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On the Computation of Switching Surfaces in Optimal
Control: A Grobner Basis Approach

Uli Walther, Tryphon T. GeorgiouFellow, IEEE and Allen Tannenbaum

Abstract—A number of problems in control can be reduced to computational geometry in order to solve an important problem
finding suitable real solutions of algebraic equations. In partic- jn systems.

ular, such a problem arises in the context of switching surfaces in The contents of this paper are as follows. In Section 1I, we

optimal control. Recently, a powerful new methodology for doing . . .
symbolic manipulations with polynomial data has been developed 91V€ the relevant control background. Section Il introduces

and tested, namely the use of Grébner bases. In this paper, we apply the basic notions of algebraic geometry, elimination theory, and
the Grobner basis technique to find effective solutions to the clas- Grobner bases. In Section 1V, these notions are applied to indi-

sical problem of time-optimal control. cate an explicit solution to the time optimal control problem. In
Index TermS_Computation a|gebraic geometry, Grobner bases’ Section V, V_VG make some C0nC|USIOnS and |nd|Cate the future
optimal control, switching surfaces. course of this work.

| INTRODUCTION Il. SWITCHING SURFACES INOPTIMAL CONTROL

PTIMAL control is one of the most widely used and We focus on th_e c_:lassmal prqblem of t|me-opt|mal control
f%r a system consisting of a chain of integrators. It is standard

studied methodologies in modern systems theory. Astb tf h t . i timal trol with
well known, time-optimal problems lead to switching surfac atfor such a system, rr1|n|mum- |m:e optimal controt with a
pounded input, leads to “bang-bang” control with at most

hich typicall defined b imated b ly==""""" )
WhICh typically are cefined or may be approximated by po witchings—n being the order of the system. The control al-

nomial equations [1], [10], [14]. The problem of determining" . . - S o

on which side a given trajectory is in relation to the switchin orithm usually requires explicit determlnatlon of the swﬂghmg

surface is of course key in developing the control strate 'rfaqeswhere the s_lgnofthe contro_l mputchange_s. Explicitex-

Since the complexity of the switching surfaces can grow g<ooonS forswnchmg strategy are in all but the simplest cases
plexity 9 9 Rrohlbmvely complicated (e.g., see [10] and [14]).

be quite large, this may become quickly a formidable tas Consider the i ¢ ith saturated control input
Here is where new techniques from computational algebraic onsiderthe finear system with saturated control inpu

geometry may become vital in efficiently solving this problem. i
Thus, while there have been a number of interesting radre

hoc approaches to the computation of switching surfaces (see Z2(t) =23
[1], [10], [14], and the references therein), we feel that the .
techniques presented here can systematize the calculations. @3(t)

lYIore pfec'se'Y' in this paper we WOUld like to mt_roduc.eomd as objective to drive the system from an initial condition
Grobner bases in the context of optimal control which W|IJC(O) to a targetz(¢;), in minimum timet ;. In this case, the
reduce the switching surface problem to a combinatorial ON&amiltonian is P ! '

Grdbner bases have already been employed in a humber of

applications in robotics and motion planning [5], [16]. Here, H =14 A\z2 + doxs + Azu.
we would like to propose them as a potentially powerful tool in

optimal control. In addition to the computations of switchingd he costate equations become

surfaces, this paper is intended to be of a tutorial nature.

