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SPECTRAL FACTORIZATION AND NEVANLINNA-PICK INTERPOLATION*
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Abstract. We develop a spectral factorization algorithm based on linear fractional transformations and
on the Nevanlinna-Pick interpolation theory. The algorithm is recursive and depends on a choice of points
(Zk, k 1, 2, ") inside the unit disk. Under a mild condition on the distribution of the zk’s, the convergence
of the algorithm is established. The algorithm is flexible and convergence can be influenced by the selection
of Zk’S.
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1. Introduction. Interpolation theory for complex analytic functions has a long
history in mathematics and engineering. The origin of the subject can be traced back
at least to the work of Caratheodory, Schur, Nevanlinna and Pick (see [7]) and
continues with the recent works of Adamjan, Arov and Krein [1], Sarason [24], Sz.
Nagy and Foias [20], and Ball and Helton [3] which have extended the theory to a
general operator theoretic setting. In engineering, interpolation theory has been used
in a variety of problem areas. Passive circuit synthesis, optimal control, stability theory,
representation and prediction theory for stochastic processes, and control theory are
some of the engineering disciplines where interpolation theory of complex analytic
functions has played a significant role. For these, see for example [10], [11], [18], [19],
[25], [26] and the references therein.

In the present work we use interpolation theoretic ideas and, in particular, linear
fractional transformations to develop a general scheme for spectral factorization.
Spectral factorization is a key problem in a variety of engineering fields, and has been
investigated extensively. In particular, see [2], [5], [6], [11], [12], [15], [21], [23]. The
approach we have taken leads to a connection with ideas from interpolation theory
and in particular to the use of linear fractional transformations. Our main contribution
in thispaper is a new and versatile theoretical algorithmfor spectralfactorization. However,
numerical properties of this algorithm are not addressed here and will be pursued
elsewhere.

We denote by U the unit ball in H; i.e., U := {f(z) analytic in such that If(z)l -<- 1
for all z }, where denotes the open unit disc in the complex plane. The classical
Nevanlinna-Pick interpolation problem requires finding a function f in U that satisfies
the following interpolation conditions:

f<’)(Zk)=W,,,,k, m=0.1,’.’,Nk, fork=l,2,...,N.
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(The case N 1 is known as Caratheodory-Schur interpolation.) The Nevanlinna-Pick
recursion allows the solution, i.e., existence and characterization of all solutions, of
this problem by iteratively reducing it to an equivalent one with fewer interpolation
constraints. The general form of the solutions is then presented in terms of a linear
fractional transformation

(1.1) f(z)=[A(z)+B(z)h(z)]x[C(z)+D(z)h(z)]-’,

where A, B, C and D are functions depending on the data of the problem and h(z)
is an arbitrary function in U that parametrizes the set of solutions.

With every function f in U, such that

In [1- [f(e’)l2] is in L := Ll[-cr, 7r],

there is associated a unique outer function (see [22])

g() := exp (4-)- [e’+][e’-]-ln[1-1f(e’)l]dO

such that IgAe’)l- -If(e’)l a.e. on [-, ]. The function g, is known as the
e|el peerM fer of f and plays an important role in several problem areas
such as representation of stochastic processes, optimal control, network synthesis, etc.
Under fairly general conditions g can in fact be defined as a meromorphic function
on the whole complex plane (see [8]). This is certainly true for the important case
where f is also a rational function, and this is precisely the case we consider in the
present paper.

If g and gh denote the spectral factors off and h respectively that are related as
in (1.1), then it can be shown that g and gh under certain conditions have the same
zeros. (The general problem of describing invariants of the action of the semigroup
of linear fractional transformations has been considered by Helton [.17].) Utilizing the
invariance of the so-called spectral zeros (or transmission zeros) under linear fractional
transformations, we developed a spectral factorization algorithm along the lines of
Caratheodory-Schur interpolation [14], [15]. The present work extends our earlier
results to the Nevanlinna-Pick setting and gives rise to a general spectral factorization
algorithm.

