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Optimal Steering of a Linear Stochastic System
to a Final Probability Distribution, Part II
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Abstract—We address the problem of steering the state of a
linear stochastic system to a prescribed distribution over a finite
horizon with minimum energy, and the problem to maintain the
state at a stationary distribution over an infinite horizon with
minimum power. For both problems the control and Gaussian
noise channels are allowed to be distinct, thereby, placing the
results of this paper outside of the scope of previous work both in
probability and in control. The special case where the disturbance
and control enter through the same channels has been addressed
in the first part of this work that was presented as Part I. Herein,
we present sufficient conditions for optimality in terms of a system
of dynamically coupled Riccati equations in the finite horizon case
and in terms of algebraic conditions for the stationary case. We
then address the question of feasibility for both problems. For the
finite-horizon case, provided the system is controllable, we prove
that without any restriction on the directionality of the stochastic
disturbance it is always possible to steer the state to any arbitrary
Gaussian distribution over any specified finite time-interval. For
the stationary infinite horizon case, it is not always possible to
maintain the state at an arbitrary Gaussian distribution through
constant state-feedback. It is shown that covariances of admissible
stationary Gaussian distributions are characterized by a certain
Lyapunov-like equation and, in fact, they coincide with the class
of stationary state covariances that can be attained by a suitable
stationary colored noise as input. We finally address the question
of how to compute suitable controls numerically. We present an
alternative to solving the system of coupled Riccati equations, by
expressing the optimal controls in the form of solutions to (con-
vex) semi-definite programs for both cases. We conclude with an
example to steer the state covariance of the distribution of inertial
particles to an admissible stationary Gaussian distribution over
a finite interval, to be maintained at that stationary distribution
thereafter by constant-gain state-feedback control.

Index Terms—Covariance control, linear stochastic systems,
Schrödinger bridges, stationary distributions, stochastic optimal
control.

I. INTRODUCTION

CONSIDER a linear system

ẋ(t) = Ax(t) + Bu(t), t ∈ [0,∞) (1)
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with A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈ Rm, and
the problem to steer (1) from the origin to a given point x(T ) =
ξ ∈ Rn. This of course is possible for any arbitrary ξ ∈ Rn

iff the system is controllable, i.e., the rank of [B,AB, . . . ,
An−1B] is n, that is, when (A, B) is a controllable pair. In
this case it is well known that the steering can be effected in
a variety of ways, including “minimum-energy” control, over
any prespecified interval [0, T ]. On the other hand, the problem
to achieve and maintain a fixed value ξ for the state vector in a
stable manner is not always possible. For this to be the case for
a given ξ, using feedback and feedforward control

0 = (A − BK)ξ + Bu (2)

must have a solution (u, K) for a constant value for the input u
and a suitable value of K so that A − BK is Hurwitz (i.e., the
feedback system be asymptotically stable). It is easy to see that
this reduces simply to the requirement that ξ satisfies

0 = Aξ + Bv

for some v; if there is such a v, we can always choose a suitable
K so that A − BK is Hurwitz and then, from v and K, we can
compute the constant value u. Conversely, from u and K we
can obtain v = u − Kξ.

In the present paper, we discuss an analogous and quite
similar dichotomy between our ability to assign the state-
covariance of a linear stochastically driven system by steering
the system over an interval [0, T ], and our ability to assign
the state-covariance of the ensuing stationary state process
through constant state-feedback. It will be shown that the state-
covariance can be assigned at the end of an interval through
suitable feedback control if and only if the system is con-
trollable. On the other hand, a positive semidefinite matrix
is an admissible stationary state-covariance attained through
constant feedback if and only if it satisfies a certain Lyapunov-
like algebraic equation. Interestingly, the algebraic equation
that specifies which matrices are admissible stationary state-
covariances through constant feedback is the same equation
that characterizes stationary state-covariances attained through
colored stationary input noise in open loop.

Both of these problems, to steer and possibly maintain the
state statistics of a stochastically driven system, represent gen-
eralizations of the classical regulator problem which is at the
heart of many control applications and entails efficient and
accurate steering to a target location. Prime examples, that
brought the subject of control and estimation to prominence
since the sixties include soft moon-landing, docking, and the
guidance of space vehicles, aircraft navigation, robotics, and
the steering of quantum mechanical systems, to name a few
[1]–[4]. The paradigm that is being considered in this paper
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represents a “relaxed” version of the classical linear quadratic
regulator (LQG) in that, hard constraints and penalties on the
endpoint state, are replaced by “soft conditioning” on the state
to be distributed according to a prescribed probability density.
The theory departs sharply from classical LQG and is quite
distinct as well from approaches that bound the probability of
violating state constraints [5], [6]. However, the framework may
be seen to have conceptual similarities to resource allocation
and transport in networks and the tracking of spectral power in
radar and antenna arrays [7].

A major source of motivation is provided by modern tech-
nological advances that allow us to manipulate micro and
thermodynamic systems, and to measure physical properties
with unprecedented accuracy. Many such advances rely heavily
on our ability to limit state-uncertainty using feedback, e.g.,
in oscillators coupled to a heat bath or in steering the collec-
tive behavior of a swarm of particles experiencing stochastic
forcing. Cutting edge examples include thermally driven atomic
force microscopy, the control of molecular motors, laser driven
reactions, the manipulation of macromolecules, the “active
cooling” of devices aimed at measuring gravitational waves,
and the focusing of particle beams (see [8]–[14]).

Historically, the problem to steer the probability density
of Brownian particles in their trajectory across two points in
time, has its origin in a study published in 1931/1932 by
Erwin Schrödinger [15], [16, Section VII]. In this, Schrödinger
asked for the most likely evolution of a cloud of particles that are
observed, at the two end points of their path, to be distributed
according to given empirical distributions. The answer he gave,
which provides an updated probability law on path space, in fact
relates to a minimum energy stochastic control problem [17].
The subject, which advanced with leaps and bounds over the
past 80 years by contributions from Fortet, Beurling, Jamison,
Föllmer, and many others, has come to be known as
Schrödinger bridges. Yet, all prior work, was related to the case
where the diffusive particles are modeled by non-degenerate
diffusions where the noise affects directly all entries of (vecto-
rial) stochastic process, and the link to minimum-energy optimal
control was drawn primarily via the Girsanov transformation
[17] for that case. Recent attempts to address linear stochastic
systems were also limited to non-degenerate diffusions where
the control and noise channel are identical [18], [19].