(
(

u(t), where|u(t)| < 1

Our main purpose is to introduce a fundamental technique in A(t) =0
Aa(t) = =M1 (#)
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herein. While various remedies have been proposed and appliethotics is typically polynomial; see also [15], [16], and the ref-
the basic issue of knowing the switching surfaces is still instrerences therein for a variety of applications of geometry to sys-
mental in most methodologies. tems theory). We show now how the problem in optimal control
The approach we take herein is algebraic in nature. Thescussed above may be reduced to a problem in affine geom-
idea is to test directly whether a particular switching strategtry.
is feasible. There are only two possible strategies whereUntil recently applications of algebraic geometry to prac-
the input alternates betweepl and —1, taking the values tical fields of mathematics was limited because despite its vast
+1, =1, 41, ..., or =1, +1, —1, ..., respectively. In each number of deep results, very little could actually be effectively
case, taking into account the maximal number of switchingspmputed. Because of this, it has not lived up to its potential
one can easily derive an expression for the final value of the have a major impact on more applied fields. The advent of
state as a function of the switching times. This expression@&dbner basesvith powerful fast computers has largely reme-
then analyzed against the requirement of a givén ). died this situation. Grébner bases were used first by F. Macaulay
For this standard time-optimal control problem, it is welin his theory of modular systems; he computed with them what
known and easy to see by analyzing (1) that, in general, thésé&nown today as Hilbert functions of Artinian modules. In the
are no singular intervals, and that the control input switchd960s, B. Buchberger defined and named them in honor of his
at most three times. Designate by t> ands, the length of doctoral advisor W. Grdobner. Buchberger also established basic
the successive intervals when¢t) stays constant. Any set of existence theorems and provided an algorithm for computing
initial and final conditions can be translated to havir{@) = 0 them, later named after him. They were also essentially discov-
and a given value far (¢ ), and this is the setting from here onered by H. Hironaka at around the same time in connection with
The particular choice (among the only two possible ones)  his work on resolution of singularities. We follow the treatments
in [3], [5], and [2].

+1, forO<t¢<t The method of Grébner bases helps one to treat a number
w(t) = ¢ —1, fort; <t <t +1 of key problems for reasonably sized systems of polynomial
+1, forty +t; St <ty ittty =ity equations. Among these are the following (see [5, p. 47]).
drives the chain of integrators for the origin to the final point 1) Find all common solutions ik™ of a system of polyno-
z(t;) given by mial equations
xa(ty) =t1 —ta + 3 Jil@s, ooy @) = = ful@r, oo, @) = 0.
t] t3 t3
zo(ty) = 5 Thir— 5 —tats + 5 +ish 2) Determine the (finite set of) generators of a given poly-
3 3 3 5 5 5 5 nomial ideal.
z1(ty) = b B + ts + i to + i ts + 5] t — 5] ts 3) For a given polynomialf and an ideall/, determine
6,6 6 2 2 2 2 whetherf € I.
+ t_3t1 _ 3 ty + ttots. ) 4) ITet gi(t1, o tm)yt = 1, ..., n.be a.finite set of ra-
2 2 tional functions. Suppos¥ C k™ is defined parametri-
It turns out that the selection between alternating values cally asw; = gi(t1, ..., ¢n), ¢ = 1, ..., n. Find the
+1, =1, +1, ... or, =1, +1, —1, ... for the optimal input system of polynomial equations which define the variety

u(t) depends on whether the equations in (2) have a solution V.
for a specified final condition:(¢ ) = (1, 2, z3)".
A. Grobner Bases
l1l. COMPUTATIONAL ALGEBRAIC GEOMETRY AND GROBNER Grobner bases generalize the usual Gauss reduction from
BASES linear algebra, the Euclidean algorithm@fiz], and the simplex
Algebraic geometry is concerned with the properties of gedlgorithm from linear programming.
metric objects defined as the common zeros of systems of polyMotivated by the long division in the polynomial ring of one
nomials that are callegarieties As such, it is intimately related Variable, one introduces an order on the monomials in polyno-

to the study of rings of polynomials and the associated ide®ial rings of several variablégz, ..., x,,] in order to execute
theory [8], [6]. a division type algorithm.

More precisely, let: denote a field (e.g., the fields of com- Let Z.™ denote the set of-tuples of nonnegative in-
plex numbersC, real numberg®, or rational numberg). Over tegers. Leta, # € Z,". Fora = (o, ..., o), and set
an algebraically closed field such@sone may show that affine % = z7" ... z;». Let > denote a total (linear) ordering on
geometry (the study of subvarieties of affine spatpis equiv- Z+" (this means that exactly one of the following statements is
alent to the ideal theory of the polynomial ridges, ..., z,] u€ia > f,a < B, ora = ). Moreover we say that* > =
(see [8], especially the discussion of the Hilbert Nullenstelleff-c > 3. Then, anonomial orderingnZ.." is a total ordering
satz; see in particular [5, p. 34, Th. 1, 2 pp. 168-170)). such that

Clearly, the ability to manipulate polynomials and to under- 1) if « > gandy € Z.", thena +~v > 5 +~;
stand the geometry of the underlying varieties can be very im-2) > is awell-ordering i.e., every nonempty subset 6§ ™
portant in a number of applied fields (e.g., the kinematic mapin  has a smallest element.