2. The Nevanlinna-Pick recursion. We begin with the following well-known
lemma, which is simply an invariant formulation of Schwarz’s lemma. This has provided
an important tool in the theory of interpolation with complex analytic functions and
was utilized in a masterful way in that context by Nevanlinna (see Garnett 13]).

LEMMA 2.1. Letfl be in U, and consider a sequence ofpoints (Zk D, k 1, 2," ")
and a sequence ofparameters Ck D, k 1, 2,’"). Define

(2.2a) w, := fk Zk ),

1-- ekZ fk-- Wk(2.2b) fk+l :=
Z- Zk 1 lkfk

f+-c(2.2c) A+I 1 ’kfk+

for k 1, 2,’’’. Then, fk, k 2, 3,’’’, is a sequence of U-functions. In case w, I for
a value k n, then the above sequence terminates to a function f, =-w,. This last case
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occurs only iffl is a finite Blaschke product; i.e., f is of the form

f(z) e’ (z-)
k--1 (1 SC:kZ)

and consequently has modulus equal to One on the boundary of the disk.
The case where f is a finite Blaschke product is of no interest to us because in

this case the spectral factor of f is the zero function, and the spectral factorization
problem becomes trivial. Hence, in the sequel, even when not explicitly stated, we
tacitly assume that this is not the case.

The sequence of the parameters Ck in the Nevanlinna recursion can be taken to
be arbitrary constants in D. Hbwever, we follow a standard and convenient normaliz-
ation (see [4], [8]) described in the lemma below.

LEMMA 2.3. Let fl 6 U (but not a finite Blaschke product), and let f(O) O. Given
a sequence ofpoints (Zk e D, k-- 1, 2,...), and letting

W__k whenever Zk O,
(2.4) Ck := fk+(O)= Zk

limfk (Z) whenever Zk O,
z-O Z

the Nevanlinna recursion (2.2a-c) produces a sequence fk, k 2, 3," ",. of U-functions
that satisfy fk (0) O, for all k.

The Nevanlinna recursion in Lemma 2.1 can be used to provide a constructive
approach to the Nevanlinna-Pick problem (see Garnett [13, p. 166]). It can also be
used to generate, from a known function fl in U, the associated sequence of the
so-called Schur parameters/reflection coefficients Wk. This is the way we apply the
Nevanlinna recursion. In fact, our objective in the next section is to study the limiting
behavior of the "by-product" fk as k tends to .

3. Some convergence results. Let fl (different from a finite Blaschke product) be
in U and assume that fl(0)=0. This causes no loss of generality from our standpoint
because the functions f in U, and zf which is also in U, have the same spectral factor.
The assumption fl(0)=0 simplifies the computations required in the sequel.

Compute now the sequence j, k=2, 3,..., of U-functions from fl and the
sequence of points (Zk D, k 1, 2," ") via the Nevanlinna recursion (2.2) and (2.4).
Recall that the choice (2.4) for the constants Ck readily implies that fk(O)=0 for
k 2, 3,. .. This is very convenient as we will see shortly.

Using (2.2b) and (2.2c) it easily follows that

(I -Iw,<l)(1 -If,<l-) (1 -Ic,<1)(1 -If,<+ll")
for z on 7,

l1- m,<AI I1 + e<f,<+,l

and k 1, 2, ., n 1. Applying In(. to both sides of the above equation, we obtain
that

(3.1)
In (1 -Iw,<l’ + In (1 -If,<l’ -In I1 %<i,< ’

In 1 -I,< ’) + In 1 If,<+, In I1 + e,f+, :

for z e 7. Note that IkAI < 1 in D. Hence 1 Ikfk is an analytic function with no roots
inD. Therefore, (see Rudin [22, Thm. 13.12]) u(z) := In 11 fl: is a harmonic function
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in D. Also, since fk(0) 0, it follows that u(0) 0. Consequently, using the well-known
mean value property of harmonic functions (see [22])

Tln I1 A(ei)[2 u(0)= 0.dO

A similar argument applies to In [1 + kfk+l[2 and yields

f_ln I1 + ,kfk+l(ei)]2 dO =0.

