computation of the optimal stochastic control for the Schrödinger
bridge problem is challenging, as it amounts to two partial differential equations non-
linearly coupled through their boundary values [17].Only very recently implementable
forms have become available for corresponding linear stochastic systems [38–42] and

1 Over the years, several alternative versions of stochastic mechanics have been proposed by Fényes,
Bohm–Vigier, Levy–Krener, Rosenbrock [22–26] to name but a few.
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for versions of the problem involving Markov chains and Kraus maps of statistical
quantum mechanics [34]; see also [43] which deals with the Schrödinger bridge prob-
lem with finite or infinite horizon for a system of nonlinear stochastic oscillators.

The aim of the present paper is to elucidate some of the connections between OMT
and Schrödinger bridges, thereby extending both theories. We follow in the footsteps
of Léonard [30,33], who investigated their relation, and of Mikami and Thieullen
[31,44,45] who employed stochastic control and Schrödinger bridges to solve the
optimal transport problem. In particular, we begin with an elementary derivation of
the Benamou–Brenier fluid dynamic version of the Monge–Kantorovich problem and
provide a parallel time-symmetric fluid dynamic version of the Schrödinger bridge
problem. The latter differs from the approach in [30, Section 4] and underscores that
an important connection with optimal transport exists even without zero-noise limits.
As a side benefit, we note that the particular dynamic formulation of the Schrödinger
bridge problem answers a question posed by Carlen in [46, pp. 130–131]. We then
formulate a generalization of OMT by introducing a corresponding notion of prior and
solve this (fluid dynamic) version of optimal transport with prior. The formulation
allows us to consider zero-noise limits of Schrödinger bridges when the prior is any
Markovian evolution. In particular, employing our results in [39], we specialize to the
case when the prior evolution is a Gauss–Markov process obtaining explicit results.

The outline of the paper is as follows: In Sect. 2, we derive the Benamou–Brenier
version of the OMT problem. In Sect. 3, we formulate the classical Schrödinger bridge
problem as a stochastic control problem. In Sect. 4, we give a control time-symmetric
formulation of the Schrödinger bridge problem. This leads, in the following Sect. 5,
to a new fluid dynamic formulation of the bridge problem. Section 6 is dedicated
to the optimal mass transfer problem with prior. In Sect. 7, we investigate the zero-
noise limit when the prior is Gaussian. Finally, in Sect. 8, we provide a numerical
two-dimensional example of overdamped Brownian particles, where we display the
zero-noise limit corresponding to OMT with prior.

2 Optimal Mass Transport as a Stochastic Control Problem

2.1 Monge–Kantorovich Optimal Mass Transport

Given two distributions µ, ν on Rn having equal total mass, the original formulation
of OMT due to Gaspard Monge sought to identify a transport (measurable) map
T from Rn → Rn so that the push-forward T ♯µ is equal to ν, in the sense that
ν(·) = µ(T−1(·)), while the cost of transportation

∫
c(x, T (x))µ(dx) is minimal.

Here, c(x, y) represents the transference cost from point x to point y, and for the
purposes of the present, it will be c(x, y) = 1

2∥x − y∥2.
The dependence of the cost of transportation on T is highly nonlinear which com-

plicated early analyses of the problem. Thus, it was not until Kantorovich’s relaxed
formulation in 1942 that the Monge’s problem received a definitive solution. In this,
instead of the transport map one seeks a joint distribution Π(µ, ν) on the product
space Rn × Rn , referred to as a “coupling” between µ and ν, so that the marginals
along the two coordinate directions coincide with µ and ν, respectively. Thence, one
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seeks to determine
inf

π∈Π(µ,ν)

∫

Rn×Rn

1
2
∥x − y∥2dπ(x, y). (1)

In case an optimal transport map exists, the optimal coupling has support on the
graph of this map [6]. Herein, we consider this relaxed Kantorovich formulation. We
wish first to give next an elementary derivation of the fact that Problem 1 can be turned
into a stochastic control problem as stated in [31, formula(1.6)] and then, to derive an
alternative “fluid dynamic” formulation due to Benamou–Brenier.We strive for clarity
rather than generality. In particular, we (tacitly) assume throughout the paper that µ
does not give mass to sets of dimension ≤ n − 1. Then, by Brenier’s theorem [6],
there exists a unique optimal transport plan (Kantorovich) induced by a map (Monge)
which is the gradient of a convex function.

2.2 A Stochastic Control Formulation

As customary, let us start by observing that

1
2
∥x − y∥2 = inf

x∈Xxy

∫ 1

0

1
2
∥ẋ∥2dt, (2)

where Xxy is the family of C1([0, 1],Rn) paths with x(0) = x and x(1) = y. Let
x∗(t) = (1 − t)x + t y be the solution of (2), namely the straight line joining x and
y. Since x∗(t) is a Euclidean geodesic, any probabilistic average of the lengths of
C1 trajectories starting at x at time 0 and ending in y at time 1 gives necessarily a
higher value. Thus, the probability measure on C1([0, 1],Rn) concentrated on the
path {x∗(t); 0 ≤ t ≤ 1} solves the problem

inf
Pxy∈D1(δx ,δy)

EPxy

{∫ 1

0

1
2
∥ẋ∥2dt

}
, (3)

where D1(δx , δy) are the probability measures on C1([0, 1],Rn) whose initial and
final marginals are Dirac measures concentrated at x and y, respectively. Since (3)
provides another representation for 1

2∥x − y∥2, (1) is equivalent to

inf
π∈Π(µ,ν)

∫

Rn×Rn
inf

Pxy∈D1(δx ,δy)
EPxy

{∫ 1

0

1
2
∥ẋ∥2dt

}
dπ(x, y). (4)

Now observe that if Pxy ∈ D1(δx , δy) and π ∈ Π(µ, ν) then

P =
∫

Rn×Rn
Pxydπ(x, y)

is a probability measure in D1(µ, ν), namely a measure on C1([0, 1],Rn) whose
one-time marginal at 0 and 1 are specified to be µ and ν, respectively. Conversely,
the disintegration of any measure P ∈ D1(µ, ν) with respect to the initial and final
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positions yields Pxy ∈ D1(δx , δy) and π ∈ Π(µ, ν). Thus, the original optimal
transport problem is equivalent to

inf
P∈D1(µ,ν)

EP

{∫ 1

0

1
2
∥ẋ∥2dt

}
. (5)

So far, we have followed [30, pp. 2–3]. Instead of the “particle” picture, we can also
consider the hydrodynamic version of (2), namely the optimal control problem

1
2
∥x − y∥2 = inf

v∈Vy

∫ 1

0

1
2
∥v(xv(t), t)∥2dt,

ẋv(t) = v(xv(t), t), x(0) = x, (6)

where the admissible feedback control laws v(·, ·) in Vy are continuous and such that
xv(1) = y.

