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On the Computation of Switching Surfaces in Optimal
Control: A Gröbner Basis Approach

Uli Walther, Tryphon T. Georgiou, Fellow, IEEE, and Allen Tannenbaum

Abstract—A number of problems in control can be reduced to
finding suitable real solutions of algebraic equations. In partic-
ular, such a problem arises in the context of switching surfaces in
optimal control. Recently, a powerful new methodology for doing
symbolic manipulations with polynomial data has been developed
and tested, namely the use of Gröbner bases. In this paper, we apply
the Gröbner basis technique to find effective solutions to the clas-
sical problem of time-optimal control.

Index Terms—Computation algebraic geometry, Gröbner bases,
optimal control, switching surfaces.

I. INTRODUCTION

OPTIMAL control is one of the most widely used and
studied methodologies in modern systems theory. As is

well known, time-optimal problems lead to switching surfaces
which typically are defined or may be approximated by poly-
nomial equations [1], [10], [14]. The problem of determining
on which side a given trajectory is in relation to the switching
surface is of course key in developing the control strategy.
Since the complexity of the switching surfaces can grow to
be quite large, this may become quickly a formidable task.
Here is where new techniques from computational algebraic
geometry may become vital in efficiently solving this problem.
Thus, while there have been a number of interesting moread
hoc approaches to the computation of switching surfaces (see
[1], [10], [14], and the references therein), we feel that the
techniques presented here can systematize the calculations.

More precisely, in this paper we would like to introduce
Gröbner bases in the context of optimal control which will
reduce the switching surface problem to a combinatorial one.
Gröbner bases have already been employed in a number of
applications in robotics and motion planning [5], [16]. Here,
we would like to propose them as a potentially powerful tool in
optimal control. In addition to the computations of switching
surfaces, this paper is intended to be of a tutorial nature.
Our main purpose is to introduce a fundamental technique in
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computational geometry in order to solve an important problem
in systems.

The contents of this paper are as follows. In Section II, we
give the relevant control background. Section III introduces
the basic notions of algebraic geometry, elimination theory, and
Gröbner bases. In Section IV, these notions are applied to indi-
cate an explicit solution to the time optimal control problem. In
Section V, we make some conclusions and indicate the future
course of this work.

II. SWITCHING SURFACES INOPTIMAL CONTROL

We focus on the classical problem of time-optimal control
for a system consisting of a chain of integrators. It is standard
that for such a system, minimum-time optimal control with a
bounded input, leads to “bang-bang” control with at most
switchings— being the order of the system. The control al-
gorithm usually requires explicit determination of the switching
surfaces where the sign of the control input changes. Explicit ex-
pressions for switching strategy are in all but the simplest cases
prohibitively complicated (e.g., see [10] and [14]).

Consider the linear system with saturated control input

where

and as objective to drive the system from an initial condition
to a target , in minimum time . In this case, the

Hamiltonian is

The costate equations become

(1)

while the optimal is given by .
A closed-form expression for the optimal as a function

of can be worked out (e.g., [10], see also [14]). Such an ex-
pression in fact tests the location of the state vector with regard
to a switching surface. Bang-bang switching in practice is not
desirable because of the incapacitating effect of noise and chat-
tering. This issue has been addressed by a number of authors
(see [14] and the references therein) and will not be discussed
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herein. While various remedies have been proposed and applied,
the basic issue of knowing the switching surfaces is still instru-
mental in most methodologies.

The approach we take herein is algebraic in nature. The
idea is to test directly whether a particular switching strategy
is feasible. There are only two possible strategies where
the input alternates between and , taking the values

, or , respectively. In each
case, taking into account the maximal number of switchings,
one can easily derive an expression for the final value of the
state as a function of the switching times. This expression is
then analyzed against the requirement of a given .

For this standard time-optimal control problem, it is well
known and easy to see by analyzing (1) that, in general, there
are no singular intervals, and that the control input switches
at most three times. Designate by and , the length of
the successive intervals where stays constant. Any set of
initial and final conditions can be translated to having
and a given value for , and this is the setting from here on.
The particular choice (among the only two possible ones)

for
for
for

drives the chain of integrators for the origin to the final point
given by

(2)

It turns out that the selection between alternating values
or, for the optimal input

depends on whether the equations in (2) have a solution
for a specified final condition .

III. COMPUTATIONAL ALGEBRAIC GEOMETRY AND GRÖBNER

BASES

Algebraic geometry is concerned with the properties of geo-
metric objects defined as the common zeros of systems of poly-
nomials that are calledvarieties. As such, it is intimately related
to the study of rings of polynomials and the associated ideal
theory [8], [6].

