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ROBUST STABILITY OF FEEDBACK SYSTEMS:
A GEOMETRIC APPROACH USING THE GAP METRIC*

CIPRIAN FOIASt, TRYPHON T. GEORGIOU$, AND MALCOLM C. SMITH

Abstract. A geometric framework for robust stabilization of infinite-dimensional time-varying
linear systems is presented. The uncertainty of a system is described by perturbations of its graph
and is measured in the gap metric. Necessary and sufficient conditions for robust stability are
generalized from the time-invariant case. An example is given to highlight an important difference
between the obstructions, which limit the size of a stabilizable gap ball, in the time-varying and
time-invariant cases. Several results on the gap metric and the gap topology are established that are
central in a geometric treatment of the robust stabilizability problem in the gap. In particular, the
concept of a "graphable" subspace is introduced in the paper. Subspaces that fail to be graphable
are characterized by an index condition on a certain semi-Fredholm operator.
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1. Introduction. In this paper we develop a geometric framework for robust
stabilization of feedback systems using operator-theoretic methods. The theory is
based on a description of the uncertainty of a system as a perturbation of its graph
and is measured by the gap metric.

The gap metric has its origin in functional analysis [20], [13], where it was used in
perturbation theory of linear operators. It was introduced into control theory in [25],
[1] as being appropriate for the study of uncertainty in feedback systems. For shift-
invariant systems it was shown in [5] that the gap metric was computable exactly in
terms of two standard "2-block" H optimization problems. Building on this result
and the work of [23], [24], [26], and [7], it was shown in [6] that robust stabilization in
the gap metric is equivalent to robust stabilization for perturbations of the normalized
coprime factors of the transfer function.

The simplicity of the robustness bounds obtained in [6] for the time-invariant case,
which were expressed solely in terms of the plant and controller system operators,
strongly suggests potential generalization. However, the techniques used in [6] are
mostly function theoretic, relying on a specific representation for the graph of a time-
invariant dynamical system as a shift-invariant subspace of L2[0, (:x:)], and do not
admit immediate generalization to the shift-varying case. This motivated the search
for a different approach, which does not rely on representations for the subspaces
involved, and which elucidates the apparent geometric structure underlying the robust
stabilization problem. It became apparent that substantially new techniques were
needed, beyond those developed in [6], to meet this objective. The present paper is
a continuation of work begun in [3], [4]. We note that some independent work on a
geometric approach to robust stability in the gap metric has been presented in [15],
[16], [19]. A generalization of the results of [5] has been presented in [2].

This paper is organized as follows. In 2 we present some basic material on
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FIG. 1. Standard feedback configuration

graphs and stabilizability for linear systems. In 3 we establish several results on
the gap metric that are used in the later development. Section 4 introduces the
concept of graphability and proves a necessary and sufficient condition for a subspace
to be graphable. Section 5 presents and proves the main robustness theorem for plant
uncertainty in the gap metric. In 6 an example is presented to clarify the need for the
uniform boundedness condition in the main robustness theorem. Section 7 uses the
machinery of the previous sections to generalize an elegant result of Qiu and Davison
[16] on combined plant-controller uncertainty to the time-varying case.

2. Graphs and stabillzability of linear systems. We consider a linear sys-
tem to be a (possibly unbounded) linear operator P T)p C L/-- , where N, 3; are
Hilbert spaces and T), is the domain of P. We denote by Pu,y the class of all linear
systems from/g to . A typical choice for the input and output spaces is
and J; g[0, cx)), or the corresponding continuous-time Lebesgue spaces. (Note: This
paper does not impose the constraints of causality or time-invariance on the systems
considered.)

Consider the feedback configuration of Fig. 1, where the plant P E :Pu,y and
the controller C E Py, u. This configuration, denoted by [P, C], provides a pictorial
representation of the following set of equations:

Define the graph of a system P Pu,y as the linear manifold of bounded input-
output pairs of P

where Iu denotes the identity operator on H. Similarly, define the inverse graph of
the controller C by

:= Iy
The feedback configuration [P, C] is said to be stable if the operators mapping

vi ej for i, j 1, 2 are bounded. This is equivalent to the operator

F,c:= p ix ec6+G" -e -v
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having a bounded inverse defined on . In case an inverse exists it is denoted by
F-1Hp,c := P,C"

A system P is said to be55if and only if there exists a controller C such
that [P, C] is stable.