Following the same steps as before, we get that the optimal transport problem is
equivalent to the following stochastic control problem with atypical boundary con-
straints

inf
v∈V

E
{∫ 1

0

1
2
∥v(xv(t), t)∥2dt

}
, (7a)

ẋv(t) = v(xv(t), t), a.s., x(0) ∼ µ, x(1) ∼ ν. (7b)

Finally, suppose dµ(x) = ρ0(x)dx , dν(y) = ρ1(y)dy and xv(t) ∼ ρ(x, t)dx . Then,
necessarily, ρ satisfies (weakly) the continuity equation

∂ρ

∂t
+ ∇ · (vρ) = 0 (8)

expressing the conservation of probability mass. Moreover,

E
{∫ 1

0

1
2
∥v(xv(t), t)∥2dt

}
=

∫

Rn

∫ 1

0

1
2
∥v(x, t)∥2ρ(x, t)dtdx .

Hence, (7) turns into the celebrated “fluid dynamic” version of the optimal transport
problem due to Benamou and Brenier [10]:

inf
(ρ,v)

∫

Rn

∫ 1

0

1
2
∥v(x, t)∥2ρ(x, t)dtdx, (9a)

∂ρ

∂t
+ ∇ · (vρ) = 0, (9b)

ρ(x, 0) = ρ0(x), ρ(y, 1) = ρ1(y). (9c)

The variational analysis for (7) or, equivalently, for (9) can be carried out in many
different ways. For instance, let Pρ0ρ1 be the family of flows of probability densities
ρ = {ρ(·, t); 0 ≤ t ≤ 1} satisfying (9c) and letV be the family of continuous feedback
control laws v(·, ·). Consider the unconstrained minimization of the Lagrangian over
Pρ0ρ1 × V
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L(ρ, v) =
∫

Rn

∫ 1

0

[
1
2
∥v(x, t)∥2ρ(x, t)+ λ(x, t)

(
∂ρ

∂t
+ ∇ · (vρ)

)]
dtdx, (10)

where λ : Rn×[0, 1] → R is aC1 Lagrangemultiplier. Integrating by parts, assuming
that limits for x → ∞ are zero, and observing that the boundary values at t = 0, t = 1
are constant over Pρ0ρ1 , we are left to minimize

∫

Rn

∫ 1

0

[
1
2
∥v(x, t)∥2 +

(
−∂λ

∂t
− ∇λ · v)

)]
ρ(x, t)dtdx (11)

over Pρ0ρ1 × V . Following a two-step optimization procedure as in, e.g., [47], we
consider first pointwise minimization with respect to v for a fixed flow of probability
densities ρ = {ρ(·, t); 0 ≤ t ≤ 1} in Pρ0ρ1 . Pointwise minimization of the integrand
at each time t ∈ [0, 1] gives that

v∗
ρ(x, t) = ∇λ(x, t), (12)

which is continuous. Plugging this form of the optimal control into (11) yields

J (ρ) = −
∫

Rn

∫ 1

0

[
∂λ

∂t
+ 1

2
∥∇λ∥2

]
ρ(x, t)dtdx . (13)

In view of this, if λ satisfies the Hamilton–Jacobi equation

∂λ

∂t
+ 1

2
∥∇λ∥2 = 0, (14)

then J (ρ) is identically zero over Pρ0ρ1 and any ρ ∈ Pρ0ρ1 minimizes the Lagrangian
(10) together with the feedback control (12). We have therefore established the fol-
lowing [10]:

Proposition 2.1 Let ρ∗(x, t) with t ∈ [0, 1] and x ∈ Rn satisfy

∂ρ∗

∂t
+ ∇ · (∇ψρ∗) = 0, ρ∗(x, 0) = ρ0(x), (15)

where ψ is a solution of the Hamilton–Jacobi equation

∂ψ

∂t
+ 1

2
∥∇ψ∥2 = 0 (16)

for some boundary condition ψ(x, 1) = ψ1(x). If ρ∗(x, 1) = ρ1(x), then the pair
(ρ∗, v∗) with v∗(x, t) = ∇ψ(x, t) is a solution of (9), provided that the boundary
conditions in the integration by part step vanish as ∥x∥ → ∞.

In general, one cannot expect to have a classical solution of (16) and has to be
content with a viscosity solution [48]. See [49] for a recent contribution in the case
when only samples of ρ0 and ρ1 are known.
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3 Schrödinger Bridges as a Solution to a Stochastic Control Problem

After some background on finite energy diffusions and the formulation of the
Schrödinger bridge problem, we present a stochastic control reformulation.

3.1 Finite Energy Diffusions

We follow [15–17]. Let Ω := C([0, 1],Rn) denote the family of n-dimensional con-
tinuous functions, Wx denote Wiener measure on Ω starting at x at t = 0. If, instead
of a Dirac measure concentrated at x , we give the volume measure as initial condition,
we get the unbounded2 measure

W :=
∫

Wx dx

on path space, which is called stationary Wiener measure (or, sometimes, reversible
Brownian motion). It is a useful tool to introduce the family of distributions D on Ω

which are equivalent to it. By Girsanov’s theorem [50], under Q ∈ D, the coordinate
process x(t,ω) = ω(t) admits the representations

dx(t) = β
Q
+ dt + dw+(t), β

Q
+ is F+

t − adapted, (17)

dx(t) = β
Q
− dt + dw−(t), β

Q
− is F−

t − adapted, (18)

where F+
t and F−

t are σ - algebras of events observable up to time t and from time
t on, respectively, and w−, w+ are standard n-dimensional Wiener processes [51].
Moreover, the forward and the backward drifts β

Q
+ ,β

Q
− satisfy

Q
[∫ 1

0
∥βQ

+ ∥2dt < ∞
]
= Q

[∫ 1

0
∥βQ

− ∥2dt < ∞
]
= 1.