More precisely, let denote a field (e.g., the fields of com-
plex numbers , real numbers , or rational numbers ). Over
an algebraically closed field such as, one may show that affine
geometry (the study of subvarieties of affine space) is equiv-
alent to the ideal theory of the polynomial ring
(see [8], especially the discussion of the Hilbert Nullenstellen-
satz; see in particular [5, p. 34, Th. 1, 2 pp. 168–170]).

Clearly, the ability to manipulate polynomials and to under-
stand the geometry of the underlying varieties can be very im-
portant in a number of applied fields (e.g., the kinematic map in

robotics is typically polynomial; see also [15], [16], and the ref-
erences therein for a variety of applications of geometry to sys-
tems theory). We show now how the problem in optimal control
discussed above may be reduced to a problem in affine geom-
etry.

Until recently applications of algebraic geometry to prac-
tical fields of mathematics was limited because despite its vast
number of deep results, very little could actually be effectively
computed. Because of this, it has not lived up to its potential
to have a major impact on more applied fields. The advent of
Gröbner baseswith powerful fast computers has largely reme-
died this situation. Gröbner bases were used first by F. Macaulay
in his theory of modular systems; he computed with them what
is known today as Hilbert functions of Artinian modules. In the
1960s, B. Buchberger defined and named them in honor of his
doctoral advisor W. Gröbner. Buchberger also established basic
existence theorems and provided an algorithm for computing
them, later named after him. They were also essentially discov-
ered by H. Hironaka at around the same time in connection with
his work on resolution of singularities. We follow the treatments
in [3], [5], and [2].

The method of Gröbner bases helps one to treat a number
of key problems for reasonably sized systems of polynomial
equations. Among these are the following (see [5, p. 47]).

1) Find all common solutions in of a system of polyno-
mial equations

2) Determine the (finite set of) generators of a given poly-
nomial ideal.

3) For a given polynomial and an ideal , determine
whether .

4) Let , be a finite set of ra-
tional functions. Suppose is defined parametri-
cally as , . Find the
system of polynomial equations which define the variety

.

A. Gröbner Bases

Gröbner bases generalize the usual Gauss reduction from
linear algebra, the Euclidean algorithm in , and the simplex
algorithm from linear programming.

Motivated by the long division in the polynomial ring of one
variable, one introduces an order on the monomials in polyno-
mial rings of several variables in order to execute
a division type algorithm.

Let denote the set of -tuples of nonnegative in-
tegers. Let . For , and set

. Let denote a total (linear) ordering on
(this means that exactly one of the following statements is

true: , , or ). Moreover we say that
if . Then, amonomial orderingon is a total ordering
such that

1) if and , then ;
2) is awell-ordering, i.e., every nonempty subset of

has a smallest element.
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One of the most commonly used monomial orderings is the one
defined by the ordinary lexicographical order on . Re-
call that this means if the leftmost nonzero element of

is positive. This ordering is also calledelimination order
with .

We now fix a monomial order on . Then themulti-degree
of an element [denoted by
multideg ] is defined to be the maximumsuch that .
The leading termof [denoted by LT( )] is the monomial

We now state the following central definition.
Definition 1: A finite set of polynomials of an

ideal is called aGröbner basisif the ideal
generated by LT( ) for is equal to the ideal
generated by the leading terms of all the elements of, that is

We emphasize the finiteness of a Gröbner basis.
We remind the reader that the ideal generated by a set of el-

ements in a ring, is the set of all their linear combinations with
coefficients taken from the ring. The crucial result on the exis-
tence and key property of Gröbner bases is the following.

Theorem 1: Every nontrivial ideal has a Gröbner basis.
Moreover, any Gröbner basis ofis a generating set of.

TheBuchberger algorithmis a finite algorithm that takes in a
finite set of generators for the idealin and re-
turns a Gröbner basis for. At its heart lies the idea of canceling
leading terms to obtain polynomials with smaller leading terms,
similar to the Euclidean algorithm in . A nice exposition can
be found in [5, p. 86].

Notice that the use of Gröbner bases reduces the study of
generators of polynomial ideals (and so affine algebraic geom-
etry) to that of the combinatorial properties of monomial ideals.
Therein lies the power of this method assuming that one can
easily compute a Gröbner basis (see [3] and [5]).

In what follows, we will indicate how Gröbner basis tech-
niques may be used to solve polynomial equations.

B. Elimination Theory

Elimination theory is a classical method in algebraic geom-
etry for eliminating variables from systems of polynomial equa-
tions and as such is a key method in finding their solutions.
Gröbner bases give a powerful method for carrying out this
procedure systematically. We work over an algebraically closed
field in this section.