In a “sister paper” that precedes the present as part I [20],
we presented a theory of Schrödinger bridges for general linear
stochastic systems. This includes possibly degenerate linear
diffusions and the theory entails two coupled homogeneous
differential Riccati equations (which naturally reduce to two
coupled Lyapunov equations) in the style of classical LQG
theory. In contrast however, these differential equations are
nonlinearly coupled through their boundary conditions and, fur-
thermore, the boundary conditions are in general sign indefinite.
Thus the theory falls outside the standard LQG framework,
and yet, it is shown in [20], that the equations can be solved
in closed form for the minimum-energy control. The reason
for that is a salient feature of classical Schrödinger bridges
and of the theory in [20] that the control which provides the
needed drift to reconcile the empirical marginals enters along
the very same “directions” that the noise impacts, i.e., control
and noise channels are identical. The present work departs
from [20] in that control and noise channels may now differ.

Hence, no assumption on the directionality of control authority
as compared to that of the random driving noise is being made;
the cost functional is anyway quadratic in the control. In this
more general case, while certain aspects parallel [20] (e.g.,
variational analysis, cf. Section II), the techniques needed to
determine our ability to steer the state statistics and determine
the corresponding control input are quite different.

The structure of the paper is as follows: In Section II we
formulate both the finite horizon problem and the infinite
horizon stationary problem, and present sufficient conditions
for optimality. In Section III-A we consider the feasibility
of steering the statistics over a finite interval by a suitable
control action and in Section III-B we consider the possibility to
maintain stationary state-statistics by constant state-feedback.
In Section IV-A and B, we formulate the least-energy opti-
mal control problem in each of the two cases, finite horizon
and stationary statistics, as semidefinite programs. Finally,
Section V highlights the theory with a numerical example to
steer the statistics of inertial particles, in the phase-plane, in
each of these two modalities, transient and stationary.

II. OPTIMAL STEERING

In this section we formulate the control problem to optimally
steer a stochastic linear system to a final target Gaussian distri-
bution at the end of a finite interval. In parallel, we formulate
the problem to maintain a stationary Gaussian state distribution
by constant state feedback for time-invariant dynamics. We also
present sufficient conditions of optimality which in the case
of finite-horizon take the form of a Schrödinger-like system of
equations.

The ability to specify the mean value of the state-vector
reduces to the problem discussed at the start of the introduction.
More specifically, since E{x(t)} =: x̄(t) satisfies (1), control-
lability of (A, B) is necessary and sufficient to specify x̄(T ) at
the end of the interval and this is effected by a deterministic
mean value for the input process. Likewise, the mean value
for a stationary input must satisfy (2) to attain x̄(t) ≡ ξ for a
stationary state process. Thus, throughout and without loss of
generality we assume that all processes have zero-mean and we
only focus on our ability to assign the state-covariance in those
two instances.

A. Finite-Horizon Optimal Steering

Consider the controlled evolution

dxu(t) = A(t)xu(t)dt + B(t)u(t)dt + B1(t)dw(t)

xu(0) =x0 a.s. (3)

where x0 is an n-dimensional Gaussian vector independent of
the standard p-dimensional Wiener process {w(t)|0 ≤ t ≤ T}
and with density

ρ0(x) = (2π)−n/2 det(Σ0)
−1/2 exp

(
−1

2
x′Σ−1

0 x

)
. (4)

Here, A, B and B1 are continuous matrix functions of t
taking values in Rn×n, Rn×m, and Rn×p, respectively, Σ0 is
a symmetric positive definite matrix, and T < ∞ represents the
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end point of a time interval of interest. Suppose we also have a
“target” Gaussian end-point distribution

ρT (x) = (2π)−n/2 det(ΣT )−1/2 exp

(
−1

2
x′Σ−1

T x

)
(5)

where we also assume ΣT symmetric and positive definite.
The uncontrolled evolution xu≡0 = {x(t)|0 ≤ t ≤ T} may be
thought to represent a “prior,” or reference evolution, for which,
in general, x(T ) is not distributed according to ρT . Thus, we
seek the least-effort strategy to steer (3) to the desired final
probability density. To this end, let U represent the family
of adapted, finite-energy control functions such that (3) has a
strong solution and xu(T ) is distributed according to (5). Thus,
u ∈ U is such that u(t) only depends on t and on {xu(s)|0 ≤
s ≤ t} for each t ∈ [0, T ], satisfies

J(u) := E

⎧
⎨

⎩

T∫

0

u(t)′u(t) dt

⎫
⎬

⎭ < ∞

and forces xu(T ) to be distributed according to (5). Therefore,
U represents the class of admissible control inputs. The exis-
tence of such control inputs will be established in the following
section, i.e., that U is not empty. At present, assuming this to be
the case, we formulate the following Bridge Problem:

Problem 1: Determine u∗ := arg minu∈U J(u).
We point out that when BB′ ̸= B1B′

1, no interpretation of
this problem as a classical Schrödinger bridge [21] via the
Girsanov transformation is possible since, in this case, the
reference and controlled measures on path spaces are mutually
singular; this is due to the fact that the diffusion coefficients
differ and as a consequence the martingale part of the two
evolutions are different. In spite of this, precisely the same
completion of the squares argument used in [20, Section II]
yields the sufficient conditions in Proposition 1 and shows that
a control-theoretic view of the Schrödinger bridge problem [17]
carries through in this more general setting.