For Q, P ∈ D, the relative entropy (Divergence,Kullback–Leibler index) H(Q, P)
of Q with respect to P is

H(Q, P) = EQ

[
ln

dQ
dP

]
.

It then follows from Girsanov’s theorem [51] that

H(Q, P) = H(q0, p0)+ EQ

[∫ 1

0

1
2
∥βQ

+ − βP
+∥2dt

]
(19a)

= H(q1, p1)+ EQ

[∫ 1

0

1
2
∥βQ

− − βP
−∥2dt

]
. (19b)

2 Therefore,W is not a probability measure. Its marginals at each point in time coincide with the Lebesgue
measure.
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Here q0, q1 (p0, p1) are the marginal distributions of Q (P) at 0 and 1, respectively.
Moreover, βQ

+ and β
Q
− are the forward and the backward drifts of Q, respectively, and

similarly for P .

3.2 The Schrödinger Bridge Problem

Now let ρ0 and ρ1 be two probability densities. Let D(ρ0, ρ1) denote the set of dis-
tributions in D having the prescribed marginal densities at 0 and 1. Given P ∈ D, we
consider the following problem:

minimize H(Q, P) s.t. Q ∈ D(ρ0, ρ1). (20)

This optimization solves a large deviations problem in that it seeks themost likely evo-
lution between the two given marginals [51,52]. If there is at least one Q inD(ρ0, ρ1)
such that H(Q, P) < ∞, then, under rather mild assumptions on P , ρ0 and ρ1
[30, Proposition2.5], there exists a unique minimizer Q∗ in D(ρ0, ρ1), called the
Schrödinger bridge from ρ0 to ρ1 over P . Indeed, let

Pxy = P [ · | x(0) = x, x(1) = y] , Qxy = Q [ · | x(0) = x, x(1) = y]

be the disintegrations of P and Q with respect to the initial and final positions. Let
also µP , µQ be the joint initial–final time distributions under P and Q, respectively.
Then [16]

Q∗(·) =
∫

Rn×Rn
Pxy(·)µ∗(dxdy),

where µ∗ is the unique solution of

minimizeµQ

∫

Rn×Rn

(
ln

dµQ

dµP

)
µQ(dxdy) (21)

subject to the (linear) constraints

µQ(dx × Rn) = ρ0(x)dx, µQ(Rn × dy) = ρ1(y)dy. (22)

3.3 A Stochastic Control Formulation

Consider now the casewhere (the coordinate process under) P is aMarkovian diffusion
with forward drift field bP+(x, t) and transition density p(s, x, t, y). The densityρ(x, t)
of P is a weak solution of the Fokker–Planck equation

∂ρ

∂t
+ ∇ ·

(
bP+ρ

)
− 1

2
∆ρ = 0. (23)
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Moreover, forward and backward drifts are related through Nelson’s duality relation
[18]

bP−(x, t) = bP+(x, t) − ∇ ln ρ(x, t). (24)

In this case, the Schrödinger bridge Q∗ is also Markovian [27,28], with forward drift
field

bQ
∗

+ (x, t) = bP+(x, t)+ ∇ ln ϕ(x, t), (25)

where the (everywhere positive) function ϕ solves, together with another function ϕ̂,
the system

ϕ(x, t) =
∫

p(t, x, 1, y)ϕ(y, 1)dy, (26)

ϕ̂(x, t) =
∫

p(0, y, t, x)ϕ̂(y, 0)dy, (27)

with boundary conditions

ϕ(x, 0)ϕ̂(x, 0) = ρ0(x), ϕ(x, 1)ϕ̂(x, 1) = ρ1(x).

Moreover, the one-time density ρ̃ of Q∗ satisfies the factorization

ρ̃(x, t) = ϕ(x, t)ϕ̂(x, t), ∀t ∈ [0, 1]. (28)

We sketch the derivation of (25). Let ϕ(x, t) be any positive, space–time harmonic
function, namely ϕ satisfies on Rn × [0, 1]

∂ϕ

∂t
+ bP+ · ∇ϕ + 1

2
∆ϕ = 0. (29)

It follows that ln ϕ satisfies

∂ ln ϕ

∂t
+ bP+ · ∇ ln ϕ + 1

2
∆ ln ϕ = −1

2
∥∇ ln ϕ∥2. (30)

Observe that, in viewof (19a), problem (20) is equivalent tominimizing overD(ρ0, ρ1)
the functional

I (Q)=EQ

[∫ 1

0

1
2
∥βQ

+ − bP+(x(t), t)∥2dt−ln ϕ(x(1), 1)+ln ϕ(x(0), 0)
]
. (31)

This follows from the fact that H(Q, P) and (31) differ by a quantity which is constant
over D(ρ0, ρ1). Note that we do not assume that Q is Markov a priori. Under Q, by
Ito’s rule,

d ln ϕ(x(t), t) =
[
∂ ln ϕ

∂t
+ β

Q
+ · ∇ ln ϕ + 1

2
∆ ln ϕ

]
(x(t), t)dt

+ ∇ ln ϕ(x(t), t)dw+(t).
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Using this and (30) in (31), we obtain [53]

I (Q) = EQ

[∫ 1

0

1
2
∥βQ

+ − bP+(x(t), t) − ∇ ln ϕ(x(t), t)∥2dt
]
,

where again we assumed that the stochastic integral has zero expectation. Then, the
form (25) of the forward drift of Q∗ follows. Define

ϕ̂(x, t) = ρ̃(x, t)
ϕ(x, t)

.

Then, a direct calculation using (29), and the Fokker–Planck equation

∂ρ̃

∂t
+ ∇ ·

(
(bP+ + ∇ ln ϕ)ρ̃

)
− 1

2
∆ρ̃ = 0 (32)

yields
∂ϕ̂

∂t
+ ∇ ·

(
bP+ϕ̂

)
− 1

2
∆ϕ̂ = 0. (33)

Thus, ϕ̂ is co-harmonic; particularly, it satisfies the original Fokker–Planck equation
(23) just like ρ(x, t), the one-time density of the “prior” P .