More precisely, let be an ideal. Theth
elimination idealof is defined to be

Suppose that is generated by . Then, is the set
of all consequences of which do not in-
volve the variables . Thus, elimination of

amounts to finding generators of. This is where the Gröbner
basis methodology plays the key role.

Theorem 2 (Elimination Theorem):Let
be an ideal, and a Gröbner basis for with respect to the
lexicographical order with . For every

, set

(i.e., select the elements ofnot involving ). Then,
is a Gröbner basis of . (Here, we take .)

A proof can be found in [5, p. 113]. Note that, for ,
is also a Gröbner basis for .

Thus, using Theorem 2, we may eliminate the variables one at
a time (or all but at once) until we are left with a polynomial
in , which we may solve. We must of course then extend the
solution to the original system. For an ideal
we set

Again, this can be done in a systematic manner via the following
result.

Theorem 3 (Extension Theorem):Let be
generated by . Let be the first elimination ideal
of as defined above. For each , write as

lower order terms in

where is the largest exponent of . Suppose that
. If there exists somesuch that

, then we may extend to a
solution of .

The theorem gives a systematic way of checking whether par-
tial solutions of may be extended to solutions of. A detail
discussion and proof can be found in [5, p. 115].

This ends our brief discussion of Gröbner bases and elimi-
nation theory. We should note that there are symbolic imple-
mentations of this methodology on such standard packages as
Mathematica, Maple, or Macaulay [11].

IV. COMPUTATION OF SWITCHING SURFACES

In this section, we indicate the solution to the time optimal
control problem formulated in Section II. Even though we
work out the case of third-order system, the method we propose
is completely general, and should extend in a straightforward
manner to any number of switchings.

In what follows below, we set

and
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A. Complex Solutions

In this subsection, we solve the complex version of the
switching problem, namely, the following.

Problem 1: Given is the system of equations

(3)

We are interested in solving the following question: if
, does the system have complex solutions ? The answer

will be yes.
To illustrate the use of the Macaulay symbolic program in

computational algebraic geometry, we will put in some of the
relevant scripts. Let us callthe ideal in gen-
erated by the three forms above. As a first step, let us compute
a Gröbner basis for. We introduce the elimination order with

. Here is a Macaulay command se-
quence to accomplish this.

The result is the following seven forms, made visible by

(4)

(5)

(6)

(7)

(8)

(9)

(10)

We read these equations as polynomials in with para-
metric coefficients that depend on .

At this point we remark that the Gröbner basis would look
just the same if we had considered the extension of the ideal to
the ring of polynomials over or . This is true in general.

Now, if the three forms from Problem 1 have a solution, then
certainly the quartic given by (4) above, also must have a solu-
tion, whatever the base field. Over this will have a solution
for sure if the leading form is nonzero, which is the case if and
only if .

Moreover, if the quartic (4) does indeed have a solution over
(i.e., that makes the equation true for chosen
), then the Extension Theorem tells us, in view of (9) and(10),

that we can find and then in solving the entire system over
.
Let us continue to investigate the question whether we can

find such that the quartic holds true in the case where
. In that case, we need to add to the generators

of our ideal, and recompute the Gröbner basis. Here is the script

In this case the output is

Not surprisingly, the quartic became a cubic when we set the
leading coefficient to zero. As before, the cubic will have a com-
plex root as long as the leading coefficient is nonzero.
Also, as before, the two last equations ensure that each solution
for may be extended to solving the system.

What happens if ? Let us add this relation and recom-
pute a Gröbner basis



538 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001

which leads to

A somewhat surprising thing happened: when we killed the
leading coefficient of the cubic, the entire polynomial died. Let
us factor as much as we can in the output

One can see that this system has, for example, the solution
.

We conclude that

1) the system does always have a complex solution;
2) if , and , the system has real

solutions;
3) if , and , the system has

real nonnegative solutions.

B. Real Positive Solutions

Now that we have established the existence of complex solu-
tions for any parameter set let us search for the
existence of real nonnegative solutions for real parameters. This
will solve our switching control problem. Thus, as a second step
we will answer the following.

Problem 2: Given are . Does there exist a non-
negative solution vector for the system (3) in the sense
that ?

Thus, if there is a positive solution , then the value of
the optimal control assumes the values succes-
sively, and in particular, the present value for the optimal con-
trol is . If no positive solution exists then the present
value of the optimal control is .

The techniques we will use are computations of suitable
Gröbner bases together with an algorithm from real alge-
braic geometry calledSturm sequences. Sturm sequences
are associated to polynomials as follows. Suppose is a
single variable polynomial with real coefficients. We define

, , and then recursively by
for , where represents the

quotient and the respective remainder each time. Here,
we demand that . So, is up to sign the
remainder of Euclidean division of by .