Proposition 1: Let {Π(t)|0 ≤ t ≤ T} be a solution of the
matrix Riccati equation

Π̇(t) = −A(t)′Π(t) −Π(t)A(t) + Π(t)B(t)B(t)′Π(t). (6)

Define the feedback control law

u(x, t) := −B(t)′Π(t)x (7)

and let xu = x∗ be the Gauss-Markov process

dx∗(t) = (A(t)−B(t)B(t)′Π(t)) x∗(t)dt+B1(t)dw(t),

with x∗(0) =x0 a.s. (8)

If x∗(T ) has probability density ρT , then u(x∗(t), t) = u∗(t),
i.e., it is the solution to Problem 1.

Now, in contrast to the standard LQG problem where the
terminal cost provides a boundary value for the differential
Riccati equation, here the boundary value Π(0) is unspecified
and needs to be selected so as to ensure that (7) drives the
state to the desired final distribution. In [20], where B = B1,
the mapping between Π(T ) and ΣT is onto with (6) having no
finite escape-time and, thereby, that steering is always possible.
However, it was also noted in [20] that Π(T ) may be indefinite,
placing the analysis outside of standard LQG theory. Thus, in
the present more general case we also need to resort to an

approach that departs from classical LQG in order to determine
the appropriate solutions of (6). Below we recast Proposition 1
in the form of a Schrödinger system.1

Let Σ(t) := E{x∗(t)x∗(t)′} be the state covariance of (8) and
assume that the conditions of the proposition hold. Then

Σ̇(t) = (A(t) − B(t)B(t)′Π(t))Σ(t)
+ Σ(t) (A(t) − B(t)B(t)′Π(t))

′
+ B1(t)B1(t)

′ (9)

holds together with the two boundary conditions

Σ(0) = Σ0, Σ(T ) = ΣT . (10)

Further, since Σ0 > 0, Σ(t) is positive definite on [0, T ]. Define

H(t) := Σ(t)−1 −Π(t).

A direct calculation using (9) and (6) leads to (11b) below. We
have therefore derived a nonlinear Schrödinger system

Π̇ = −A′Π−ΠA + ΠBB′Π (11a)
Ḣ = −A′H − HA − HBB′H

+ (Π + H) (BB′ − B1B
′
1) (Π + H) (11b)

Σ−1
0 =Π(0) + H(0) (11c)

Σ−1
T =Π(T ) + H(T ). (11d)

Indeed, in contrast to the case when B = B1 (see [20]), the
two Riccati equations in (11) are coupled not only through their
boundary values (11c), (11d) but also in a nonlinear manner
through their dynamics in (11b). Clearly, the case Π(t) ≡ 0
corresponds to the situation where the uncontrolled evolution
already satisfies the boundary marginals and, in that case,
H(t)−1 is simply the prior state covariance. We summarize our
conclusion in the following proposition.

Proposition 2: Assume that {(Π(t), H(t))|0 ≤ t ≤ T} sat-
isfy (11a)–(11d). Then the feedback control law (7) is the
solution to Problem 1 and the corresponding optimal evolution
is given by (8).

The existence and uniqueness of solutions for the Schrödinger
system is quite challenging already in the classical case where
the two dynamical equations are uncoupled and where major con-
tributions are due to Fortet [22], Beurling [23], Jamison [24],
Föllmer [21], see also [20], [25]. It is therefore hardly
surprising that at present we don’t know how to prove existence
of solutions for (11a)–(11d)2 A direct proof of existence of
solutions for (11a)–(11d) would in particular imply feasibility
of Problem 1, i.e., that U is nonempty and that there exists a
minimizer. At present we do not have a proof that a minimizer
exists. However, in Section III-A we establish that the set
of admissible controls U is not empty and in Section IV
we provide an approach that allows constructing suboptimal
controls incurring cost that is arbitrarily close to infu∈U J(u).

1In general, a Schrödinger system consists of a forward and a backward
Kolmogoroff (partial) differential equation that are coupled through their
boundary conditions, cf. [21]. Here, since the distributions are Gaussian, the
Schrödinger system entails matrix differential equations.

2A numerical scheme based on successive approximations appears to be
unstable and does not produce a fixed point in general. In this case, such a
scheme could consist of solving (11a) backwards in time starting from Π(T ),
computing initial conditions for (11b) using (11c), solving (11b) forward in
time to compute H(T ) so as to update Π(T ) using (11d) and repeating the
cycle. A similar idea was carried out by Fortet [22] in the classical setting,
whereas a more powerful technique based on the Hilbert metric was explored
recently in [25] for a Schrödinger system on finite spaces.
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B. Infinite-Horizon Optimal Steering

Suppose now that A, B and B1 do not depend on time and
that the pair (A, B) is controllable. We seek a constant state
feedback law u(t) = −Kx(t) to maintain a stationary state-
covariance Σ > 0 for (3). In particular, we are interested in one
that minimizes the expected input power (energy rate)

Jpower(u) := E{u′u} (12)

and thus we are led to the following problem.3

Problem 2: Determine u∗ that minimizes Jpower(u) over all
u(t) = −Kx(t) such that

dx(t) = (A − BK)x(t)dt + B1dw(t) (13)

admits

ρ(x) = (2π)−n/2 det(Σ)−1/2 exp

(
−1

2
x′Σ−1x

)
(14)

as invariant probability density.
Interestingly, the above problem may not have a solution in

general since not all values for Σ can be maintained by state
feedback. In fact, Theorem 4 in Section III-B, provides condi-
tions that ensure Σ is admissible as a stationary state covariance
for a suitable input. Moreover, as it will be apparent from what
follows, even when the problem is feasible, i.e., there exist
controls which maintain Σ, an optimal control may fail to exist.
The relation between this problem and Jan Willems’ classical
work on the Algebraic Riccati Equation [26] is provided after
Proposition 3 below.