Supposewe start insteadwithψ(x, t), a positive, reverse-time space–time harmonic
function, namely ψ , satisfies on Rn × [0, 1]

∂ψ

∂t
+ bP− · ∇ψ − 1

2
∆ψ = 0, (34)

where bP−(x) = bP+(x) − ∇ ln ρ(x, t) is the backward drift of P . Consider now the
functional

Ī (Q) = EQ

[∫ 1

0

1
2
∥βQ

− − bP−(x(t), t)∥2dt + lnψ(x(1), 1) − lnψ(x(0), 0)
]
.

Again, minimizing Ī (Q) over D(ρ0, ρ1) is equivalent to (20). Using Ito’s rule, the
same “completing the square argument” as before yields that the optimal backward
drift is

bQ
∗

− (x, t) = bP−(x, t) − ∇ lnψ(x, t). (35)

Thus, the solution Q∗ appears, in the language of Doob, an h-path process both in the
forward and in the backward direction of time. We now identify ψ . By (28), we have

ρ̃(x, t) = ϕ(x, t)ϕ̂(x, t) = ϕ(x, t)
ϕ̂(x, t)
ρ(x, t)

ρ(x, t)

= ϕ(x, t)ψ(x, t)ρ(x, t), with ψ(x, t) = ϕ̂(x, t)
ρ(x, t)

, ∀t ∈ [0, 1]. (36)

123



J Optim Theory Appl (2016) 169:671–691 681

Indeed, ψ , being the ratio of two solutions of the original Fokker–Planck (33), is
reverse-time space–time harmonic; i.e., it satisfies (34) [54]. This agrees with the
following calculation using (35), (24), (36) and (25)

bQ
∗

− (x, t) = bP−(x, t) − ∇ lnψ(x, t) = bP+(x, t) − ∇ ln ρ(x, t) − ∇ lnψ(x, t)

= bP+(x, t) − ∇ ln ϕ̂(x, t) = bP+(x, t)+ ∇ ln ϕ(x, t)

− ∇ ln ϕ(x, t) − ∇ ln ϕ̂(x, t)

= bQ
∗

+ (x, t) − ∇ ln ρ̃(x, t),

which is simply (24) for the drifts of Q∗. Formula (36) should be compared to [30,
Theorem 3.4].

Finally, there are also conditional versions of these variational problems which are
closer to standard stochastic control problems. Consider minimizing

J (u) = E
[∫ 1

t

1
2
∥u(τ )∥2dτ − ln ϕ1(x(1))

]
,

dx(s) =
[
bP+(x(s), s)+ u(x(s), s)

]
ds + dw+(s), x(t) = x a.s. (37)

over feedback controls u such that the differential equation has a weak solution. If
ϕ(x, t) solves (29) with terminal condition ϕ1(x), then, the same argument as before
shows that u∗(x, t) = ∇ ln ϕ(x, t) is optimal and that S(x, t) = − ln ϕ(x, t) =
infu J (u) is the value function [55] of the control problem. By (30), the Hamilton–
Jacobi–Bellman equation has the form

∂S
∂t

+ infu

[(
bP+ + u

)
· ∇S + 1

2
∥u∥2

]
+ 1

2
∆S = 0, S(x, 1) = − ln ϕ1(x).

4 A Time-Symmetric Formulation of the Schrödinger Bridge Problem

Inspired by a paper by Nagasawa [56], we proceed to derive a control time-symmetric
formulation of the bridge problem. For any Q ∈ D, define the current and osmotic
drifts

vQ = β
Q
+ + β

Q
−

2
, uQ = β

Q
+ − β

Q
−

2
.

Then β
Q
+ = vQ + uQ, β

Q
− = vQ − uQ . Observe that

H(Q, P) =1
2
H(q0, p0)+

1
2
H(q1, p1)+

1
4
EQ

[∫ 1

0
∥βQ

+ − βP
+∥2 + ∥βQ

− − βP
−∥2dt

]

=1
2
H(q0, p0)+

1
2
H(q1, p1)+

1
2
EQ

[∫ 1

0
∥vQ − vP∥2+∥uQ − uP∥2dt

]
.

(38)
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Since H(q0, p0) and H(q1, p1) are constant over D(ρ0, ρ1), it follows that the
Schrödinger bridge Q∗ minimizes the sum of the two incremental kinetic ener-
gies. Finally, we consider minimizing over D(ρ0, ρ1) the functional Is(Q) =
1
2

[
I (Q)+ Ī (Q)

]
. By the previous calculation, this is equivalent to minimizing over

D(ρ0, ρ1) the functional

1
2
EQ

[∫ 1

0

(
∥vQ − vP∥2 + ∥uQ − uP∥2

)
dt − ln

ϕ

ψ
(x(1), 1)+ ln

ϕ

ψ
(x(0), 0)

]
.

Proposition 4.1 The following current and osmotic drifts are optimal for the above
problem

vQ
∗
(x, t)=vP (x, t)+ 1

2
∇ ln

ϕ

ψ
(x, t), uQ∗

(x, t)=uP (x, t)+ 1
2
∇ ln(ϕψ)(x, t).

Proof It suffices to notice that vQ
∗
(x, t) and uQ∗

(x, t) make the functional equal to
zero. ⊓-

The result of Proposition 4.1 agrees with (25) and (35). A variational analysis with
the two controls vQ and uQ can be developed along the lines of Pavon [57, Sections
III–IV].