Now, from (3.1), we integrate over the interval [-r, w] and exponentiate both sides
to obtain that

exp (2r)-1 In (1-If(e’)l2) dO

1_[w12] exp (2r)-’ In (1-I//ll) dO

for all k. Finally by induction we conclude that

exp (2)- In (-I(e’)l) dO

= l_]w]2] exp (2)- In (1-[f+]2) de

We are interested in the case where ft is a rational function in U but different from a
finite Blaschke product. In this case the above integrals are different from zero and
we can obtain the following theorem.

THEOREM 3.3. Let f be a rational function in U such that In (1-[f(eO)[2) is in
L (hence not a Blaschke product), and f(O)=0. Let (z, k 1, 2,...) be a sequence
.ofpoinu in satisfying the property

k=l

and obtain the corresponding sequence of w’ s and c’s from (2.2) and (2.4). en

exp (2)- In lira

e proof of the above theorem is based on ceain classical facts in function
theory and some results obtained by Dewilde and Dym [8], [9] and Bultheel and
Dewilde [4], and is given in 6. Below we give an immediate corolla of Theorem
3.3 and relation (3.2).
Coo 3.5. Under the condition of eorem 3.3,

lira exp (2)-’ In (1-f+,) dO 1
km

and

lim +I(Z)=0 a.e. on
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4. Invariance of spectral zeros-spectral factorization. Letfbe a rational U-function
(but not a finite Blaschke product) and let it be represented as the ratio of two coprime
polynomials a(z)/b(z). Since f is in U,

1_ if(z)l= ]b(z)l=-Ia(z)l
ib(z)l= ->0 ouT,

and it admits a factorization

(4.1) 1-lf(z)l2 I n(z)l=
e ’,

ib(z)l= for z=

where 7(z) is a polynomial that can be taken to have no root inside D with rl(O)= 1,
and I.e a positive constant. Under this normalization r(z) is uniquely defined by f and
will be called the spectral numerator of f The canonical spectral factor of f is then
given by

n(z)
g(z)=b(z),

and is defined on the whole complex plane. Moreover, (4.1) extends to an equality of
meromorphic functions

(4.2) 1 -f(z)f(z-1) =/.e
2 r/(z) #(Z-1)

valid throughout the complex plane.
Let now f be a rational U-function and j, k=2,3,..., be the sequence of

U-functions obtained from fl and from a sequence of points (Zk, k 1, 2, ") via the
Nevanlinna recursion. In view of (2.2), it is clear that fk+l is also a rational function.
Thus, the Nevanlinna recursion produces a sequence of rational functions fk, k
2, 3, o.

We now express the recurrence formulas (2.2, 2.4) in terms offractional representa-
tions ak/bk for the functions fk, k 1, 2,"" ". First

(4.3) wk:=ak(zk)b(z)"
By solving (2.2) for fk+l in terms ofJ we obtain (see also Garnett [13, p. 167])

(4.4) fk+1

where

a(z) w,(1 gz)+ c,(z- zk),

(4.5)
g(z) 5kWh(1 gZ) + (Z Z),

Tk(Z) (1 5gz) + Cg(Z z),

tik(z) (1 5z) + ff(Z Z)

and we use (2.4), which becomes

I(4.6) ck=
z

lim

when z O,

a(z)
when z 0.

Zbk(Z)
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Starting from a coprime fraction for fl al/bl, i.e., al and bl are polynomials
with no common factor, define a sequence of pairs of functions (that will turn out to
be polynomials) (ak, bk), for k 2, 3,. ., via the following:

(4.7) ak$1 1 Yk

b+ (z-z)(1-1cl) --6k fig bk
for k 2, 3," ". We can now state the following proposition:

PROPOSITION 4.8. Letf be a rational U-function that is not afinite Blaschkeproduct,
al/b be a polynomial coprime fraction forfl, and generate the sequence of (ak, bk) and
offk via (4.3)-(4.7). Then the following hold.

(4.8a) fk ak/ bk for all k.

(4.8b) (ak, bk) for k 2, 3," ", are polynomials in z.

(4.8c) The maximum degree of the polynomials (ak, bk) never exceeds the maximum
degree of the polynomials (a, bl).