Let us start by observing that the problem admits the fol-
lowing finite-dimensional reformulation. Let K be the set of all
m × n matrices K such that the corresponding feedback matrix
A − BK is Hurwitz. Observe that

E{u′u} = E{x′K ′Kx} = trace(KΣK ′)

Then Problem 2 reduces to finding a m × n matrix K∗ ∈ K
which minimizes the criterion

J(K) = trace(KΣK ′) (15)

subject to the constraint

(A − BK)Σ + Σ(A′ − K ′B′) + B1B
′
1 = 0. (16)

Now, consider the Lagrangian function

L(K,Π) = trace(KΣK ′)
+ trace (Π ((A − BK)Σ + Σ(A′ − K ′B′) + B1B

′
1)) (17)

which is a simple quadratic form in the unknown K. Observe
that K is open, hence a minimum point may fail to exist.
Nevertheless, at any point K ∈ K we can take a directional
derivative in any direction δK ∈ Rm×n to obtain

δL(K,Π; δK) = trace ((ΣK ′ + KΣ− ΣΠB − B′ΠΣ) δK) .

Setting δL(K,Π; δK) = 0 for all variations, which is a suffi-
cient condition for optimality, we get the form

K∗ = B′Π. (18)

3An equivalent problem is to minimize limT→∞(1/T )E{
∫ T

0
u(t)′u(t)dt}

for a given terminal state covariance as T → ∞.

To compute K∗, we calculate the multiplier Π as a maximum
point of the dual functional

G(Π) = L(K∗,Π)
= trace ((A′Π + ΠA −ΠBB′Π)Σ + ΠB1B

′
1) . (19)

The unconstrained maximization of the concave functional G
over symmetric n × n matrices produces matrices Π∗ which
satisfy (16), namely

(A − BB′Π∗)Σ + Σ(A′ −Π∗BB′) + B1B
′
1 = 0. (20)

There is no guarantee, however, that K∗ = B′Π∗ is in K,
namely that A − BB′Π∗ is Hurwitz. Nevertheless, since (20)
is satisfied, the spectrum of A − BB′Π∗ lies in the closed left
half-plane. Thus, our variational analysis leads to the following
result.

Proposition 3: Assume that there exists a symmetric matrix
Π such that A − BB′Π is a Hurwitz matrix and

(A − BB′Π)Σ + Σ(A − BB′Π)′ + B1B
′
1 = 0 (21)

holds. Then

u∗(t) = −B′Πx(t) (22)

is the solution to Problem 2.
We now draw a connection to some classical results due to

Jan Willems [26]. In our setting, minimizing (12) is equivalent
to minimizing

Jpower(u) + E{x′Qx} (23)

for an arbitrary symmetric matrix Q since the portion

E{x′Qx} = trace{QΣ}

is independent of the choice of K. On the other hand, mini-
mization of (23) for specific Q, but without the constraint that
E{xx′} = Σ, was studied by Willems [26] and is intimately
related to the maximal solution of the Algebraic Riccati Equa-
tion (ARE)

A′Π + ΠA −ΠBB′Π + Q = 0. (24)

Under the assumption that the Hamiltonian matrix

H =

[
A −BB′

−Q −A′

]

has no pure imaginary eigenvalues, Willems’ result states that
A − BB′Π is Hurwitz and that (22) is the optimal solution.

Thus, starting from a symmetric matrix Π as in Proposition 3,
we can define Q using

Q = −A′Π−ΠA + ΠBB′Π.

Since, by Willems’ results, (24) has at most one “stabilizing”
solution Π, the matrix in the proposition coincides with the
maximal solution to (24). Therefore, if our original problem has
a solution, this same solution can be recovered by solving for
the maximal solution of a corresponding ARE, for a particular
choice of Q. Interestingly, neither Π nor Q, corresponding to an
optimal control law for which (21) holds, are unique, whereas
K is. The computation and the uniqueness of the optimal gain
K will be discussed later on in Section IV-B.
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III. CONTROLLABILITY OF STATE STATISTICS

We now return to the “controllability” question of whether
there exist admissible controls to steer the controlled evolution

dx(t) = Ax(t)dt + Bu(t)dt + B1dw(t)

with x(0) = x0 a.s. (25)

to a target Gaussian distribution at the end of a finite interval
[0, T ], or, for the stationary case, whether a stationary Gaussian
distribution can be achieved by constant state feedback. From
now on, we assume that A ∈ Rn×n, B ∈ Rn×m, and B1 ∈
Rn×p, are time-invariant and that (A, B) is controllable. In view
of the earlier analysis, we search over controls that are linear
functions of the state, i.e.,

u(t) = −K(t)x(t), for t ∈ [0, T ] (26)

and where K is constant and A − BK Hurwitz for the station-
ary case.

A. Finite-Interval Steering by State-Feedback

We assume that E{x0} = 0 while E{x0x′
0} = Σ0. The state

covariance

Σ(t) := E {x(t)x(t)′}

of (3) with input as in (26) satisfies the Lyapunov differential
equation

Σ̇(t)=(A−BK(t))Σ(t)+Σ(t) (A−BK(t))′+B1B
′
1 (27)

and Σ(0) = Σ0. Regardless of the choice of K(t), (27) specifies
dynamics that leave invariant the cone of positive semi-definite
symmetric matrices

S+
n := {Σ|Σ ∈ Rn×n, Σ = Σ′ ≥ 0}.

To see this, note that the solution to (27) is of the form

Σ(t) = Φ̂(t, 0)Σ0Φ̂(t, 0)′ +

t∫

0

Φ̂(t, τ)B1B
′
1Φ̂(t, τ)′dτ

where Φ̂(t, 0) satisfies

∂Φ̂(t, 0)

∂t
= (A − BK(t)) Φ̂(t, 0)

and Φ̂(0, 0) = I , the identity matrix; i.e., Φ̂(t, 0) is the state-
transition matrix of the system ẋ(t) = (A − BK(t))x(t).

Assuming Σ0 > 0, it follows that Σ(t) > 0 for all t and finite
K(·). Our interest is in our ability to specify Σ(T ) via a suitable
choice of K(t). To this end, we define

U(t) := −Σ(t)K(t)′

we observe that U(t) and K(t) are in bijective correspondence
provided that Σ(t) > 0, and we now consider the differential
Lyapunov system

Σ̇(t) = AΣ(t) + Σ(t)A′ + BU(t)′ + U(t)B′. (28)

Reachability/controllability of a differential system such as (1),
or (28), is the property that with suitable bounded control input

u(t), or U(t), respectively, the solution can be driven to any
finite value. Interestingly, if either (1) or (28) is controllable, so
is the other. But, more importantly, when (28) is controllable,
the control authority allowed is such that steering from one
value for the covariance to another can be done by remaining
within the non-negative cone. This is stated as our first theorem
below.