5 Fluid Dynamic Formulation of the Schrödinger Bridge Problem

Let us go back to the symmetric representation (38). In the case where the prior
measure is P = W stationary Wiener measure, we have vW = uW = 0.3 It basically
corresponds to the situation where there is no prior information. Since the boundary
relative entropies are constant, the problem is equivalent to minimizing

E
{∫ 1

0

[
1
2
∥v∥2 + 1

2
∥u∥2

]
dt

}

over D(ρ0, ρ1). Here we discard the superscript Q for simplification. Let us restrict
our search to Markovian processes. By (24), the osmotic drift field u satisfies

u(x, t) = b+(x, t) − b−(x, t)
2

= 1
2
∇ ln ρ(x, t). (39)

Moreover, the current drift field v satisfies

∂ρ

∂t
+ ∇ · (vρ) = 0. (40)

3 See [30, pp. 7–8] for a justification of employing unbounded path measures in relative entropy problems.
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Thus, the Schrödinger bridge problem becomes

inf
(ρ,v)

∫

Rn

∫ 1

0

[
1
2
∥v(x, t)∥2 + 1

8
∥∇ ln ρ(x, t)∥2

]
ρ(x, t)dtdx, (41a)

∂ρ

∂t
+ ∇ · (vρ) = 0, (41b)

ρ(x, 0) = ρ0(x), ρ(y, 1) = ρ1(y), (41c)

which should be compared to (9a)–(9b)–(9c). We notice, in particular, that the two
functionals differ by a term which is a multiple of the integral over time of the Fisher
information functional

∫

Rn
∥∇ ln ρ(x, t)∥2ρ(x, t)dx .

This unveils a relation between the two problems without zero-noise limits [33,44]. In
[46, p. 131], Carlen, while investigating the connections between OMT and Nelson’s
stochastic mechanics [18,19] in the spirit of Madelung [58], posed the question of
minimizing the Yasue action (41a) subject to the continuity equation (41b) for given
initial and final marginals (41c). He states that “. . .the Euler–Lagrange equations for
it are not easy to understand.” The following result answers Carlen’s question.

Proposition 5.1 Let Q∗ be the solution of the Schrödinger bridge problem with P =
W stationary Wiener measure as prior and marginals (41c). Then, v∗, its current
velocity field, and {ρ∗(·, t); 0 ≤ t ≤ 1}, its flow of one-time marginals, solve Carlen’s
problem.

Proof By the above analysis, minimizing relative entropy on path space is equivalent
to minimizing the Yasue action (41a) subject to the continuity equation (41b) with the
given initial and final marginals. ⊓-

Finally, we mention that a fluid dynamic problem concerning swarms of particles
diffusing anisotropically with losses has been studied in [59].

6 Optimal Mass Transport with a “Prior”

Considering the relation we have seen between the fluid dynamic versions of the
optimal transport problem and the Schrödinger bridge problem, one may wonder
whether there exists a formulationof the formerwhich allows for an “a priori” evolution
like in the latter. Relative entropy on path space does not work for zero-noise random
evolutions as they are singular. Indeed, let Pϵ and Qϵ be the measures onC([0, 1],Rn)

equivalent to scaled stationary Wiener measure Wϵ
4 with forward differentials

dx(t) = β
Pϵ
+ dt + √

ϵdw+(t),

dx(t) = β
Qϵ
+ dt + √

ϵdw+(t). (42)

4 Measure induced by
√

ϵw(t) on path space Ω with volume measure as initial condition.
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Then, one can argue along the same lines as in Sect. 3 that

H(Qϵ, Pϵ) = H(q0, p0)+ EQϵ

[∫ 1

0

1
2ϵ

∥βQϵ
+ − β

Pϵ
+ ∥2dt

]
.

As ϵ ↘ 0, the relative entropy becomes infinite unless Qϵ = Pϵ .5 To circumvent this
difficulty, we start with the following fluid dynamic control problem. Suppose we have
two probability densities ρ0 and ρ1 and a flow of probability densities {ρ(x, t); 0 ≤
t ≤ 1} satisfying

∂ρ

∂t
+ ∇ · (vρ) = 0, (43)

for some continuous vector field v(·, ·). We take (43) as our “prior” evolution and
formulate the following problem,

inf
(ρ̃,ṽ)

∫

Rn

∫ 1

0

1
2
∥ṽ(x, t) − v(x, t)∥2ρ̃(x, t)dtdx, (44a)

∂ρ̃

∂t
+ ∇ · (ṽρ̃) = 0, (44b)

ρ̃(x, 0) = ρ0(x), ρ̃(y, 1) = ρ1(y). (44c)

Clearly, if the prior flow satisfies ρ(x, 0) = ρ0(x) and ρ(x, 1) = ρ1(x), then it
solves the problem and ṽ∗ = v. Moreover, the standard optimal transport problem is
recovered when the prior evolution is constant, i.e., v ≡ 0.

Let us try to provide further motivation to study problem (44). Consider the situ-
ation where a previous optimal transport problem (9) has been solved with boundary
marginals ρ̄0 and ρ̄1 leading to the optimal velocity field v(x, t). Here say ρ̄0 repre-
sent resources being produced to satisfy the demand ρ̄1. Suppose now new information
becomes available showing that the actual resources available are distributed accord-
ing to ρ0 and the actual demand is distributed according to ρ1. As we had already set
up a transportation plan according to velocity field v, we seek to solve a new transport
problem where the new evolution is close to the one we would have employing the
previous velocity field. This is represented in problem (44).

Remark 6.1 The particle version of (44) takes the form of a more familiar OMT
problem, namely in the notation of Sect. 2,

inf
π∈Π(µ,ν)

∫

Rn×Rn
c(x, y)dπ(x, y), (45)

where

c(x, y) = inf
x∈Xxy

∫ 1

0
L(t, x(t), ẋ(t))dt, L(t, x, ẋ) = ∥ẋ − v(x, t)∥2. (46)

5 This calculation indicates that there may be a limit as ϵ ↘ 0 of inf{ϵH(Qϵ , Pϵ)} and, hopefully, in
suitable sense, of the minimizers. This is indeed the case; see [30,33,44] for a precise statement of limiting
results.
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The explicit calculation of the function c(x, y) when v ̸≡ 0 is nontrivial. Moreover,
the zero-noise limit results of [33, Section 3], based on a Large Deviations Principle
[52], although very general in other ways, seem to cover here only the case where
c(x, y) = c(x − y) strictly convex originating from a Lagrangian L(t, x, ẋ) = c(ẋ).
We mention that in our follow-up paper [41], we deal with optimal transport problems
where the Lagrangian is not strictly convex with respect to ẋ . Finally, we feel that our
formulation is a most natural one in which to study zero-noise limits of Schrödinger
bridges with a general Markovian prior evolution. In the next section, we discuss this
problem in theGaussian case. The proof of the convergence of the path-spacemeasures
of the minimizers can be done along the lines of Léonard [33] where Γ -convergence
of the bridge minimum problems to the OMT problem is established. This, under
suitable assumptions, guarantees convergence of the minimizers.