(4.8d) Iffl(O) O, and the polynomials al b have been normalized to satisfy a(O)
O, and b(O)= 1, then

Proof.

(4.8a)

(4.8b)

ak(O)=O and bk(O)= l for all k.

It follows immediately by comparison of (4.4) with (4.7).

For z Zk, the expressions (ykak--akbk) and (6kak--flkbk) become equal
to (1-- kZk ak 7,k Wk (1-- kZk bk Zk ], and ,k(1-- kZk ak Zk
?.kWk(1--kZk)bk(Zk)], respectively. But ak(Zk)=Wkb(Zk). Hence, both
expressions become equal to zero. Therefore, (Ykak akbk) and (6gag flkbk)
are polynomial expressions divisible by (z Zk). From (4.7) we now conclude
that (ak, bk), for k 2, 3,’.. are polynomials in z.

(4.8c) The polynomials a,/3, y and 6, have degree equal to one. Hence the maximum
degree of {(ykak akbk)/(Z Zk), (6kak flkbk)/(Z Zk)} does not exceed the
maximum degree of (ak, bk).

(4.8d) It follows by straightforward computation.

However, ak(Z) and bk(Z) might have a common factor. The determinant of the
transformation matrix in (4.7) is computed directly and is given below

(4.9) ]kflk Olk6k (1 -Icl=)( 1 -I z z( 1 kZ)

for k 1, 2,.... (Note that (z-Zk) cannot be a factor of ak+l or bk+ since it has been
divided out in (4.7).) Thus, the only possible commonfactor ofak+ and bk+l, in addition
to common factors of ak and bk, is (1-- gkZ). In fact ak+l and bk+l will have (1--gkZ) as
a common factor precisely when it is also a factor in qk(Z). (Then, this becomes a
common factor of every pair (ak+l, bk+l) for l= 1,2,....) The following theorem
addresses exactly this point.

THEOREM 4.10. Let f be a rational U-function (different from a finite Blaschke
product) and ak/bk be a coprime polynomial fraction description offl satisfying (4.8d).
Let (ak, bk), k=2,3,"" ", be obtained from (4.3), (4.5)-(4.7) and a sequence ofpoints
(Zk in D, for k 1, 2,...). Define dk to be the greatest common divisor of (ak, bk)
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normalized by dk(O)= 1, and let qk denote the spectral numerator of the U-function
fk := ak/ bk. Then the following hold:

(i) Iffor k n, (1 nz) is a factor of1(z), then

d+l (1 z) d, whereas

r/ (1 nz)r/+l

(ii) Iffor k n, (1 z) is no__At a factor of rl, (z), then

d+ dn and rl, r/+l.

Proof. We begin by recalling first a certain well-known property of the transforma-
tion matrix

1
Mk(Z):=(Z--Zk)(1--lck[Z) --6k(Z) k(Z)

used in (4.7). Define by

Mk(Z). := M*(z-’),
where )* denotes complex conjugation of the coefficients and transposition of the
matrix. Then,

(4.11) Mk(z),
0 1

Mg(z)= (l_lc,l
This property is known as J-unitarity; e.g., see [9]. (It follows directly by algebraic
manipulations and the use of (4.5) and (4.9).)

We now compute

b-k+l(Z-1)bk+l(Z)- lk+l(Z-1)ak+l(Z)

0 b/()J’
which because of (4.11)

(l_lcl=) [a(z- (z-1)]
0 bk(Z-1)

=(1-lwl/2)(1-lc ((z-)b(z)-a(z-a)a(z))"
This last equality implies that

(4.=) Id+,(z)+,(z)l== Id(z)(z)!=, z: e’
where is a nonzero constant that can be taken to be positive. Also note that, as it
was argued before on the basis of (4.9) and (4.7),

(4.13) d+(z) is either equal to d(z) or equal to (1-z)d(z)

for all values of k. Consequently, d(z) has no roots in D. Since the same applies to
(z), we now conclude from (4.12) that

(4.14) d+(z)+(z) d(z)(z) for k 1, 2,. ..
Now, if (1-z) is not a factor of (z), then we conclude from (4.13) and (4.14)

that

d+(z)=d(z) and n+(z)= (z).
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If (1--$kZ) is a factor of ’lk(Z), we only need to consider the case where gk 0.
In this case

n(’),() =0,

which implies that

(4.15) 1 fk(g-l)fk(k) O.