Theorem 2 [4, Th. 1.2]:Let be real numbers which are
not roots of . Define a function for by counting
the number of sign changes in the sequence , drop-
ping all zeros. Then is the number of distinct zeros
of between and .

The significance of the theorem for us lies in the fact that
although it does not specify the location of the zeros it gives a
qualitative answer, which as pointed out above is all we need to
know about for the purpose of dynamical steering.

As a first step, we compute a Gröbner basis for the three poly-
nomials in (3) under an elimination order with

. Note the switch of the variablesand in the or-
dering. One gets

(11)

(12)

(13)

(14)

This suggests that one ought to solve (12) or (13) for

(15)

(16)

respectively. This, of course, is assuming thatand
are not zero.

It is easy to check that these solutions forare not contra-
dicting each other. In fact, they differ by a multiple of the quartic
in , given in (11).

One sees that implies . These
relations simplify the system to

(17)

This has the solutions , arbitrary, . Since
is actually equivalent to , testing

the latter conditions is sufficient to find out whether . In
that case, nonnegative solutions will exist precisely whenis
nonnegative. This covers the case .

If , our system takes the form

(18)
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Since are known, it is easy to check the consistency of
this system, by solving each of the three middle equations for
and testing the vanishing of the first. If consistency fails, we are
not in the case .

If the system is consistent, one needs to check whether the
obtained solutions for are nonnegative. If that is so, set

and otherwise , finishing the case .
In a similar fashion, one does get the case . If ,

one gets

(19)

which is quite similar to the case . One first checks
whether the first relation between the parameters holds. Then
one solves the next three equations forand then solves the last
relation for . If the system is consistent we have . If
turn out to be nonnegative set and otherwise .

This rules out all cases of vanishing variables. In order to
predict when strictly positive solutions exist, we are reduced to
the cases , and .

Let us consider first the case , . Then,
we have a Gröbner basis

It becomes obvious that in order to have a nonnegative solution,
we need

which simplifies to the two conditions ,
. These are conditions that can easily be

checked for given and determine existence of a nonneg-
ative solution of the system (3).

Now, let us move to the most general situation .
In particular, then. Theorem 2 asserts that the Sturm
sequence corresponding to

counts the zeros of this quartic. In particular, there will be pos-
itive solutions for just if and only if since
zero is not a root of the quartic [note that

].
Now, from (9)

This means that for positive, is positive as long as
. This parabola has roots in

where . Since the parabola has positive
leading coefficient, for if ,
and for all if .

Similarly

Let with . Hence, if
and only if if , and for all

if .
We conclude that in order to have all positive at the

same time we need to satisfy the following conditions all at the
same time:

or

or

which can be checked with Sturm sequences.

C. The Switching Algorithm

These results pave the way for the following algorithm. The
algorithm has as input the current state of the system
and as output the recommended value forfor time optimal
control, either or . The origin is then approached by iterated
repetition of the algorithm.

Algorithm 3 (Dynamical Steering of the System to the
Origin): Suppose our system is in the state .

Case 1) (Check whether .) Test the consistency of the
system (18). If consistent solve it; if set

, otherwise set . If the system (18) is
not consistent, go to the next case.

Case 2) (Check whether .) Test the consistency of the
system (19). If consistent solve it; if set

, otherwise set . If the system (19) is
not consistent, go to the next case.

Case 3) , . (Check whether .) If ,
set for s, at which point the system will have
reached the origin. If , let for s.

Case 4) , ; all . If
and , let . Else, let .

Case 5) , all . Set ,
, . Let

and compute the corresponding Sturm
sequence . Let if

and else. Let if
and else. Let .

Using the Sturm sequence compute the number of
solutions of in . If this number is positive, set

and, otherwise, set .



540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001

V. CONCLUSION

This paper has provided a general approach to the switching
control strategy in time-optimal control. The key idea is to use
the Gröbner basis technique which allows one to algorithmically
work with systems of polynomials in several variables. These re-
sults are quite general, and we expect that this approach will lead
to a complete solution of the problem of identifying switching
surfaces, in the sense that we will be able to provide a symbolic
computer program which will allow one to solve the problem for
a reasonable number of variables (with “reasonable” a function
of the computing power of the machine doing the computation).

Gröbner bases are the key tools of computational algebraic
geometry. As such, they are expected to have an ever increasing
role in the area of systems and control, and in particular, in prob-
lems where the solutions form a semialgebraic set whose de-
scription hinges upon solving simultaneous polynomial equa-
tions and inequalities. Specifically, such areas, in our view (be-
sides time-optimal control and motion planning in robotics, as
mentioned earlier) include the characterization of minimal order
models from covariance data [12], [13], the classical output
feedback problem, decentralized control, and nonlinear control.
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