PROPOSITION 1. If P E Pu,y is stabilizable then the graph of P is closed.
uProof. Let (u) E {p for i= 1, 2,... be a Cauchy sequence with limit point (y)

and let C be such that [P, C] is stable. Since

0
:: Hp,c

Y

then

(u) (u)0
:: lim Hp,c Hp,c--, y Y

which means that u e :Dp and (y) ()u e Gp. [:]

Thus, a necessary condition for [P, C] to be stable is that both P and C have
closed graphs. A similar statement has been made in [27] for quotients of bounded
operators. The idea in [27] gives Proposition 1 in the following way: Closed-loop
stability ensures that P(I + CP)-1 is bounded and that (I + CP) has closed graph
and domain equal to :Dp. This gives that P P(I + Cp)-I(I + CP) has closed
graph.

The following proposition presents a geometric characterization of stability of
[P, c].

PROPOSITION 2. Let P :Pu,y and C 7y,r. Then the following are equivalent:
(a) [P, C] is stable,
(b) {p, { are closed,

n {0}(1)
and

Proof. (a)=(b). If [P, C] is stable then, by Proposition 1, Gp, G are closed.
Moreover, both (1) and (2) are necessary for Fp,c to be a one-to-one mapping onto.

(b)=(a). First note that (1) and (2) are sufficient to guarantee the existence of a
set-theoretic inverse for Fp,c defined on . We need to show that the inverse is also
bounded. We first observe that the graph of Fp,c is closed. To see this note that

el

-e2 / el ) E)p )cF
1 C2 2
Pel -e2

1 0 0 0
0 0 0 -1 Pel f el ’1 0 -I 0 Ce2 )e2
0 1 0 -1 e2

e2

e2

EDp XDC
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where - denotes a Hilbert space isomorphism. Consequently, the graph of Hp,c
F-1(- P,C) is also closed. The result now follows from the closed graph theorem.
Similar geometric concepts for expressing stability have been employed in earlier

studies, notably in the context of nonlinear control systems [18], [22], and in the recent
wors [], [14], [1], [].

3. Preliminaries on the gap metric. In light of Proposition 2 we will restrict
our attention in the rest of the paper to linear systems that have closed graphs. We
will identify P (through its graph) and C (through its inverse graph) with elemems
of

Sn := { E is a closed subpace of }.
For S denote by H the orthogonal projection with range . The gap between
1,2 SE is the metric defined

(see [11] and [12]), and Sc is equiped with the natural topology induced by the gap
metric. Thus the gap between two systems P, 1,2, is defined to be the gap
between their respective graphs GP,, i= 1, 2 ([25]).

Let B(E, 2) denote the space of bounded operators between two Hilbert spaces
1 and 2. For X e B(,2) define T(X):= infxe,IIzll=l IXx][

PROPOSITION 3. Let o S. The following are equivalent:
(a) Sc and 5(0,) < 1;
(b) Ho ] is invertible;
(c) There exists an X e B(E0, E{) such that E (Io + X)E0.

Furthermore, ff S and (o,) < 1, then

(3) 5(0, ) ffl T2(Ho[) ffl
(4) ]]X(I + X*X)-/][ Itxl

1 + ]]x[] 2

Poo. The equivalence ()(b), we proo o (3), cn be ound in [le,
Lemma 15.1].

(b)(c). Since 5(o,) 5(, Eo) both Ho and H[o are invertible. Hence

+

Thus, (c) holds for X H(Hol)-1.
(c)(b). om the equality ko Ho[(I+X)ko, for ko o, we see that Hol

is onto and from (Io + X)o that it is one-tone.
We defer the derivation of (4) to Proposition 4 below, where we prove a slightly

more general statement.
om the definition of the gap metric it follows that

5(tC,)



1522 C. FOIAS, T. T. GEORGIOU, AND M. C. SMITH

(see [12]). Note that

where

IlIIc IIc. sup dist(x, K:I),

where dist (x,
PROPOSITION 4. Let Xi E B(lo, leo +/-), for 1, 2, and/Ci (I:o + Xi)K:0.

Then

V/1 p2,

p min {T ((i q_ XXl)-l/2(i _+_ X,X2)(I - X2X2T((Iq-XlX)-l/2(I+XlX)(Iq-X2X)-l/2)}.

Proof. We compute

’[IIClII:2" I] (-X) (I+xlx)-I

since

I)(I(-X, I) X
II(I + XlX)-l/2(X2 Xl)(I + XX2)-1/21]

q- XX2)--I (I, X)

(-IX) (I + XlX)-1/2

is an isometry and (I+XX2)-I/2(I, X) is a co-isometry. By symmetry
is given by the dual expression. This completes the proof of (5).