Theorem 3: The Lyapunov system (28) is controllable iff
(A, B) is a controllable pair. Furthermore, if (28) is control-
lable, given any two positive definite matrices Σ0 and ΣT and
an arbitrary Q ≥ 0, there is a smooth input U(·) so that the
solution of the (forced) differential equation

Σ̇(t) = AΣ(t) + Σ(t)A′ + BU(t)′ + U(t)B′ + Q (29)

satisfies the boundary conditions Σ(0) = Σ0 and Σ(T ) = ΣT

and Σ(t) > 0 for all t ∈ [0, T ].
Proof: We first establish equivalence of the controllability

of (1) and (28). Define S(t) := e−AtΣ(t)e−A′t. In these new
“coordinates” (28) becomes

Ṡ(t) = e−AtBU(t)′e−A′t + e−AtU(t)B′e−A′t

and upon re-naming V (t) = e−AtU(t) as the input

Ṡ(t) = e−AtBV (t)′ + V (t)B′e−A′t. (30)

Assuming that (A, B) is a controllable pair, the system

Ẋ(t) = e−AtBV (t)′ (31)

where each column of V (t)′ serves as input that drives the
corresponding column of X(t) is clearly controllable since the
controllability grammian

G(T ) :=

T∫

0

e−AτBB′e−A′τdτ

is invertible. Thus, by a suitable choice of V (t) we can drive
(31) to any final state X(T ) and, thus, we can drive (30) to any
final state S(T ) = X(T ) + X(T )′.

The converse is straightforward. If (A, B) is not controllable,
then there is a matrix C such that Ce−AtB = 0. It follows
that CṠ(t)C ′ = 0 and therefore S(t) remains invariant when
restricted to a certain subspace.

We now want to establish that there is a control input U(t)
so that the solution to (29) remains within the positive cone and
satisfies the boundary conditions. We show this, and in fact, a
stronger argument for a special case where A is a shift matrix
and B is vectorial, and then explain why the general case can
be reduced to this one.

So, we now establish that there is a smooth (infinitely dif-
ferentiable) control input U(t) so that Σ(t) remains within
the positive cone and satisfies the boundary conditions. We
further claim (and show below) that such a control can always
be chosen to satisfy arbitrary starting and ending boundary
conditions U(0) and U(T ) of its own. We show this for the
special case where A is a shift matrix of size k. For specificity
in the steps of the proof, we subscribe the size of matrices in
the notation

Ak :=

[
0k−1 Ik−1

0 0′k−1

]
and Bk :=

[
0k−1

1

]
. (32)
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Here also, Ik denotes the identity matrix of size k, and 0k the
column vector of size k that has all entries zero. We will show
by induction on k that, for any k × k matrix Qk ≥ 0, the system

Σ̇(t)=AkΣ(t)+Σ(t)A′
k+BkUk(t)′+Uk(t)B′

k+Qk (33)

can be steered between positive-definite boundary values while
Σ(t), which is now k × k, remains positive-definite and the
control satisfies arbitrary starting and ending values. The state-
ment is true for k = 1. In this case, the system is in the form

Σ̇(t) = 2U1(t) + Q (34)

with all entries scalar. Positivity of Σ(t) dictates that

Σ0 + 2

t∫

0

U1(τ)dτ + Qt > 0 for all t

while the boundary conditions dictate that

Σ0 + 2

T∫

0

U1(τ)dτ + QT = ΣT .

Clearly, these can be met along with any boundary conditions
on U1(t) along with the smoothness requirement. An example
of such an interpolating function is Σ(t) = eh(t) > 0 where

h(t) = a0 + b0t +
aT − a0 − Tb0

T 2
t2

+
Tb0 + TbT − 2aT + 2a0

T 3
t2(t − T )

and

a0 = log(Σ0)

aT = log(ΣT )

b0 =
(2U1(0) + Q)

Σ0

bT =
(2U1(T ) + Q)

ΣT
.

The polynomial h(t) is in fact a Hermite polynomial satisfying

h(0) = a0, h(T ) = aT

ḣ(0) = b0, ḣ(T ) = bT .

It is easy to see that Σ(t) = eh(t) satisfies

Σ(0) =Σ0, Σ(T ) = ΣT

Σ̇(0) = 2U1(0) + Q

Σ̇(T ) = 2U1(T ) + Q

and U1(t) can be computed from (34).
We now assume that the claim is valid for k = n − 1 and

argue that it is also true for k = n. Let Π := ΠR(B)⊥ be the
projection onto the orthogonal complement of the range of B

ΠR(B)⊥ := I − B(B′B)
−1

B′

where I denotes identity matrix; when B is not full column-
rank, the inverse needs to be replaced by a pseudoinverse. Since
ΠB = 0, for any size of matrices, (29) implies that

ΠΣ̇(t)Π = ΠAΣ(t)Π + ΠΣ(t)A′Π + ΠQΠ. (35)

Conversely, if (35) holds, there exists a U(t) so that (29)
holds. To see this, let Sn denote the linear vector space of
symmetric matrices of dimension n and note that the map

gB : Sn → Sn : Y ,→ ΠR(B)⊥Y ΠR(B)⊥ (36)

is self-adjoint. Hence, the orthogonal complement of its range
is precisely its null space, which according to the lemma in
Appendix VI, is also the range of

fB : Rn×m → Sn : X ,→ BX ′ + XB′. (37)

But

Σ̇(t) − (AΣ(t) + Σ(t)A′ + Q)

when projected onto the range of gB is identically zero (since
(35) holds). Hence, (29) also holds for a suitable U(t). (In other
words, the extra directions that (35) does not already restrict can
be freely adjusted by a proper choice of U(t) since they are in
the range of fB .) The fact that we can always select U(t) to be
smooth, provided of course that Σ(t) is smooth, follows since
gB is linear. Also, in a similar manner as in the case where k =
1, we can select U(t) to satisfy arbitrary boundary conditions
U(0) and U(T ) of its own.