But fk(k)= ak(Zk)/bk(Zk)= k; therefore (4.15) implies that

(4.16) bk(g1) ffkak(-l).
From (4.5) we now have that

ak+l(1)
1

(;1 Zk )( 1 -Icl=) y(5-l)ak(-’) Ok(5;1) bk 5;’)]

1

(;1__ gk)( 1 --Ickl2)
[Ckffk(5;1-- zk)ak(;1)- Ck(;1-- zk) bk(5;1)]"

Because of (4.16), the above expression is equal to zero, hence

a+l(;) =0,

and in fact (1- kz) is a factor of ak+l(Z). Clearly, even if (1- kz) is already a factor
of dk(Z), the above can be used to show that ak+l(Z) is divisible by (1-- kZ)dk(Z). In
a similar way we conclude that (1--kZ)dk(Z) divides bk+l(Z). Therefore,

dk+l(Z) (1-- kZ)dk(Z),
and from (4.14) we deduce that

rlk+l( Z)(1-- SkZ) ’Ok(Z).
This concludes the proof. [3

An immediate consequence of the above is that iffor no point in the sequence
(Zk, k 1, 2," ") we have (1 kZ) as a factor of rll (z), then

qk(Z)= r/,(Z) for k= 1,2,...,

and also dk(Z)=--1 for all values of k. Alternatively, if all roots of r/l(Z), including
multiplicities, have inverse complex conjugate values belonging to (Zk, k 1, 2," "), then
after a finite number of steps we will have that

dn(z dn+l(Z TI(Z for l= 1, 2,’’ ",

while r/,+t(z) 1.
However, regardless of how the points zk, k 1, 2,..., are chosen (provided a

mild condition on their distribution is met), the polynomials ak(z) and bk(z) as k-->,
tend to the zero polynomial and r/l(Z) respectively. This is the content of the next
theorem.

THEOREM 4.17. Let fl(z) be a rational U-function (with fl(0)=0), ’II(Z be the
associated spectral numerator, andfl(z)= al(z)/bl(z) a representation offl as the ratio

of two coprime polynomials satisfying al(0) 0 and bl(0) 1. Let Zk, k 1, 2," ", be a
sequence ofpoints in D satisfying

(3.4) Y (1-1zl)-- o,
k=l

and (ak, bk), k=2,3,’’ ", be obtained from (4.3), (4.5)-(4.7). Then as k-,

bk(z)’-> TI (Z), ak(Z)-->O
coefficientwise.
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Proof. Let

(4.18)
ag(z)

PlZ "1- p2z2.q. "1" pmz "[-"
bk(Z)

be a Taylor series for fk(Z) around the origin. Since )(z) is a rational function in U,
it is analytic in and also continuous on the boundary (because of the rationality).
Corollary 3.5 now implies that fk(Z) tends uniformly to zero on compact subsets of D
and in particular that p,, 0, for all m, as k -.From Proposition 4.8, the polynomial bk(Z) satisfies bk(O)= 1 for all values of k
and has no root in D (because fk is in U and dk(Z) has no root in as discussed
earlier). Therefore, the coefficients of bk are all bounded by one. Also p,, 0, uniformly
in m for m 1,..., l, when k- c, and being any finite integer. We conclude that
ak(Z)O as a polynomial; i.e., its coefficients tend to zero.

From the proof of Theorem 4.10 we now have that

Ib(z)l=- lak(z)l2=
= on

But a(z)O, whereas b(z) and l(Z) are polynomials that have no root in and
have value one at the origin. Therefore

b(z)n,(z),
and /’gk " 1, when k

Theorem 4.17 provides a general recursive scheme in the form of relations (4.3),
(4.5)-(4.7), for obtaining the spectral factor of a rational U-function fl(z) a(z)/bl(Z)
as summarized below:

1. Select a sequence of points (Zk in D: k 1, 2,...) satisfying (3.4).
Iterate step 2 for k 1, 2, 3,

2. Given (ak(Z), bk(Z)) compute (ak+(Z), bk+a(z)) using (4.7), and Ak+l using

1-lCk[2
Xk+’ 1_ IWkl2Xk’

with A= 1, and the parameters wk and ck obtained from (4.3) and (4.6)
respectively.