To prove (6) consider the unitary operators

( (I + XX,)-/9" -X(I + X,X)-/2 )Y "=
Xi(I -+- XXi)-1/2 (I + X,X;)-/

for 1, 2, and define

( (Y)I,1 (Y)l,2)(8) Y := YY2 (Y)2, (Y)2,2

where (Y)i,j denotes the (i,j)-block entry of Y. Since

is an isometry, it follows that II(Y),II: + ((Y),I) 1. Using (7) it follows that

[]II II: (Y)2,1

V/1 r2 ((Y)I,),
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*X -1/2where (Y)1,1 (I + XX1)-I/2(I -t- X

V/1 T2 ((Y)2,2), where (Y)2,2 (I -t- XlX)-l/2(I -t- XlX)(I + X2X)-1/2. This
completes the proof.

Consider two subspaces /Co and /Cl at a distance (K:o,l) < 1, where K:I
(I + X)/C and X e B(/Co, K:o +/-). Define

(9) /CA (I + X)0

for A E IR.
COROLLARY 1. The family K., [0, 1], defines a path, continuous in the gap

metric, between Ko and 1. Moreover, for A JR,

Proof. To establish that the family K;x, A [0, 1], defines a path it suffices to
prove (10)-(12). Equation (10) follows from Proposition 4 by identifying K:0, K:I,/C2
with/o, K:0,/CA, respectively, and Xl, X2 with 0, AX. If, in Proposition 4, we identify
(:0, (:1, (2 with K:o, K:I, K and Xl, X2 with X, AX, then we obtain

(13)

((1, K:,k) max {11 AII[(1 + XX*)-l/=X(1 + 2X*X)-l/21[

[1 A[[[(1 + XX*)-l/2x(1 --b ,’2X*X)--l/2[] }

Both expressions are equal and can be seen to equal the right-hand side of (11). Since
X*X is a positive, bounded, selfadjoint operator, by invoking the spectral mapping
theorem, it follows that

(K:I, ](,k) sup{
V/(1 + x)(1 + A2x)

x Spectrum(X*X)}.

The supremum of the function in the interval [0, cx) occurs at x 1/A and equals
[1 A[/[1 + A I. (Note that Spectrum(X’X) c [0, cx).) [:]

COROLLARY 2. Let K:o,K:I,2 Sc be such that 52(K:o,K:l) + 52(K:o,K:2) < 1.
Then

(14) ((:1, (:2) _< (K:o, I)V/1 2(K:o, K:2) + (/0, K:2)V/1 2((0, (:1).

Proof. Since 5((0,](1) < 1 and 5(K:o,K:2) < 1, by Proposition 3 there exist
bounded operators Xi /Co - E0+/- such that K:i (Ico + Xi)o, for 1, 2. We
observe that

2(](0, 1)--[-2(](:0, ](:2) < 1 +1 + [[Xx[[ 2 1 -[-[]X2[[ 2

IlXlllllx .ll < 1.

<1
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Since IIXX211 < IIXIlIIIX211 < 1, it follows that T(I + XX2) T(I + XX1) > 0.
Consequently 5(K:1,/C2) V/1- p2 < 1, where

p r ((I + XX)-l/2(I + XX2)(I + XX2)-1/2)
T((I’-}-XX1)-I/2)T(Iq-XX2)T((I’-’XX2)-1/2)
>

Thus,

(1- IIXl]ll]x2II) 2(/c,/c2) _< 1-
(1 + Iix1II2)(1 -}-IIx21[ 2)

q_
V/1 + [IXll[ 2 V/1 + I]x2I, 2 v/1 -]-,]x2,I 2 v/1 + IIXlII 2

This completes the proof.
The arcsine of the gap metric can be thought of as the maximal angle between

two subspaces, denoted by max(K:,/C2) := arcsinb(/C1,/C2). Corollary 2 is given in
[16]. It was also observed in [16] that (14) can be rewritten in the form

(15) Omax(K:l, K:2) Omax(/Cl, K:) + emax(]C

so that max defines a metric in Sn.
Given any subspace/Co E S and a positive number b let

Ball(K:0, b)"- {tO 5(/C0, K:) < b}

denote the gap-ball about 0 of radius b, and let Bali(/C0, b) denote the closure of
Ball(o, b).

PROPOSITION 5. If b < 1, then Ball(K:o, b) {/C 5(K:o, K:) _< b}.
Proof. Let/C be such that 6(/Co,/C) b and consider Ka, E IR, constructed

as in Corollary 1. It follows that

{/Ca" A e [0, 1)} C Ball(/C0, b).