536 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001

One of the most commonly used monomial orderings is the oamounts to finding generators &f. This is where the Grobner
defined by the ordinary lexicographical ordey., onZ ™. Re- basis methodology plays the key role.

call that this means >, 3 if the leftmost nonzero element of Theorem 2 (Elimination Theorem)et I C k[z1, ..., ;)
« — 3 is positive. This ordering is also calletimination order be an ideal, and? a Grobner basis fof with respect to the
withzy > ... > z,. lexicographical order withey > --- > z,,. For everyj =
We now fix a monomial order odi. ™. Then thenulti-degree 0, ..., n, set
of an elementf = > _ aqx® € kf[z1, ..., z,] [denoted by
multided f)] is defined to be the maximum such that, # 0. Gy =GNk[zjt1, ..., )
Theleading termof f [denoted by LT{)] is the monomial
(i.e., select the elements 6fnot involvingxy, . .., z;). Then,
Grnulti deg(f) ° pmultideg(f) G is a Grobner basis df;. (Here, we takdy = 1.)
A proof can be found in [5, p. 113]. Note that, fore 7T,
We now state the following central definition. G, is also a Grobner basis fdy_; N k[z;41, ..., ] = ;.
Definition 1: A finite set of polynomialsfi, ..., f.. of an Thus, using Theorem 2, we may eliminate the variables one at
idealI C k[x1, ..., z,] is called aGrobner basisf the ideal atime (or all butz,, at once) until we are left with a polynomial
generated by LTf) fori = 1,..., m is equal to the ideal in z,,, which we may solve. We must of course then extend the
generated by the leading terms of all the elements dfatis ~ solution to the original system. For aniddal” k[z1, ..., z,]
we set

klz1, ..., zp] - (LT(f1), ..., LT(fin))

— Ko, o wn] - {LT() | £ € I}, VI ={(x, ....,2z) €K™ f(=, ..., z,) =0 VY fel}

We emphasize the finiteness of a Grébner basis. Again, this can be done in a systematic manner via the following

. . result.

We re_mmd_the _reader that the |de_al_generated _by a set of eq:l’heorem 3 (Extension Theorembet ¢ kfz1, ..., ] be

ements in a ring, is the set of all their linear combinations with , S
. . . .generated by, ..., f,.. Let I; be the first elimination ideal
coefficients taken from the ring. The crucial result on the ex@- ) ; .
. . . of I as defined above. For eatk=1, ..., m, write f; as

tence and key property of Grébner bases is the following.

Theorem 1:Every nontrivial ideal has a Grdbner basis.
Moreover, any Grobner basis éfis a generating set df.

TheBuchberger algorithnis a finite algorithm that takes in a

fi = gi(za, ..., zy)x]" + lower order terms inx;

finite set of generators for the ideAlin k[z4, ..., =,] and re- \(/\;here n; I)Setgeé I I)a rgis,},f XI??hneergte;f;s. Si#\%@%ieh t:]haat\t
turns a Grobner basis fdr At its heart lies the idea of canceling"”™?” "7 ™" Y= :

i\Z2y « vy Zn y 22y «eoy Rny

(z zn) # 0, then we may extendz zp) 10 A

leading terms to obtain polynomials with smaller leading termé

similar to the Euclidean algorithm #{z]. A nice exposition can Solution of(z1, Y #n) € V(). . :
. The theorem gives a systematic way of checking whether par-
be found in [5, p. 86].

Notice that the use of Grobner bases reduces the studytlgl’ solutions off; may be extended to solutions 57A detal
S ) . discussion and proof can be found in [5, p. 115].
generators of polynomial ideals (and so affine algebraic geom-_ . S . N _
. ! : o This ends our brief discussion of Grobner bases and elimi-
etry) to that of the combinatorial properties of monomial ideals._.. L
- . . Nation theory. We should note that there are symbolic imple-
Therein lies the power of this method assuming that one can . :
: i . mentations of this methodology on such standard packages as
easily compute a Grobner basis (see [3] and [5]).