3. Then as k-oo, bk(Z) approaches the spectral numerator of f(z) and
Akbk(z)/b(z) approaches the canonical spectral factor off,(z).

The choice of the sequence (Zk, k 1, 2, ") is arbitrary provided they do not converge
too fast towards the boundary; i.e., condition (3.4) of the theorem is met. However,
the choice of this sequence influences the speed of the convergence bk(Z) rt(z). But
the convergence itself is guaranteed by the theorem. It appears that the choice of the
Zk’S in the vicinity of the roots of rtl results in a relatively fast convergence. This may
potentially be useful when r/ has roots on or very near the boundary of D. However,
a thorough analysis of the numerical properties and speed of convergence will be
pursued elsewhere.

5. Proof of Theorem 3.3. Define C := {F(z) analytic and with positive real part in
D}. (C for Caratheodory; also the class of positive real functions.) With any function
f in U we associate the function

(5.1) F(z) =l-f(z---’ for zD.
1 +f(z)
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It is well known that F is a C-function. (In fact (5.1) sets up a bijective correspondence
between U and C.) Also, the condition f(0)= 0, which appeared earlier, translates into
F(O) 1.

The real part of F(z) is defined almost everywhere on ql and is equal to

(5.2) r(0) := Re {F(ei)}
1 -If(ei)l2

I1 +f(e’)l
a.e. on ql.

The function 1 +f has no root in D. Hence, In I1 +fl is a harmonic function in D.
Provided f(0)=0, ln ll +f(z)[ has value at the origin equal to zero. Therefore, the
integral of In I1 +f(e) in the interval [-Tr, 7r] is equal to zero. Then, by applying
In (.) to both sides in (5.2) and integrating we derive that

(5.3) In r( 0 dO In 1 If( e ,0 )12] dO.

The above integral plays a key role in an approximation problem for analytic functions
(Szeg6’s Theorem--see Grenander and Szeg6 [16]):

inf (2-)-1 Ip(e’)l(o) dO" p(z) polynomial with p(0)= 1

=exp (2-)-1 ln[r(0)] dO

(The left-hand side of the above equality can be seen as the error of approximating 1
with polynomials vanishing at the origin, in L2[z(O)dO].) In general the infimum is
attainedfor afunction Po(Z) in H2--the subspace of L2 functions with analytic continu-
ation inside D. (This in general is not a polynomial and turns out to be a scalar multiple
of the inverse of the canonical spectral factor corresponding to z(0).) Hence,

(5.4) (2r)-1 Ipo(e’)l=r(o) d0=exp (2r)-1 In [z(0)] dO

where po(0)= 1.
Let now (Zk, k 1, 2," ") be a sequence of points in D. Define Kn :, (zB,(z)H2)+/-,,,

where B, (z) denotes the Blaschke product corresponding to the first n interpolation
points , (z- z)

B,(z) ...-- k=l]l (1--3kZ)’

and "-" denotes the "orthogonal complement of." K, is a finite dimensional linear
space. Let r(O) be the real part of a C-function F(z) for z=ei. Then z(O) is defined
a.e. in [-r, r] and it is a nonnegative valued function. K, can be endowed with an
inner product defined by

(f, g), := (2r)-1 f(e’)g(e’)z(O) dO,

and then we will use the obvious notation ,(0). Bultheel and Dewilde [4, Cor.
1 and Dewilde and Dym [8, Lemma 4.3] have considered approximation with functions
in Kn and have shown that