Thus, any neighbourhood of K contains a subspace a for some , [0, 1). Hence,
K Ball(K;o, b). Conversely, take K:I such that for all e > 0, Ball(K;o, b)glBall(K:l, e) 7
0. Then take Ball(Eo, b) N Ball(K:1, e). Using the triangular inequality it follows
that 6(o, )1)

_
((Ko, C) -I- ((), 1) < b -t- . Since this is valid for any e > 0,

(5(K7o, (71) b. [q

It should be noted that when b 1, then Ball(K:o, b) {/(7 5(/Co,/C) _< b}.
THEOREM 1. Let b, IR, with 0 < b < 1 and 0 < < 1. There exists e > 0

such that

(16) Ball(o, b + e) C_ U Ball(K:, ).
K;EBall(K;o,b)

Proof. Consider any K;a such that 1 > 5(K;o, ]Ca) a > b. We will construct a
with 5(h:o,Kb) b and 5(b, Ka) av/1- b2 -by/1- a2. This establishes (16) for
any e such that (b + e)v/1 b2 b/1 (b + e) 2 < .
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Write ]a (I + X)]C0 with X E B(]C0,]C0+/-). Let X UR be a polar de-
composition for X (i.e., with R (X’X) 1/2 a positive selfadjoint operator and
U ranger - rangeX a partial isometry), denote by E the spectral family of
projections corresponding to R, define

 ()A.= g A dE,

where

1 if0<A< b
--bg(A)- b if b < )

and define

(17) K:b := (I + XA)/C0.

In the rest of the proof we verify that 5(]Co,]Cb) b and (]b,]a) av/1- b2

by/1 a2.
From Proposition 3, IlXll a/x/’l a2. Also,

sup{Ag(A) A E Spectrum(R)}

b

1 b

since Ag(A) is nondecreasing on [0, cx), Spectrum(R) c_ [0, IIRII], and (b/x/’l- b2) <
(a/x/’l -a2) IIRII. From Proposition 3, we conclude that

 qc0,  Cb) IIXXll b.
v/1 + IIXAII 2

From Proposition 4, we have that

5(]a,b) max {1, 52},

where the two expressions 1, 2 are computed below. First,

1 := II(I + XX*)-t/(XA- X)(I +
[IUR(I + R=)-/=(A- I)(I +
[[R(I + R=)-/=(A- I)(I + ARA)-I/I[

(18) sup{
lg()- 1[ Spectrum(R)}

v/1 + A2 V/1 + A2g(A)2

(19)
AIg(A)- 11 evaluated at A

a

x/1 + A2 V/1 + A2g(A)2 v/1 a2

aV/1 b2 bv/1 a2.
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The step (18)=(19) follows because AIg(A ll/v/1 + A2V/1 + A2g(A)2 is monotoni-

cally nondecreasing in Spectrum(R) c_ [0, a/v/1 a2], while IIRII a/v/1 a2. Next,

(20)
(21)

:= I](I + XA2X*)-I/2(XA- X)(I + X*X)-l/:]l
]l(I + URA RU*)- / UR(A- I)(I +
IIU(I + RA2R)-I/2R(A- I)(I + R2)-I/2ll

since R and A commute. The step (20)(21) is based on the fact that RU*U R
and U*UR R. D

It is interesting to note that for arbitrary K:0,/Ca E S with 0 < b < a

5(/C0,/Ca) < I and K:b as in (17), we have 5(K:0,/b) b and Omax()O,)b)+Omax()b,)a)
0max (](0, ](a).
4. Graphability. Let K:, YV E S. We say that/C is a graph with respect to ]4)

if L: Vt;+/- {0}. For any such K: we can define a linear operator K by the relation
K (IIvk) IIw+/-k for all k K:. For convenience we will identify each u /4 with

() L: and, similarly, every y 3; with (y0) E L:, i.e., U is identified with the subspace
/4 @ {0} of/: and J; with {0} J;. We say/C is a graph if K: is a graph with respect to
H. Similarly, we say/C is an inverse graph if K: is a graph with respect to 3;. Denote

Grapher := {/C S /C N I/V+/- {0}}.

For/C, )4; S let Xc IIwl: and define Snpi to be the complement in S: of
the set

Spi :-- {]( ( S: X/c is semi-Fredholm and ind X: > 0}.

An operator X is said to be semi-Fredholm if its range is closed and if at least one of
dim ker X, dim ker X* is finite. In this case the Fredholm index is defined as ind X
dim kerX dim ker X*.

LEMMA 1. Snpi i8 closed in S.
Proof. Let/C Spi and let Ki E Sc satisfy 5(E,i) 0 for 1, 2 We have

L II

Since the set of semi-edholm operators from to with a given index is open in
the space of all bounded operators from to (see [11, Thm. 5.17]), it follows that
there exists an N such that for N,X is semi-edholm and

ind g ind X -ind Xg.