In what follows, we will indicate how Grébner basis tech!\/lathematlca, Maple, or Macaulay [11].

nigues may be used to solve polynomial equations.
IV. COMPUTATION OF SWITCHING SURFACES

B. Elimination Theory In this section, we indicate the solution to the time optimal
Elimination theory is a classical method in algebraic geon§oNtrol problem formulated in Section II. Even though we
é(\_/ork out the case of third-order system, the method we propose

etry for eliminating variables from systems of polynomial equd _ _
tions and as such is a key method in finding their solution completely general, and should extend in a straightforward

Grobner bases give a powerful method for carrying out thﬁganner: tofalrlly numbler of switchings.
procedure systematically. We work over an algebraically closed!n What follows below, we set
field % in this section.

More precisely, le C k[z1, ..., z,] be an ideal. Thgth =h
elimination idealof I is defined to be yi=ts
z = tg
Li=Inklzjq, ..., z.]. and
Suppose thaf is generated by, ..., f,.. Then,l; is the set @ :=(ts)
of all consequences gfi = --- = f,,, = 0 which do not in- bi=za(ty)

volve thevariables, ..., z,. Thus, elimination o, ..., z; ci=ux3(ty).
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A. Complex Solutions

In this subsection, we solve the complex version of the

switching problem, namely, the following.
Problem 1: Given is the system of equations

r—y+z=a
2 2 2
%—i—xy—i—%—i—zx—%—yz:b
x3+23+x2y+x22+y2x+22x
6 6 2 2 2 2
3 2 2
Y yz= 2y
A A 3
+ xyz 6 5 2 & 3)

We are interested in solving the following question: jifb, ¢ €

C, does the system have complex solutiong, z? The answer

will be yes.
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yze — 1/6yza® — 2yca + yb* + 1/12ya* + 236 — 1/22%0?
— 22%c — 22%ba + 4/372%a® + 62ca — zba® — 1/2za*

—¢b— 7/2¢ca® + 2b%a + 1/6ba® 4 1/12a° 7

yz? — 2yza +yb+ 1/2ya® + 2b — 1/22a* — ¢+ 1/6a°
(8)
v — 2yz +2ya — b+ 1/24° 9)
T—y+z-—a (10)

We read these equations as polynomials:jny, » with para-
metric coefficients that depend en b, c.

At this point we remark that the Grébner basis would look
just the same if we had considered the extension of the ideal to
the ring of polynomials oveR or C. This is true in general.

Now, if the three forms from Problem 1 have a solution, then
certainly the quartic given by (4) above, also must have a solu-

To illustrate the use of the Macaulay symbolic program ition, whatever the base field. Ov€rthis will have a solution
computational algebraic geometry, we will put in some of thier sure if the leading form is nonzero, which is the case if and
relevant scripts. Let us callthe ideal inQ[z, v, #, a, b, ¢] gen- only if a? — 2b # 0.
erated by the three forms above. As a first step, let us computévloreover, if the quartic (4) does indeed have a solution over
a Grobner basis faf. We introduce the elimination order withC (i.e.,3z € C that makes the equation true for chosem, ¢ €
x>y >z >c>b> a HereisaMacaulay command se{), then the Extension Theorem tells us, in view of (9) and(10),

guence to accomplish this.

1% ring R
! characteristic (if not 31991) ?
! number of variables 76
! 6 variables, please ? xyzcba
! variable weights (if not all 1) 7
!monomial order (if not rev.lex.) 7111111
largest degree of a monomial
: 512512512512 512 512