The variational analysis for (44) can be carried out as in Sect. 2 obtaining the
following result:

Proposition 6.1 If ρ̃∗ satisfying

∂ρ̃∗

∂t
+ ∇ · [(v + ∇ψ)ρ̃∗] = 0, ρ̃∗(x, 0) = ρ0(x), (47)

where ψ is a solution of the Hamilton–Jacobi equation

∂ψ

∂t
+ v · ∇ψ + 1

2
∥∇ψ∥2 = 0, (48)

is such that ρ̃∗(x, 1) = ρ1(x), then the pair (ρ̃∗(x, t), ṽ∗(x, t) = v(x, t)+ ∇ψ(x, t))
is a solution of the problem (44), providedψ(x, t)ṽ(x, t)ρ̃(x, t) vanishes as ∥x∥ → ∞
for each fixed t.

If v(x, t) = α(t)x , and both ρ0 and ρ1 are Gaussian, then the optimal evolution
is given by a linear equation and is therefore given by a Gaussian process as we will
study next.

7 The Gaussian Case

In this section, we consider the correspondence between Schrödinger bridges and
OMT for the special case where the underlying dynamics are linear and the marginals
are normal distributions. To this end, consider the reference evolution

dx(t) = A(t)x(t)dt + √
ϵdw(t), (49)

and the two marginals ρ0 ∼ N (m0,Σ0) and ρ1 ∼ N (m1,Σ1). In our previous work
[39], we derived a “closed form” expression for the corresponding Schrödinger bridge
as

dx(t) = (A(t) − Πϵ(t))x(t)dt + m(t)dt + √
ϵdw(t), (50)
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where Πϵ(t) satisfies the matrix Riccati equation

Π̇ϵ(t)+ A(t)′Πϵ(t)+ Πϵ(t)A(t) − Πϵ(t)2 = 0 (51)

with the boundary condition Πϵ(0) given by

ϵ

2
Σ−1

0 +Φ ′
10M

−1
10 Φ10 − Σ

−1/2
0

(
ϵ2

4
I + Σ

1/2
0 Φ ′

10M
−1
10 Σ1M−1

10 Φ10Σ
1/2
0

)1/2

Σ
−1/2
0 ,

and m(t) satisfies

m(t) = Φ̂(1, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0). (52)

Here Φ10 := Φ(1, 0) is the state transition matrix from 0 to 1 for A(t) and

M10 := M(1, 0) =
∫ 1

0
Φ(1, t)Φ(1, t)′dt

is the controllability Gramian, and Φ̂(t, s), M̂(t, s) are the state transition matrix and
controllability Gramian for A(t) − Πϵ(t).

We now consider the zero-noise limit by letting ϵ go to 0. In the case where A(t) ≡
0, the Schrödinger bridge solution process converges to the solution of an OMT
problem [30,44]. In general, when A(t) ̸≡ 0, by taking ϵ = 0 we obtain

Π0(0) = Φ ′
10M

−1
10 Φ10 − Σ

−1/2
0

(
Σ

1/2
0 Φ ′

10M
−1
10 Σ1M−1

10 Φ10Σ
1/2
0

)1/2
Σ

−1/2
0 (53)

and a limiting process

dx(t) = (A(t) − Π0(t))x(t)dt + m(t)dt, x(0) ∼ (m0,Σ0) (54)

with Π0(t),m(t) satisfying (51), (52), and (53). In fact, Π0(t) has the expression

Π0(t) = −M(t, 0)−1Φ(t, 0)
[
Φ ′

10M
−1
10 Φ10 − Φ(t, 0)′M(t, 0)−1Φ(t, 0)

−Σ
−1/2
0 (Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2Σ

−1/2
0

]−1
Φ(t, 0)′M(t, 0)−1

−M(t, 0)−1. (55)

It turns out that process (54) yields a solution to problem (44) as stated next.

Proposition 7.1 Let ρ̃(·, t) be the probability density of x(t) in (54), and ṽ(x, t) =
(A(t) − Π0(t))x + m(t), then the pair (ρ̃, ṽ) is a solution of the problem (44) with
prior velocity field v(x, t) = A(t)x.
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Proof To show that the pair (ρ̃, ṽ) is a solution, we need to prove i) ρ̃ satisfies the
boundary condition ρ̃(x, 1) = ρ1(x) and ii) ṽ(x, t) − v(x, t) = ∇ψ(x, t) for some
ψ with ψ satisfying the Hamilton–Jacobi equation (48). Here v(x, t) = A(t)x is the
drift of the prior process.

We first show that ρ̃ satisfies the boundary condition ρ̃(x, 1) = ρ1(x). Since the
process (54) is a linear diffusion with Gaussian initial condition, x(t) is a Gaussian
random vector for all t ∈ [0, 1]. Let ρ̃(·, t) ∼ N (n(t),Σ(t)), then obviously the mean
value n(t) is n(t) = Φ̂(t, 0)m0 +

∫ t
0 Φ̂(t, τ )m(τ )dτ. We claim that the covariance

Σ(t) has the explicit expression

Σ(t) = M(t, 0)Φ(0, t)′Σ−1/2
0

[
(Σ

1/2
0 Φ ′

10M
−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2−

Σ
1/2
0 Φ ′

10M
−1
10 Φ10Σ

1/2
0 + Σ

1/2
0 Φ(t, 0)′M(t, 0)−1Φ(t, 0)Σ1/2

0

]2
Σ

−1/2
0 Φ(0, t)M(t, 0)

(56)

for t ∈]0, 1]. This expression is consistent with the initial condition Σ0 since
limt↘0 Σ(t) = Σ0. To see that Σ(t) is indeed the covariance matrix of x(t), we
only need to show that Σ(t) satisfies the differential equation

Σ̇(t) = (A(t) − Π0(t))Σ(t)+ Σ(t)(A(t) − Π0(t))′.