On the other hand, if 5(, i) < 1 then Y :=[ is an invertible operator from i
to and therefore X* Y- indHX is semi-edholm and ind X* X*
for i > N. It follows that for large enough X* is also semi-edholm and

indX -indX ind X > 0.

Thus Spi is open and hence Snpi is closed in Sz.
The following result characterizes the closure of Graphw in Sz. Any Graphw

is said to be graphable with respect to W.
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THEOREM 2. Grapher Snpi.
Before we proceed with the proof of the theorem we provide a characterization

of Snpi. By E (respectively, E,,), A E lR, we denote the spectral family associated
with XcX: (respectively, X:Xc). Then

XX dE, and XX dE,,

and the projections are chosen (strongly) continuous from the right (see [17]).
LEMMA 2. Snpi {" dimEE dimE,,W, for all > 0 and small enough}.
Proof. (Inclusion ). It is a standard fact that E0E ker X, E,,0 W kerX.

If E Spi then we must have dim E0E > dim E,,0. SinceX is semi-edholm then
dimE dimE0 and dim E,,
dimE,,W for sufficiently small > 0.

(Inclusion C). Assume Snpi and that there exists a sequence > 0,
1,2,..., Ai 0, for which dimE > dimE,,W. Since dimE,S, dimE,,
are nondecreing in , dimE,, must be constant and finitsay equal to d
for large enough. Thus 0 is isolated in the spectrum of XX and dim kerX
dim kerXX d. It follows that X is semi-edholm and that for small enough
ind X dim kerX -dim kerX
contradiction.

Proof of Theorem 2. We first show that GraphW Spi. Let Spi. Then

ind X > 0 dim kerX > 0

r n w # {0}
Graphw.

Thus Graphw Snpi and, since Snpi is closed in S in the topology induced by the
gap metric by Lemma 1, this implies that Graphw and completes the proof of
the first part.

We now show that Graphw Si. Let Snpi. For e >0 small enough
dimE dim E.,W and therefore there exists an isometry V E E.,W.
Set E, ( e) + ( +V) nd note that

e e + +

Therefore, lim0(,) 0 by Proposition
Graphw. LetWz. Then=k+h+VhwithkO,h. It
follows that

0 w wk +wh +Vh
Xk +Xh + Vh,

and thus

-XcX:k XcX:h + vXcVh.
Since E(XcXr XcXtcE( EXc XcE,, and E,,V V, we see that

0 -EXcXtck



1528 C. FOIAS, T. T. GEORGIOU, AND M. C. SMITH

E (X cX ch + x/ X cV h)
X cX ch + x/ X cV h
-XtcX k.

Since IIxTcxkl[ _> eIIkll, it follows that k 0. Thus y h + x/Vh and therefore

2el[hll 2 -II/Vhll2 IIX:hll 2 <_ ellhll 2

because h E . This implies that h 0, that is y 0. D
Remark. It is easy to see that the complement of Graphw can be characterized

in the following way: /C Graphw <= there exists e > 0 such that/C’ N W-L # {0}
for all/C’ E Ball(E, e). From Theorem 2 the complement of Graphw is the set Spi. A
geometric characterization of Spi is as follows:

Spi {](: ff SL: ]( -- ]/_L is closed, dim(/(: 9 }/V"L) > dim (L: (9 (/C + W-L))}.
To see the equality, note that/C+]/Y"L IIw/C+]/V"L. Hence/C+],V"L is closed <= IIw/C
is closed. Also ker(IIw[:) =/C V ],V"L and ker(IIc[w) W N K:"L L: (9 (/C + ]/Y"L).

5. Robust stabilization. Consider the feedback interconnection [P, C] and let
M 6;p, Af Sz:. Define Aa,Af := IIAzz ]a. The following is a standard result
in operator theory.

PROPOSITION 6. Let M,Af S:. The following are equivalent:
(a) .hA VIAf {0} and M + Af ;
(b) At,w is invertible.

Proof. (a)=> (b). Note that

n wM rLv- (M + N)
IIw L:

Thus Aa, maps M onto Af"L. Since M 3Af {0} then Aa,r is one-to-one. Thus
AM,At is invertible (see [9, Prob. 52]).

(b) (a). For any x M 3Af it clearly holds that Aa,fx 0. Since Aa,w is
invertible, then M Y Af {0}. Also, for any x E we can write

(22) -1 -1x Aa,WIIAf+/-x + (Ic )x =:Aa,ArII+/- m + n.