1% <idealIx—y+z—a
x2/2+xy+22/2+zx—y2/2—yz—b\

X3/6+z3/6+x2y/2+x22/2+y2x/2+22x/2+xyz
—y3/6 —y2z/2 —z2y/2 — ¢

1% < inhomog std I IT

The result is the following seven forms, made visible by

putstd IT
2t — 1/22%a — 223¢ — 22%ba + 4/32%a® + 627ca
+ 2207 — 2%ba’® — 3/42%a* — dzch — dzca® + 220%a
+2/32ba® 4 1/620° + ¢* + 2cba + 2/3ca® — b?
—1/2b%a* — 1/12ba* — 1/724°, 4)
yc® — 2ycba + 2/3yca® + yb® — 1/2yb*a® + 1/12yba*
—1/72ya® + 226* — 2%ba® +1/42%a* — 2%cb
+1/22%ca® — 22%0%a + 13/62%ba® — 7/122%a°
— 22¢% 4 6zcba — 7/3zca® — zb%a® + 7/362a°
+2c%a — 2cb® — 3cba® 4 4/3ca* + 2b%a
—2/3v%a® — 1/36a" (5)
yzb — 1/2yza® — ye + 1/6ya® — 22b+ 1/22%a* + 2z¢

—1/3za® — 2ca + b* + 1/12a* (6)

that we can find; and thenz in C solving the entire system over
C.

Let us continue to investigate the question whether we can
find z € C such that the quartic holds true in the case where
a®? = 2b. In that case, we need to adé — 2b to the generators
of our ideal, and recompute the Grobner basis. Here is the script

1% < ideal Ja"2—2b
1% concat J I
1% < inhomog_std J JJ

In this case the output is

b—1/2a%
22c—1/62%a® — 32%ca 4+ 1/22%a* 4 3zca®

—1/2za® — 1/2¢* — 5/6¢a® + 11/72a°
yc— 1/6ya® — 2z¢ +1/320° + 2ca — 1/3a*
yz® — 2yza + ya* — ¢+ 1/64°
y2 — 2yz + 2ya

x—Yy+z—a.

Not surprisingly, the quartic became a cubic when we set the
leading coefficient to zero. As before, the cubic will have a com-
plex root as long as the leading coefficierit— 6¢ is nonzero.
Also, as before, the two last equations ensure that each solution
for = may be extended t@r, y, z) solving the system.

What happens > = 6¢? Let us add this relation and recom-
pute a Grébner basis

1% < ideal K a™*3 — 6¢
1% concat K J
1% < inhomog_std K KK
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which leads to The significance of the theorem for us lies in the fact that
although it does not specify the location of the zeros it gives a
b—1/24* gualitative answer, which as pointed out above is all we need to
c—1/6a® know about for the purpose of dynamical steering.

As afirst step, we compute a Grébner basis for the three poly-
) nomials in (3) under an elimination order with> > > y >
y" —2yz +2ya ¢ > b > a. Note the switch of the variablesand~ in the or-
rT—y+z—a. dering. One gets

y22 — 2yza + ya2

A somewhat surprising thing happened: when we killed thgs | 4,2, — 24242 — 4yc + dyba — 4/3ya® — b?
leading coefficient of the cubic, the entire polynomial died. Let o a4 ) ’
X +ba” — 1/4a (11)
us factor as much as we can in the output
2b —1/22za% + 1/2y° 4 3/2yb — 3/4ya® — 2¢ 4 ba — 1/64>

b—1/2a* o

c—1/6a®

y(z — a)? 2y —1/2y% —ya +1/2b — 1/4a’ (13)
z—y+(z—a).

This suggests that one ought to solve (12) or (13)for

One can see that this system has, for example, the solution
y P | —1/25% — 3/2yb + 3/4ya? + 2 — ba + 1/66>

z,y, 2) = (0,0, a). z 15
( We cz)ncll(Jde tha)t b—1/2a? 19
1) the system does always have a complex solution; y? /2 +ya — 1/2b+ 1/4a?
2) if a® = 2b, a® = 6¢ anda, b, ¢ € R, the system has real 7= Yy (16)
solutions;
3) if a® = 2b, a® = 6c and0 < a, b, c € R, the system has respectively. This, of course, is assuming thandb — a? /2
real nonnegative solutions. are not zero.
It is easy to check that these solutions foare not contra-
B. Real Positive Solutions dicting each other. In fact, they differ by a multiple of the quartic

Now that we have established the existence of complex solll-¥» 9iven in (11).