(5.5) inf {llp(z)ll () p(z)in K, and p(0)= 1}= fi 1-[c1-2



764 TRYPHON T. GEORGIOU AND PRAMOD P. KHARGONEKAR

Clearly,

inf{llp(z)ll o: p(z) in Kn and p(0)= 1} > Ilpo(z)ll=  o

=exp (2r)- ln[z(0)] dO =exp (2r)- ln[1-1f(e’)l] dO

In order to prove the theorem, we need to establish that the above holds with equality.
To show this it suffices to show that

K := Kn is dense in HE

with respect to {.,.
We now briefly indicate that it is sucient to show that the aforementioned space

is dense in H with respect to the standard norm. Since f is a rational function, it can
be readily shown that (0)= Ig(e) where g() is a rational function with no poles
on the unit circle (since g(z) is an outer function). is implies that r(0) is bounded
from above for all 0 e [-, ]. Consequently, convergence in the standard norm implies
convergence in I1" =

0 and this establishes our claim.
Now we shall use a classical result of Blaschke, which states that

(5.6) (1 -Izkl)
k=l

holds if and only if B,(z) tends to zero at every point in as n. Any function q
in H2 that is ohogonal to K belongs to zB,H2, for all n. Therefore, q must be the
zero function. Hence the closure of K is in fact the whole of H2. Therefore (5.6)
implies that

(5.7) lim inf {11 p (z)ll =
<0) P K and p(0)= 1} Ilpo(z)ll =

and consequently that

lim H
1 [Ckl

exp (2)-1
O k= 1--lWk[2] ln [1--]f(e )]2]d0

is completes the proof of the theorem.

6. Remarks on spectral faetorization of C-functions. So far we have considered
spectral factorization of rational U-functions. In many cases one is given a C-function
F(z) instead. So let

F(z)- be in C,
x(z)

where (z) and X(Z) are polynomials in z. Then

Re {F(e’)) (z)$(z-’)+X(Z)e(z-’)
0 for z=e

x(z)$(z-,)
and assumes a factorization

=lr(z2- forz=e’, O[-m],Re Ix(z)
where r is a positive constant and (z) can be assumed to have no root in and to
have value equal to one at the origin. Then r(z)/x(z) is called the canonical spectral
factor of F(z), and (z) will be said to be the spectral numerator of F(z).
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With no loss in generality we may assume that F(0)= 1. From (6.1) we can obtain
an associated function

f(z)
1- F(z) a(z)
l + F(z) b(z)

of class U. Then a(z):= X(z)-’rr(z) and b(z):= X(z)+ r(z) are also polynomials. Let
,/(z) be the spectral numerator of f(z), and

be the canonical spectral factor of. f. Then, from (6.1)-(6.2) we obtain that

I n(z)l= I n(z)l=
Re {F(e’)} [b(z)+ a(z)[= Ix(z)[ for z e i, 0 e [-r, r],

and the spectral factor of F(z) is rq(z)/x(z). Thus, the spectral numerator ofboth F(z)
and f(z) is the same. Therefore, when looking for the spectral factor of F, we may
consider the corresponding U-function f(z). Then take

a(z)=x(z)-’zr(z) and b(z)=x(z)+Tr(z),
and apply the algorithm of Theorem 4.17 given by (4.3), (4.5)-(4.7) and an appropriate
choice of points (ZkD, k=l,2,...) to obtain the spectral numerator r/(z). The
algorithm expressed by (4.3), (4.5)-(4.7) can be written directly in terms of polynomial
fractions of C-functions. However, this offers no advantage over (4.3), (4.5)-(4.7),
which seem to be simpler and thus preferable.

REFERENCES

V. M. ADAMJAN, D. Z. AROV AND M. G. KREIN, Infinite Hankel block matrices and related extension
problems, AMS Transl., (2)111 (1978), pp. 133-156.

[2] B. D. O. ANDERSON, K. L. HITZ AND N. O. DIEM, Recursive algorithm for spectral factorization,
IEEE Trans. Circuits and Systems, CAS-21 (1974), pp. 742-750.

[3] J. A. BALL AND J. W. HELTON, A Beurling-Lax theorem for the Lie group U(m, n) which contains
most of classical interpolation theory, J. Operator Theory, 9 (1983), pp. 107-142.