-1Clearly m Aa,AIIAz+/-x A/I. We claim that n A/. To see this note that

II+/-n IIA.x IIAf -Aa,fIIx- 0. Thus, M + Af. D
It follows from Proposition 2 that [P, C] is a stable feedback configuration if and

only if Aa,Ar is invertible. When [P, C] is stable we define the operator

-1Qa,Az := Aw,AZIIAf+/-.

This is the parallel projection onto M along iV’. Note that Qa,A can be expressed
directly in terms of P and C as follows:

(23) Qa, ()((Iu CP)-I’-C(Iy PC)-1)
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and in terms of the input-to-error operator Hp,c"

o) (oo)(24) Q’f 0 -Iy Hp,c + 0 Iy

When [P, (3] is stable we also define

(25) T(IIf* [t) V/1 5(Ad, JV"+/-)2
inf{[[Aa,Arx[[ x e Ad and [[x[[ 1}
inf{dist (x, Af) x e A/[ and I[x[[ 1}
inf{sinO(x,y) 0 x E ]M,O y Af},

where

0(x, y) := arccos
[<x,y>[

denotes the angle between two nonzero vectors x, y . When [P, C] is not stable
we set b,f := 0. Equation (25) follows from (3). The quantity b,f is the sine of
the minimal angle

0min(J,JV" :: inf{0(x, y) 0 # x e Ad, 0 # y e
arcsin ba,Ar
arccos 6(M,N"+/-)

(e.g., see [8]). Since

5( f,
5( fz,

it follows that

(26)
b, b,f+/-

bAf,A4
bw,M.

Equation (26) was shown in [31 (cf. [21, Lemma 1.1, p. 3411) [61. It also follows
from [10, Lemma 4] after noting that b,; is the inverse of the norm of a parallel
projection.

Conditions for stability of a feedback configuration can be expressed in a number
of equivalent ways (cf. [3], [141).

COROLLARY 3. The following are equivalent:
(a) [P, C] is stable;
(b) At,Ar is invertible;
(b) 5(.M,Af+/-) < 1;
(C) 0max(j/,j,f+/-) <
(d) 0min(,) > 0.
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Proof. The proof follows from Propositions 3 and 6. [:]

THEOREM 3. The following are equivalent:
(a) [P, C] is stable and b < b,f;
(b) [P’, C] is stable and Q],,Ar is uniformly bounded for all P’ so that, with

A/’ := Gp,, 5(A4, A/’) _< b.
Before presenting the proof of the theorem we will establish the following lemma.

For any 0 h e : we denote h := h/llhll.
LEMMA 3. Let , 147 E S:. Take any 0 h and 0 hi . Define- E O h and

_
+ hl. Then

(a) (, t:l) /1 I< t, 2 > 12, where h2 =IItc+/- hi;
(b) if t: Graphw then 1 Graphw.
Proof. (a) Since l K:_ h2 and K:+/- O h we obtain

Similarly, IlIIII (I. I)I V/1 < , > .
(K:, K:I) /1 [< ]z, ]z2 > [2.

Therefore,

(b) Define X Ilwl:, Xl IIwIE XII/cI(E+E1), and 1
XIII:I[(:+:). If K:I Graphw Snpi, then XI is semi-Fredholm and then it

is obvious that X, :, :1 are also semi-Fredholm. Since/C Graphw, ker X 0 and
ind X _< 0. Because hi ](:, it can be seen that dim ker X dim ker X + 1 and
similarly that dim ker1 dim ker X + 1. It follows that ind : ind X + 1 and
ind XI ind X1 + 1. However,

1 IIwIItc[(:+:) + IIw(II h2 Ilch)[(:+:x) + finite-rank operator.

Therefore, ind :1 ind : and hence ind X ind X. Thus, ind Xl _< 0, and
consequently, K:I Spi; that is, K:I Snpi, a contradiction. This proves that h:l E
Graphw

Proof of Theorem 3. (a)=(b). Assume (b) fails. We will show that, if [P, C]
is stable, then b _> b,f. Since (b) fails then, either II(II-+/- I’)-i is not bounded
above in Ball(A/t, b)Graphu or II-+/- I’ is not invertible for some Ad’ Ball(JPI, b)
Graphu. This means that one of the following two possibilities holds:

(i) T(IIv+/- I’) is not bounded below in Ball(A/l, b) Graphu;
(ii) there exists A/I’ Ball(Ad, b) Graphu and 0 y Af+/- such that

H,y 0.
In case (i), for all e > 0 there exists A/ and x A/ of unit norm such that

IJIIc+/-xll- dist(x, Af) < e. Note that b >_ 5(I,A/I’) >_ sup,,llll=ldist(,Ad) >_
dist(x, Ad)- []II+/-x[[. Also

(27)

IIAzx

< IlIxll + IlInzxll < +
IInxll x/1 e2
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Since (27) holds for all e then b, _< b. In case (ii), note that y E A4’+/-. Thus
b _> 5(A/I, A/[’) 5(A/[+/-,A4’+/-) _> dist(y, 2A+/-) JJIIyJl. Also b, b+/-,f+/- _<
IlIIayll since y EAf+/-. Therefore b, <_ b.