— i i 2 _ 3 _
tionsz, v, » for any parameter sét, b, ) let us search forthe ON€ Sees that = 0 implies2b — a” = 6¢ — a” = 0. These
existence of real nonnegative solutions for real parameters. Tifiations simplify the system to
will solve our switching control problem. Thus, as a second step

2

we will answer the following. b—1/2a

Problem 2: Given area, b, ¢ € R. Does there exist a non- _ 3

; : - c—1/6a
negative solution vectdt, y, z) for the system (3) in the sense 5
thatz > 0,y > 0, z > 0? Y

Thus, if there is a positive solutian y, », then the value of

- vy — 1/24% —
the optimal controk: assumes the valuesl, —1, +1 succes- 2y = 1/2y" — ya

sively, and in particular, the present value for the optimal con- T+z—y—a. a7
trol is 4(0) = +1. If no positive solution exists then the present
value of the optimal control is(0) = —1. This has the solutiong = 0, z = arbitrary,z = a — 2. Since

The techniques we will use are computations of suitable= 0 is actually equivalent ta® — 6¢ = a? — 2b = 0, testing
Grébner bases together with an algorithm from real algtke latter conditions is sufficient to find out whethee 0. In
braic geometry calledSturm sequencesSturm sequences that case, nonnegative solutions will exist precisely whes
are associated to polynomials as follows. Suppf&e) is a nonnegative. This covers the case- 0.
single variable polynomial with real coefficients. We define If z = 0, our system takes the form
po(z) = f(x), p1(x) = f'(x), and then recursively,; by
pi = Qi—1pi—1 — pi—2 for< > 1, wheregq;_, represents the ¢? — 2cba + 2/3ca® 4+ b* — 1/2b%a® + 1/12ba* — 1/72a°
guotient andp; - the respective remainder each time. Here, 5 3
we demand thadeg(p;) < deg(p;_1). S0,p; is up to sign the yb—1/2ya” — c+ba—1/3a
remainder of Euclidean division @f_» by p;_;. ye — 1/6ya® — ca + b° — 1/124*

Theorem 2[4, Th. 1.2]:Leta < 3 be real numbers which are
not roots off (). Define a functions(+) for v € Rby counting ~ %° +b — 1/2a”
the number of sign changes in the sequefigéy) }i>0, drop- —w—a
ping all zeros. Them(«) — v(/3) is the number of distinct zeros v
of f betweenn and. T. (18)
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Sincea, b, ¢ are known, it is easy to check the consistency dfhis means that for positiveg, » is positive as long ag?/2 +
this system, by solving each of the three middle equationg foya — 1/2b + 1/4a® > 0. This parabola has roots in_» =
and testing the vanishing of the first. If consistency fails, we are+ /b + a2 /2 wherer; < r,. Since the parabola has positive

not in the case: = 0. leading coefficienty, z > 0 fory ¢ [r1, ro] if b+ a?/2 > 0,
If the system is consistent, one needs to check whether toedy, » > 0forally > 0if b+ a?/2 < 0.

obtained solutions fay, ~ are nonnegative. If that is so, set= Similarly

1 and otherwise, = —1, finishing the case = 0. ) )
In a similar fashion, one does get the case 0. If z = 0, t=yta—z="2 /2+1/2b—1/4a )

one gets Y

& + 2cba + 2/3ca® — b® — 1/2b%a% — 1/12ba* — 1/7245  Letry , = £1/1/2a* —bwith ri < rj. Hencex, y > 0if
and only if0 < y ¢ [, 5] if a®/2 > b, andx, y > 0 for all

yb+1/2ya” — ¢+ 1/6a° y > 0if a?/2 < b.
ye — 1/6ya® + 2ca — b? — 1/124 We cpnclude that in order to have y, K all pos.mve at the
same time we need to satisfy the following conditions all at the

v + 2ya — b+ 1/24° same time:
z yt + 4y (b—a2/2) +y(—4c+4ba—4/3a3)
T—Yy—a (19) —b2—|—ba2—a4/4:0

which is quite similar to the case = 0. One first checks - ¢R

whether the first relation between the parameters holds. Then y gl or i g

one solves the next three equationsif@nd then solves the last y& [, ], or r ¢R

relation forz. If the system is consistent we have= 0. If =, y ’