This can be verified directly from the expression (56) and (55) after some straightfor-
ward but lengthy computations. Now observing that

n(1) = Φ̂(1, 0)m0 +
∫ 1

0
Φ̂(1, τ )m(τ )dτ = m1

by (52) and Σ(1) = Σ1 from (56), we get that ρ̃ satisfies ρ̃(x, 1) = ρ1(x). We next
show ii). Letψ(x, t) = − 1

2 x
′Π0(t)x+m(t)′x+c(t)with c(t) = − 1

2

∫ t
0 m(τ )′m(τ )dτ.

Then, in view of (51) and (52), we establish that

∂ψ

∂t
+ v · ∇ψ + 1

2
∥∇ψ∥2 = 0.

Finally, note that ψ(x, t)ṽ(x, t)ρ̃(x, t) → 0 as ∥x∥ → ∞ for any fixed t . ⊓-

8 Overdamped Brownian Motion in a Force Field: An Example

Herein, we consider highly overdamped Brownian motion in a force field. In a very
strong sense [18, Theorem 10.1], the Smoluchowski model in configuration variables
is a good approximation of the full Ornstein–Uhlenbeck model in phase space. We are
interested in planar Brownian motion in the quadratic potential V (x) = 1

2 (x
2
1 + x22 ).

Taking the mass of the particle to be one, the evolution of the Brownian particle is
given by the Smoluchowski equation

dx(t) = −∇V (x(t))dt + √
ϵdw(t), −∇V (x) = Ax, A = −3I, (57)

123



688 J Optim Theory Appl (2016) 169:671–691

Fig. 1 (ϵ = 9) Schrödinger
bridge

Fig. 2 (ϵ = 4) Schrödinger
bridge

Fig. 3 OMT with prior

where w is a standard, two-dimensional Wiener process. The observed distributions
of the particle at the two end-points in time are normal with mean and variance m0 =[−5, −5

]′, Σ0 = I , and m1 =
[
5, 5

]′, Σ0 = I , for t = 0 and t = 1, respectively. We
then seek to interpolate the density of the particle at intermediate points by solving
the corresponding Schrödinger bridge problem where (57) plays the role of an a priori
evolution.

Figures 1 and 2 depict the flow between the two one-time marginals for the
Schrödinger bridge when ϵ = 9 and ϵ = 4, respectively. The transparent tubes rep-
resent the “3σ region” where (x ′ − m′

t )Σ
−1
t (x − mt ) is ≤ 9. Typical sample paths

are shown in the figures. As ϵ ↘ 0, the paths of the bridge process resemble those of
the corresponding OMT with prior velocity field v(x, t) = Ax , which is depicted in
Fig. 3. Note that trajectories of OMT without a prior are simply straight lines.
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9 Conclusions

Starting froma stochastic control viewpoint,we considerably extended the connections
betweenOMTand Schrödinger bridges.We provided in Sects. 4 and 5 time-symmetric
and fluid dynamic formulations of the Schrödinger bridge problem. The latter can
then be seen as an OMT dynamic problem with a cost that involves as extra term
a Fisher information functional. This formulation directly answers a question posed
by Carlen in 2006; see Proposition 5.1. To establish connections between the two
problems in a more general setting, we introduced OMT with prior which, besides
its intrinsic significance, allows direct comparison between OMT and Schrödinger
bridges for certain cases with, e.g., possibly non-strictly convex Lagrangian. The
stochastic control viewpoint for either OMT or Schrödinger bridge problem, besides
unifying the two, allows generalizations of Schrödinger bridges to degenerate and
anisotropic diffusions where no maximum entropy problem may be formulated. In
Sect. 7, we established a zero-noise limit result and derived explicit formulae for the
case (of engineering significance) of Gaussian priors (Proposition 7.1). In Sect. 8, we
provided an illustrative example.

Acknowledgments Research partially supported by the NSF under Grant ECCS-1509387, the AFOSR
under Grants FA9550-12-1-0319, and FA9550-15-1-0045 and by the University of Padova Research Project
CPDA 140897. Part of the research of M.P. was conducted during a stay at the Courant Institute of Mathe-
matical Sciences of the New York University whose hospitality is gratefully acknowledged.

References

1. Monge, G.: Mémoire sur la théorie des déblais et des remblais, De l’Imprimerie Royale (1781)
2. Schrödinger, E.: Über die Umkehrung der Naturgesetze, Sitzungsberichte der Preuss. Phys. Math.

Klasse. 10, 144–153 (1931)
3. Schrödinger, E.: Sur la théorie relativiste de l’electron et l’interpretation de la mécanique quantique.

Ann. Inst. H. Poincaré. 2, 269 (1932)
4. Kantorovich, L.: On the transfer of masses. Dokl. Akad. Nauk. 37, 227–229 (1942)
5. Rachev, S., Rüschendorf, L.:Mass Transportation Problems: Theory, vol. 1. Springer, NewYork (1998)
6. Villani, C.: Topics in Optimal Transportation, vol. 58. AMS, Providence (2003)
7. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, New York (2008)
8. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161

(1996)
9. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation.

SIAM J. Math. Anal. 29, 1–17 (1998)
10. Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass

transfer problem. Numerische Mathematik 84(3), 375–393 (2000)
11. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability

Measures. Birkhäuser Verlag, Basel (2008)
12. Ning, L., Georgiou, T.T., Tannenbaum,A.:Matrix-valuedMonge–Kantorovich optimalmass transport.

IEEE Trans. Autom. Control 60(2), 373–382 (2015)
13. Fortet, R.: Résolution d’un système d’equations de M. Schrödinger. J. Math. Pure Appl. 9, 83–105

(1940)
14. Beurling, A.: An automorphism of product measures. Ann. Math. 72, 189–200 (1960)
15. Jamison, B.: The Markov processes of Schrödinger. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32,

323–331 (1975)
16. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L. (ed.) Ècole d’Ètè de Proba-

bilitès de Saint-Flour XV–XVII, vol. 1362, pp. 102–203. Springer, New York (1988)

123



690 J Optim Theory Appl (2016) 169:671–691

17. Wakolbinger, A.: Schrödinger bridges from 1931 to 1991. Contribuciones en probabilidad y estadistica
matematica 3, 61–79 (1992)

18. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)
19. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)
20. Zambrini, J.C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 33(3), 1532–1548

(1986)
21. Zambrini, J.C.: Variational processes and stochastic versions of mechanics. J. Math. Phys. 27(9),

2307–2330 (1986)
22. Fenyes, I.: EinewahrscheinlichkeitstheoretischeBegründung und Interpretation derQuantenmechanik.