(b)=(a). Suppose that (b) holds for some b _> b,f. Then the same is true for
p,some b > b,. To see this, first note that b < 1 necessarily, otherwise C] is

stable for any system P’, and there is an easy contradition. By assumption, there
exists a c such that IIQ’,fll -< c for all P’ with 5(A4, A4’) _< b. From the identity
A,,,V Aa,,V(I, + qa,,(II,,- n,)l,)(n,,l:,)-l,, (cf. [3]) w can
see that A,,, is invertible for all P" with 6(J’,JP[") _< 1/2c for some P’ with
6(A/I, AA’) _< b. Moreover

IIq:",:ll- IIn:,, I:,(I:, / q:,,:(n:,, l:,)[:,)-q:,,:ll
< 2c.

From Theorem 1 the union of open balls, of radius 1/2c, about all JP[’ with 5(A/I, A4’) _<
b includes an open ball about /[ of radius b + e for some e > 0. It now follows that
(b) holds for P" in a ball about P and radius strictly greater than b,f. So from
now on we assume that ba, < b < 1.

Next we prove that there exists a subspace A/[’ Graphu with 5(A/I, A/[’) < b such
that IIf+/- I’ is not invertible. Let A := A,f, E be the spectral family of A’A,
and h E(A)+2/[ of unit norm, for some arbitrary e > 0. Then [l(A*A-b,)hll _<
e. Define .hA_ := .h/[ 0 h, Po := IIh Af, qo := II+/-p0, and A4’ A4_ + P0.
Since A/[’ Af {0} then II, Ifx is not invertible. From Lemma 3 we have

(28) 5(A/I, A/[’) V/1 I< h, 0 > [2

and A4’ Graphu. To evaluate (28) we first note that

<h, q0>- <h, p0> Ilpoll
(29) 1- IIAhll.
We also have

(30)

Ilqoll -Ilpoll -IIn_nhll
Ilpo IlII_ II+/- hll

-Ilpoll2- <nv+/-h, (n Ih) nv+/-h>
--IIpoll2- <nnwh,nnwh> + <IIz+/-h,h> 12

1-[[Ah[[2- [[A*Ah[[ + [[Ah[[ 4

1- IIAhll 2 + O().

From (28)-(30), we obtain 5(A/I,A/I’) IIthll + O(). In particular, for sufficiently
small e we have 5(A/I, A4’) < b.

In case A/I’ E Graphu then the hypothesis is violated and the proof is complete.
If not, consider a sequence A/I Graphu, i 1, 2,..., converging to A/I
subsequence such that IIa,. [rx is not invertible then, again, there is a contradiction.
Otherwise, since lim__, [[I, JAr+/- IIa [Ac 0, we can find a subsequence such
that limi__,o [[(IIa[Acx)-[I c. This also violates the hypothesis.

Remark 1. A similar result was established in [6, Thm. 5] for linear time-invariant
causal systems. However, the result in [6] differs from the one above in that the <
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and <_ signs are interchanged, and the "uniform boundedness" is absent. We will
show that the exact statement of [6, Thm. 5] is not valid in the case of time-varying
systems so that the uniformity condition is in fact necessary. More precisely, in the
next section we will present an example where [P1, C] is stable for all P1 such that
i(A/[, A41) < 1 while b,nf- 1/x/ < 1.

Remark 2. The basic geometric ideas behind the proof of Theorem 3 can be
simply expressed. The essence of the sufficiency part of Theorem 3 ((a)=(b)) can be
seen from the identity A,,f A,f(I+Q,hr(II, II)[)(II,[)-1],,
which implies that A,,nf is invertible for all P’ if 5(A/I, M’) <_ [IQ,z[1-1. The key
idea in the necessity part is to find a subspace M’ such that 5(M, M’)
and so that Proposition 6(a) is violated. The construction given in the proof is to
remove a direction orthogonally from M and to replace it with a direction from
Af. The vectors are chosen in such a way that the angle between them is equal (or
arbitrarily close to) 0min(.],Af). This gives M’N Af {0} with 5(A/[, A/[’) having
the required value. (The reader is referred to [19] for another version of this idea.)
The additional ingredients in the proof deal with the uniform boundedness condition
and the need to impose graphability on the perturbed subspaces.