turn out to be nonnegative set= 1 and otherwise, = —1. y>0

This rules out all cases of vanishing variables. In order to, . .
. . o . : \{vh|ch can be checked with Sturm sequences.
predict when strictly positive solutions exist, we are reduced t0

the casega”/2 = b, a° /6 # c) and(a?/2 # b). C. The Switching Algorithm
Let us consider first the cage?/2 = b, a®/6 # ¢). Then,

we have a Grébner basis Th_ese results pave the way for the following algorithm. The
algorithm has as input the current stéte b, ¢) of the system
b—1/2a%y® —dc+2/36°2 —y/2+ax + 2z —y — a. and as output the recommended valuedior time optimal

, . . _control, eithed or —1. The origin is then approached by iterated
It becomes obvious that in order to have a nonnegative SOIU“?@petition of the algorithm

we need Algorithm 3 (Dynamical Steering of the System to the
¥ =4 (c— a3/6) >0 Origin): Suppose our system is in the st&te b, ¢).

Case 1) (Check whether= 0.) Test the consistency of the

z= (4(c— a3/6))1/3/2 +a>0 system (18). If consistent solve it; if, = > 0 set
u = 1, otherwise set: = —1. If the system (18) is
z= (4(c— a3/6))1/3/2 >0 not consistent, go to the next case.

Case 2) (Check whether= 0.) Test the consistency of the
which simplifies to the two conditions — a®/6 > 0, (4(c — system (19). If consistent solve it; if, ¥ > 0 set
a®/6))Y/3 /2 4+ a > 0. These are conditions that can easily be u = 1, otherwise set: = —1. If the system (19) is
checked for giver, b, ¢ and determine existence of a nonneg- not consistent, go to the next case.
ative solution(z, ¥, z) of the system (3). Case 3)2b = a2, 6¢ = a>. (Check whethey = 0.) If ¢ > 0,

Now, let us move to the most general situation a? /2 # 0. setu, = 1 for a s, at which point the system will have
In particular,y # 0 then. Theorem 2 asserts that the Sturm reached the origin. I < 0, letw = —1 for a s.
sequencep;(y)} corresponding to Case4)2b = a?,6¢c £ a®, z,y, zall £0.1f 6c—a® > 0
andé6c > —11a®, letu = 1. Else, letu = —1.
fly) = y*+4y° (b - a2/2) + 4y (ba o~ 1/3@3) Case 5)2b # a2, x, y, z all #0. Setr; = a — /b + a?/2,

—b? 4 ba? — a*/4 Ty = a++\/b+a?/2,7h = \/a?/2 - b. Let f(y) =
4 207 2 _ _ 3y _}2
counts the zeros of this quartic. In particular, there will be pos- Yk (b= a'/2) + y(—det dba—4/3a7) ~ b +

2 4 ;
itive solutions for justy if and only if v(0) — v(cc) > 0 since ba” — a”/4 and compute the corresponding Sturm

. . 5 5 u, sequence p;(y) bi<o. Letl = (0, r1) U (ro, co) if
z_e(rbo_lsar;c;tz;goot of the quartic [note thab” + ba* — a*/4 = ri € Rand(0, ) else. Letl’ = (1}, 0o) if 1 € R

Now, from (9) and((_), o) else. LetS =Inr.
' Using the Sturm sequence compute the number of
y?/2+ya— 1/2b+ 1/4a® solutions off(y) in S. If this number is positive, set
= y : u = 1 and, otherwise, set = —1.
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V. CONCLUSION

This paper has provided a general approach to the switch
control strategy in time-optimal control. The key idea is to us
the Grdbner basis technique which allows one to algorithmica
work with systems of polynomials in several variables. These
sults are quite general, and we expect that this approach will |
to a complete solution of the problem of identifying switching
surfaces, in the sense that we will be able to provide a symbao
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a reasonable number of variables (with “reasonable
of the computing power of the machine doing the computation).
Grobner bases are the key tools of computational algebraic
geometry. As such, they are expected to have an ever increasing
role in the area of systems and control, and in particular, in prob-
lems where the solutions form a semialgebraic set whose de-
scription hinges upon solving simultaneous polynomial equ ; -r-"
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