Let us now return to the induction argument. Equation (33)
for k = n, is equivalent to

ΠnΣ̇(t)Πn =ΠnAnΣ(t)Πn+ΠnΣ(t)A′
nΠn+ΠnQnΠn (38)

where

Πn =

[
In−1 0n−1

0′n−1 0

]
.

If we partition

Σ(t) =

[
Σ1(t) σ2(t)
σ2(t)′ σ3(t)

]

where Σ1 is (n − 1) × (n − 1), σ2 is a column vector, and σ3

a scalar, then (38) becomes
[
Σ̇1(t) 0n−1

0′n−1 0

]
=M

[
Σ1(t) 0n−1

σ2(t)′ 0

]
+

[
Σ1(t) σ2(t)
0′n−1 0

]
M ′

+

[
Q1 0n−1

0′n−1 0

]
(39)

where Q1 is the (n − 1) × (n − 1) block of Q and

M =ΠAn

=

[
0n−1 In−1

0 0′n−1

]

=

[
An−1 Bn−1

0′n−1 0

]

after we group its entries consistent with the partition of Σ. But
now, (39) is in the form

Σ̇1(t)=An−1Σ1(t)+Σ1(t)A
′
n−1+B1σ2(t)

′ + σ2(t)B
′
1 + Q1.
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Since the matrices in this one are of size (n − 1) × (n − 1), by
our hypothesis, we can find a control U(t) which will then iden-
tify with σ2(t). The boundary conditions for U(t) are dictated
by the boundary conditions for Σ(t). The final entry of Σ(t),
σ3(t) is not restricted in any way other than being in agreement
with the boundary conditions of Σ. The values are the two
ends, σ3(0) and σ3(T ) are admissible since Σ0 > 0 as well as
ΣT > 0. Thus, we can choose a smooth function for σ3(t) that
takes values large enough in (0, T ) so that Σ(t) > 0 throughout.

A final point is needed to complete the proof. For an arbitrary
controllable pair (A, B) it is well known that there exists a con-
stant K and a vector v such that (A − BK,Bv) is controllable
(Heymann’s lemma, see [27]). Further, K can be chosen so that
A − BK has all eigenvalues at the origin, hence it is equivalent
to a shift matrix. Thus, we can choose K and v such that, after a
similarity transformation,4 (A − BK,Bv) becomes (An, Bn)
(in the notation of (32)). The statement of the theorem is
invariant to similarity transformation as well as to action of
the feedback group A ,→ A − BK. Further, replacing B with
Bv corresponds to selecting a portion of the allowed control
authority, and we have already shown the theorem for this case
which is more stringent. This completes the proof. !

Finite-Interval Steering via External Input: It is interesting
to observe that, in the case when B = B1, steering the state-
covariance via state-feedback is equivalent to modeling the evo-
lution of state-covariances as due to an external input process.
Specifically, given the Gauss-Markov model

dx(t) = Ax(t)dt + Bdy(t)

and a path of state-covariances {Σ(t)|t ∈ [0, T ]} that satisfies
(29) for some U(t), the claim is that there is a suitable process
y(t) that can account for this state-covariance time-evolution.
Indeed, starting from the Gauss-Markov process

dξ(t) = (A − BK(t)) ξ(t)dt + Bdw(t)
dy(t) = −K(t)ξ(t)dt + dw(t) (40)

with E{ξ(0)ξ(0)′} = Σ0 and

K(t) = −U(t)′Σ(t)−1

we observe that

dξ(t) = Aξ(t)dt + Bdy(t).

Therefore ξ(t) and x(t) share the same statistics. In the con-
verse direction, the state covariance of (40) satisfies (29).

B. Assignability of Stationary State Covariances via
State-Feedback

In this section we consider the problem to maintain the state
process of a dynamical system at an equilibrium distribution
with a specified state-covariance Σ via static state-feedback

u(t) = −Kx(t). (41)

Due to linearity, the distribution will then be Gaussian. How-
ever, depending on the value of Σ this may not always possible.

4For (A, b) a controllable pair with A having all eigenvalues at the origin,
take T = [An−1b, . . . Ab, b] and define b1 := T−1b and A1 = T−1AT . It
is easy to see that b1 = [0, . . . 0, 1]′ while A1 is a shift matrix.

The precise characterization of admissible stationary state-
covariances is provided in Theorem 4 given below.

Assuming that A − BK is a Hurwitz matrix, which is nec-
essary for the state process {x(t)|t ∈ [0,∞)} to be stationary,
the (stationary) state-covariance Σ = E{x(t)x(t)′} satisfies the
algebraic Lyapunov equation

(A − BK)Σ + Σ(A − BK)′ = −B1B
′
1. (42)

Thus, the equation

AΣ + ΣA′ + B1B
′
1 + BX ′ + XB′ = 0

can be solved for X (43a)

which in particular can be taken to be X = −ΣK ′. The solv-
ability of (43a) is obviously a necessary condition for Σ to
qualify as a stationary state-covariance attained via feedback.
Alternatively, (43a) is equivalent to the statement that

AΣ + ΣA′ + B1B
′
1 ∈ R(fB). (43b)

The latter can be expressed as a rank condition [28, Proposition 1]
in the form

rank

[
AΣ + ΣA′ + B1B′

1 B
B 0

]
= rank

[
0 B
B 0

]
. (43c)

In view of Lemma 6, (43b) is equivalent to

AΣ + ΣA′ + B1B
′
1 ∈ N (gB). (43d)

Therefore, the conditions (43a)–(43d), which are all equivalent,
are necessary for the existence of a state-feedback gain K that
ensures Σ > 0 to be the stationary state covariance of (3).