[4] A. BULTHEEL AND P. DEWILDE, Orthogonal functions related to the Nevanlinna-Pick problem, Proc.
Internat. Conf. on the Mathematical Theory of Networks and Systems, 1981, pp. 207-211.

[5] F. M. CALLIER, On polynomial matrix spectral factorization by symmetric extraction, IEEE Trans.
Automat. Control, AC-30 (1985), pp. 453-464.

[6] P. DELSARTE, Y. GENIN AND Y. KAMP, A simple algorithm for spectral factorization, IEEE Trans.
Circuits and Systems, CAS-25 (1978), pp. 943-946.

[7] , On the role of the Nevanlinna-Pick problem in circuit and system theory, Circuit Theory Appl.,
9 (1981), pp. 177-187.

[8] P. DEWILDE AND H. DYM, Schur recursions, errorformulas and convergence of rational estimators for
stationary stochastic sequences, IEEE Trans. Inform. Theory, IT-27(4) (1981), pp. 446-455.

[9], Lossless chain scattering matrices and optimum linear prediction: the vector case, Circuit Theory
Appl., 9 (1981), pp. 135-675.

[10] P. DEWILDE, A. VIEIRA AND T. KAILATH, On a generalized Szegb-Levinson realization algorithm for
optimal linear predictors based on a network synthesis approach, IEEE Trans. Circuits and Systems,
CAS-25 (1978), pp. 663-675.

11 P. FAURRE, M. CLERGET AND F. GERMAIN, Op.rateurs rationnels positifs: application a l’hyperstabilit.
et aux processus aleatoires, Dunod, Paris, 1978.

12] B. FRIEDLANDER, A lattice algorithm for factoring the spectrum of a moving average process, Proc.
Conf. on Information Sciences and Systems, Princeton, NJ, 1982, pp. 5-9.

[13] J. B. GARNETT, Bounded Analytic Functions, Academic Press, New York, 1981.
14] T.T. GEORGIOU AND P. P. KHARGONEKAR, On thepartial realization problemfor covariance sequences,

Proc. Conf. on Information Sciences and Systems, Princeton, NJ, 1982, p. 181.



766 TRYPHON T. GEORGIOU AND PRAMOD P. KHARGONEKAR

[15] Linear fractional transformations and spectral factorization, IEEE Trans. Automat. Control,
AC-31 (1986), pp. 345-347.

[16] U. GRENANDER AND G. SZEGO, Toeplitz Forms and their Applications, Chelsea, 2nd edition, New
York, 1985.

[17] J. W. HELTON, Orbit structure of the Mobius transformation semigroup acting on H (broadband
matching), in Topics in Functional Analysis, Adv. in Math. Suppl. Stud., 3, 1978, pp. 129-197.

[18] T. KAILATH, A view of three decades of linear filtering theory, IEEE Trans. Inform. Theory, IT-20
(1974), pp. 146-181.

19] P. P. KHARGONEKAR AND A. R. TANNENBAUM, Noneuclidean metrics and the robust stabilization of
systems with parameter uncertainty, IEEE Trans. Automat. Control, AC-30 (1985), pp. 1005-1013.

[20] B. Sz. NAGY AND C. FOA$, Harmonic Analysis of Operators on Hilbert Space, North-Holland,
Amsterdam, 1970.

[21] J. RlSSANEN AND T. KALATH, Partial realization ofrandom systems, Automatica, 8 (1972), pp. 389-396.
[22] W. RUDN, Real and Complex Analysis, McGraw-Hill, New York, 1974.
[23] R. SAEKS, The factorization problemA survey, Proc. IEEE, 64 (1976), pp. 90-95.
[24] D. SARASON, Generalized interpolation in H, Trans. AMS, 127 (1967), pp. 179-203.
[25] D. C. YOULA AND M. SAITO, Interpolation with positive-real functions, J. Franklin Inst., 284 (1970),

pp. 77-1108.
[26] G. ZAMES AND B. A. FRANCIS, Feedback, minimax sensitivity, and optimal robustness, IEEE Trans.

Automat. Control, AC-28 (1983), pp. 585-601.