Z. Physik 132, 81–106 (1952)
23. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev.

85, 166–179 (1952)
24. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with

irregular fluctuations. Phys. Rev. 96, 208–216 (1954)
25. Levy, B.C., Krener, A.J.: Stochastic mechanics of reciprocal diffusions. J. Math. Phys. 37, 769 (1996)
26. Rosenbrock, H.H.: Doing quantum mechanics with control theory. IEEE Trans. Autom. Control 54,

73–77 (2000)
27. Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23(1),

313–329 (1991)
28. Dai Pra, P., Pavon, M.: On the Markov processes of Schrödinger, the Feynman–Kac formula and sto-

chastic control. In: Kaashoek,M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Realization andModeling
in System Theory, pp. 497–504. Birkhäuser, Boston (1990)

29. Pavon, M., Wakolbinger, A.: On free energy, stochastic control, and Schrödinger processes. In: Di
Masi, G.B., Gombani, A., Kurzhanski, A.A. (eds.) Modeling, Estimation and Control of Systems with
Uncertainty, pp. 334–348. Birkhäuser, Boston (1991)

30. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport.
Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)

31. Mikami, T., Thieullen, M.: Optimal transportation problem by stochastic optimal control. SIAM J.
Control Optim. 47(3), 1127–1139 (2008)

32. Pavon, M., Ticozzi, F.: Discrete-time classical and quantumMarkovian evolutions: maximum entropy
problems on path space. J. Math. Phys. 51, 042104–042125 (2010)

33. Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262,
1879–1920 (2012)

34. Georgiou, T.T., Pavon, M.: Positive contraction mappings for classical and quantum Schrödinger
systems. J. Math. Phys. 56(033301), 1–24 (2015)

35. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge–Kantorovich problem.
SIAM J. Math. Anal. 35(1), 61–97 (2003)

36. Filliger, R., Hongler, M.O.: Relative entropy and efficiency measure for diffusion-mediated transport
processes. J. Phys. A: Math. Gen. 38, 1247–1250 (2005)

37. Filliger, R., Hongler, M.O., Streit, L.: Connection between an exactly solvable stochastic optimal
control problem and a nonlinear reaction-diffusion equation. J. Optim. Theory Appl. 137, 497–505
(2008)

38. Chen, Y., Georgiou, T.T.: Stochastic bridges of linear systems. Preprint, http://arxiv.org/abs/1407.3421.
IEEE Trans. Autom. Control (to appear)

39. Chen, Y., Georgiou, T.T., Pavon,M.: Optimal steering of a linear stochastic system to a final probability
distribution, Part I. preprint, http://arxiv.org/abs/1408.2222. IEEE Trans. Autom. Control (to appear)

40. Chen, Y., Georgiou, T.T., Pavon,M.: Optimal steering of a linear stochastic system to a final probability
distribution, Part II. Preprint, http://arxiv.org/abs/1410.3447. IEEE Trans. Autom. Control (to appear)

41. Chen, Y., Georgiou, T.T., Pavon, M.: Optimal transport over a linear dynamical system. Preprint,
http://arxiv.org/abs/1502.01265 (submitted for publication)

42. Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational
approach using theHilbertmetric. Preprint, http://arxiv.org/abs/1506.04255 (submitted for publication)

43. Chen, Y., Georgiou, T.T., Pavon, M.: Fast cooling for a system of stochastic oscillators. Preprint,
http://arxiv.org/abs/1411.1323v2 (submitted for publication)

44. Mikami, T.: Monge’s problemwith a quadratic cost by the zero-noise limit of h-path processes. Probab.
Theory Relat. Fields 129, 245–260 (2004)

123

http://arxiv.org/abs/1407.3421
http://arxiv.org/abs/1408.2222
http://arxiv.org/abs/1410.3447
http://arxiv.org/abs/1502.01265
http://arxiv.org/abs/1506.04255
http://arxiv.org/abs/1411.1323v2


J Optim Theory Appl (2016) 169:671–691 691

45. Mikami, T., Thieullen, M.: Duality theorem for the stochastic optimal control problem. Stoch. Proc.
Appl. 116, 1815–1835 (2006)

46. Carlen, E.: Stochastic mechanics: a look back and a look ahead. In: Faris, W.G. (ed.) Diffusion,
Quantum Theory and Radically Elementary Mathematics, vol. 47, pp. 117–139. Princeton University
Press, Princeton (2006)

47. Kosmol, P., Pavon, M.: Lagrange Lemma and the optimal control of diffusions II: nonlinear Lagrange
functionals. Syst. Control Lett. 24(3), 215–221 (1995)

48. Fleming, W.H., Soner, M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer,
New York (2006)

49. Tabak, E.G., Trigila, G.: Data-driven optimal transport. Commun. Pure. Appl. Math. doi:10.1002/cpa.
21588 (2014)

50. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)
51. Föllmer, H.: Time Reversal on Wiener Space. Springer, New York (1986)
52. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, NewYork

(1998)
53. Wakolbinger, A.: A simplified variational characterization of Schrödinger processes. J. Math. Phys.

30(12), 2943–2946 (1989)
54. Pavon, M.: Stochastic control and nonequilibrium thermodynamical systems. Appl. Math. Optim. 19,

187–202 (1989)
55. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (1975)
56. Nagasawa, M.: Stochastic variational principle of Schrödinger Processes. In: Cinlar, E., Chung, K.L.,

Getoo, R.K., Fitzsimmons, P.J., Williams, R.J. (eds.) Seminar on Stochastic Processes, pp. 165–175.
Birkhäuser, Boston (1989)

57. Pavon, M.: Hamilton’s principle in stochastic mechanics. J. Math. Phys. 36, 6774–6800 (1995)
58. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Physik 40, 322–326 (1926)
59. Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of inertial particles diffusing anisotropically

with losses. In: Proceedings of the American Control Conference (2015)

123

http://dx.doi.org/10.1002/cpa.21588
http://dx.doi.org/10.1002/cpa.21588