Conversely, given Σ > 0 that satisfies (43) and X the so-
lution to (43a), then (42) holds with K = −X ′Σ−1. Provided
A − BK is a Hurwitz matrix, Σ is an admissible stationary
covariance. The property of A − BK being Hurwitz can be
guaranteed when (A − BK,B1) is a controllable pair. In turn,
controllability of (A − BK,B1) is guaranteed when R(B) ⊆
R(B1). Thus, we have established the following.

Theorem 4: Consider the Gauss-Markov model (3) and as-
sume that R(B) ⊆ R(B1). A positive-definite matrix Σ can be
assigned as the stationary state covariance via a suitable choice
of state-feedback if and only if Σ satisfies any of the equivalent
statements (43a)–(43d).

Interest in (43d) was raised in [29] where it was shown
to characterize state-covariances that can be maintained by
state-feedback. On the other hand, conditions (43a)–(43c) were
obtained in [28] and [30], for the special case when B = B1,
as being necessary and sufficient for a positive-definite matrix
to materialize as the state covariance of the system driven by a
stationary stochastic process (not-necessarily white). It should
be noted that in [28], the state matrix A was assumed to be
already Hurwitz so as to ensure stationarity of the state process.
However, if the input is generated via feedback as above, A does
not need to be Hurwitz whereas, only A−BK needs to be.

Assignability via External Input: We now turn to the ques-
tion of which positive definite matrices materialize as state
covariances of the Gauss-Markov model

dx(t) = Ax(t)dt + Bdy(t) (44)
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with (A, B) controllable and A Hurwitz, when driven by some
stationary stochastic process y(t). The characterization of ad-
missible state covariances was obtained in [28] and amounts to
the condition that

AΣ + ΣA′ ∈ R(fB)

which coincides with the condition that Σ can be assigned as in
Theorem 4 by state-feedback. As in Section III-A, a feedback
system can be implemented, separate from (44), to generate a
suitable input process to give rise to Σ as the state covariance
of (44). Specifically, let X be a solution of

AΣ + ΣA′ + BX ′ + XB′ = 0 (45)

and

dξ(t) = (A − BK)ξ(t)dt + Bdw(t)

dy(t) = −Kξ(t)dt + dw(t)

with

K =
1

2
B′Σ−1 − X ′Σ−1. (46)

Trivially

dξ(t) = Aξ(t)dt + Bdy(t)

and therefore, ξ(t) shares the same stationary statistics with
x(t). But if S = E{ξ(t)ξ(t)′}

(A − BK)S + S(A − BK)′ + BB′ = 0

which, in view of (45), (46), is satisfied by S = Σ.

IV. NUMERICAL COMPUTATION OF OPTIMAL CONTROL

Having established feasibility for the problem to steer the
state-covariance to a given value at the end of an interval, it is of
interest to design efficient methods to compute the optimal con-
trols of Section II. As an alternative to solving the generalized
Schrödinger system (11a)–(11d), we formulate the optimiza-
tion as a semidefinite program in Section IV-A, and likewise
for the infinite-horizon problem in Section IV-B. See [31]
for other applications of semidefinite programming in control
theory.

A. Finite Interval Minimum Energy Steering of State Statistics

We are interested in computing an optimal choice for feed-
back gain K(t) so that the control signal u(t) = −K(t)x(t)
steers (3) from an initial state-covariance Σ0 at t = 0 to the
final ΣT at t = T . The expected control-energy functional

J(u) := E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt

⎫
⎬

⎭

=

T∫

0

trace (K(t)Σ(t)K(t)′) dt (47)

needs to be optimized over K(t) so that (27) holds as well as
the boundary conditions

Σ(0) = Σ0, and Σ(T ) = ΣT . (48a)

If instead we sought to optimize over U(t) := −Σ(t)K(t)′

and Σ(t), the functional (47) becomes

J =

T∫

0

trace
(
U(t)′Σ(t)−1U(t)

)
dt

which is jointly convex in U(t) and Σ(t), while (27) is re-
placed by

Σ̇(t)=AΣ(t)+Σ(t)A′+BU(t)′+U(t)B′ + B1B
′
1 (48b)

which is now linear in both. Thus, finally, the optimization can
be written as a semi-definite program to minimize

T∫

0

trace (Y (t)) dt (48c)

subject to (48a), (48b) and
[

Y (t) U(t)′

U(t) Σ(t)

]
≥ 0. (48d)

This can be solved numerically after discretization in time via
cvx ([32]) and a corresponding (suboptimal) gain recovered as
K(t) = −U(t)′Σ(t)−1. The constraints imposed by discretiza-
tion in time of (48b), e.g., using an Euler scheme, have a block-
sparse structure and therefore it will be advantageous to develop
customized optimization algorithms for large problems.

B. Minimum Energy Control to Maintain Stationary
State Statistics

As noted earlier, a positive definite matrix Σ is admissible as
a stationary state-covariance provided (43a) holds for some X
and A + BX ′Σ−1 is a Hurwitz matrix. The condition R(B) ⊆
R(B1) is a sufficient condition for the latter to be true always,
but it may be true even if R(B) ⊆ R(B1) fails (see the example
in Section V). Either way, the expected input power (energy
rate) is

E{u′u} = trace(KΣK ′)
= trace(X ′Σ−1X) (49)

expressed in either in K, or X . Thus, assuming that R(B) ⊆
R(B1) holds, and in case (43a) has multiple solutions, the
optimal constant feedback gain K can be obtained by solving
the convex optimization problem

min {trace(KΣK ′)| (43a) holds} . (50)

Remark 5: In case R(B) ̸⊆ R(B1), the condition that A −
BK be Hurwitz needs to be verified separately. If this fails,
we cannot guarantee that Σ is an admissible stationary state-
covariance that can be maintained with constant state-feedback.
However, it is always possible to maintain a state-covariance
that is arbitrarily close. To see this, consider the control

Kϵ = K +
1

2
ϵB′Σ−1
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for ϵ > 0. Then, from (42)

(A − BKϵ)Σ + Σ(A − BKϵ)
′ = −ϵBB′ − B1B

′
1

≤ −ϵBB′.

The fact that A − BKϵ is Hurwitz is obvious. If now Σϵ is the
solution to

(A − BKϵ)Σϵ + Σϵ(A − BKϵ)
′ = −B1B

′
1

the difference ∆ = Σ− Σϵ ≥ 0 and satisfies

(A − BKϵ)∆ + ∆(A − BKϵ)
′ = −ϵBB′

and hence is of o(ϵ).

V. EXAMPLES

Example 1: Consider particles that are modeled by

dx(t) = v(t)dt + dw(t)

dv(t) = u(t)dt.

Here, u(t) is the control input (force) at our disposal, x(t) rep-
resents position and v(t) velocity (integral of acceleration due
to input forcing), while w(t) represents random displacement
due to impulsive accelerations. The purpose of the example is
to highlight a case where the control is handicapped compared
to the effect of noise. Indeed, the displacement w(t) is directly
affecting the position while the control effort needs to be
integrated before it impacts the position of the particles.

Another interesting aspect of this example is that R(B) ̸⊆
R(B1) since B = [0, 1]′ while B1 = [1, 0]′. If we choose

Σ1 =

[
1 −1/2

−1/2 1/2

]
(51)

as a candidate stationary state-covariance, it can be seen that
(43a) has a unique solution X giving rise to K = [1, 1] and a
stable feedback since A − BK is Hurwitz.

We wish to steer the spread of the particles from an initial
Gaussian distribution with Σ0 = 2I at t = 0 to the terminal
marginal Σ1 at t = 1, and from there on, since Σ1 is an ad-
missible stationary state-covariance, to maintain with constant
state-feedback control.

Fig. 1 displays typical sample paths in phase space as func-
tions of time. These are the result of using the optimal feedback
strategy derived following (48c) over the time interval [0, 1].
The optimal feedback gains K(t) = [k1(t), k2(t)] are shown in
Fig. 2 as functions of time over the interval [0, 1], where the
state-covariance transitions to the chosen admissible steady-
state value Σ1. The corresponding cost is J(u) = 9.38. Past
the point in time t = 1, the state-covariance of the closed-loop
system is maintained at this stationary value in (51). Fig. 3
shows representative sample paths in phase space under the
now constant state feedback gain K = [1, 1] over time window
[1, 5]. Finally, Fig. 4 displays the corresponding control action
for each trajectory over the complete time interval [0, 5],
which consists of the “transient” interval [0, 1] to the target
(stationary) distribution and the “stationary” interval [1, 5].

Example 2: Consider a second-order process with random
acceleration (e.g., modeling the dynamics of inertial particles)

Fig. 1. Finite-interval steering in phase space (Example 1).

Fig. 2. Optimal feedback gains in finite-interval steering.

Fig. 3. Steady state trajectories in phase space (Example 1).

where the control is again “handicapped” by the lag in actuation
dynamics. More specifically, consider

dx(t) = v(t)dt

dv(t) = xc(t)dt + dw(t)

dxc(t) = −xc(t)dt + u(t)dt. (52)

Here, xc is the 1-dimensional state/output of the actuator and
represents force, while u(t) represents the control signal to the
actuator. We (arbitrarily) select

Σx,v =

[
7
4 0
0 3

4

]
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Fig. 4. Control inputs for steering over [0,1] and for steady state operation for
times ≥1 (Example 1).

as a desirable steady-state covariance for the projection of the
process onto the phase-plane of the particle dynamics (x, v).
(The additional component xc corresponding to the actuator is
not shown.) First, we need to determine whether Σx,v is indeed
an admissible steady-state covariance and, if so, to determine an
optimal choice for the constant state-feedback gain that ensures
the state is distributed accordingly. To this end, we seek a choice
of a variance Σxc for xc and of a cross-covariance Y between
xc and (x, v) so that

Σ =

[
Σx,v Y
Y ′ Σxc

]
> 0

is a admissible stationary state-covariance for (52). For this to
be true, we need to verify that (43c) holds with

A =

⎡

⎣
0 1 0
0 0 1
0 0 −1

⎤

⎦ , B =

⎡

⎣
0
0
1

⎤

⎦ , B1 =

⎡

⎣
0
1
0

⎤

⎦ .

This is indeed the case for Y = [−3/4 − 1/2]′, Σxc = 3/4.
For the above choice of Σ, the optimal gain and power are

found to be K = [1 3 2] and J = 5/2 by solving (50) using e.g.,
[32]. For this solution, stationary state trajectories, projected
onto the (x, v)-coordinates are now displayed in Fig. 6.

As before the steering between specified Gaussian probabil-
ity densities over an interval [0, 1] follows Section IV-A. For
completeness, we display in Fig. 5 sample paths corresponding
to the transition between marginals with covariance matrices
Σ0 = 3I to Σ1 = Σ, respectively. The figure shows the projec-
tion onto the (x, v)-component of the process that corresponds
to position and velocity.

APPENDIX

Lemma 6: Consider the maps fB and gB defined in (36),
(37). The range of fB coincides with the null space of gB , that is

R(fB) = N (gB).

Proof: It is immediate that

R(fB) ⊆ N (gB).

Fig. 5. Finite-interval steering in phase space (Example 2).

Fig. 6. Steady state trajectories in phase space (Example 2).

To show equality it suffices to show that (R(fB))⊥ ⊆ N (gB)⊥.
To this end, consider

M ∈ Sn ∩ (R(fB))⊥ .

Then

trace (M(BX + X ′B′)) = 0

for all X ∈ Rm×n. Equivalently, for Z = MB ∈ Rn×m,
trace(ZX) + trace(X ′Z ′) = 0 for all X . Thus, trace(ZX) =
0 for all X and hence Z = 0. Since MB = Z = 0, then
MΠR(B) = 0 or, equivalently, MΠR(B)⊥ = M . Therefore
ΠR(B)⊥MΠR(B)⊥ = M , i.e., M ∈ (R(gB)). Therefore

(R(fB))⊥ ⊆ (R(gB)) = N (gB)⊥

since gB is self-adjoint, which completes the proof. !
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