Remark 3. In the theorem we do not impose any time-invariance and causality
constraint on the systems considered. Certainly the implication (a)(b) of Theorem
3 is still valid when the class of systems is restricted by a causality requirement, but
the reverse implication requires a construction different from the one given here.

6. Clarification of uniform boundedness condition. We now present an ex-
ample to show that, in the time-varying case, the obstruction that limits the largest
perturbation ball in the gap metric may be due solely to the lack of uniform bound-
edness of the closed loop operator, as expressed in Theorem 3.

Let/d Y 2[0, c) =" ];, =/4 Y, and identify b/and y with the corre-
sponding subspaces of . Consider P having the matrix representation

p= 0 0

and let C 0. Then 34 {((,,)o) v e 12}, where (v)o (vo,0,0,...) for any

v (vo, vl, v,...) e V, and Af { ()’v e 12}. For any .Adl e Graphu define P1 by
.M1 1:,. Also define Ballu(.M, b) Ball(.M, b) N Graphu.

PROPOSITION 7’. or the emple 9iven bove

sup {b {J/[1 e Ballu(J[, b) implies that [P1, C] is stable} } 1.

This should be contrasted against the fact that for the particular P, C given above

-[[() ((Iu- Cp)-I,-c(Iy-PC)-1) -1b,r

Proof of Proposition 7. Since Af :/+/-, for any Jl E Ballu(fl/[, b), .lJ {0}.
Therefore, [P1, C] is stable Jl -[- J : 1-I/gJl 4. Next note
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that M+/- {(-(v)o) "v e V}. Proposition 3 also implies that any Jl such that
5(M, M1) < 1 can be written as

{((v) (_(xv,o) }M- + -v
v)0 Xv

where X" V V is a bounded operator. However,

M1 V A/"- {0} = v (Xv)0 0 implies (v)o 4- Xv 0

= v (v)0 (Xv)o implies (v)0 4- Xv 0

v: (X)0,0 1,

where (X)o,0 denotes the (0, 0)-entry in a matrix representation of X with respect to
the standard basis of V 2[0, oc). Take any M1 E Ballu(M, 1). Then

nu {v- (Xv)o v e v} u
since (X)o,o 1. Hence, A/[1 E Ballu(M, 1) implies that [P1, C] is stable. So b 1
is the supremal b. V1

7. Combined plant and controller uncertainty. When both plant and con-
troller are subject simultaneously to gap-ball uncertainty, there is a maximal amount
for the combined uncertainty that can be tolerated. The following theorem is a gen-
eralization of an elegant result of Qiu and Davison [16] to the time-varying case.

THEOREM 4. Let P Pu, y, C Py, u and let bl, b2 be fixed nonnegative
numbers such that b2 + b < i. Then the following are equivalent:

(a) [P, C] is stable and hi V/1 b + b2 41 b21 < b,S;
(b) [P’, Cq is stable and Qa’,w, is uniformly bounded for all P’, C’ with M’

G,,, Af’ := G,, 5(M, M’) <_ hi and 5(A/’,Af’) <_ 62.
Proof. (a)=(b) Suppose (b) fails and that [P, C] is stable. We will show that

bl V/1 b22 + b2 v/1 hi2 :> bM,S. As in the proof of Theorem 3 there are two possi-
bilities:

(i) T(IIw,_LIa,) is not bounded below for A//’ Ball(M, 61) Graphu and
Af’ Ball(A/’, b2) CI Graphy,

(ii) there exists M’ E Ball(M, bl)V Graphu and Af’ Ball(Af, b2)N Graphy
and 0 z E Af’+/-N M’-L.
In case (i), for all e > 0 there exists M’, iV", and x E M’ of unit norm such that
[[II,+/-x[I < e. Setting y := IIw,x iV" we have

9(x, y)’-- arccos
1 Ilnw,ll)arccos

I[yll < arcsin e.

Since 6(M, M’) <_ bl it follows that I[IIxx[I _< bl. Thus, if xo := IIx E M, then

0(Xo, x) <_ arcsin

Similarly, since 6(j,Aft) _< b2,

0(yo, Y) _< arcsin b2,

where Yo := IIfy Af. It follows from (15) that

(31)

arcsin bl + arcsin b2 + arcsin e > 0(x0, x) + 0(y, yo) + 0(x, y)
> O(xo, yo)
_> Omin (A/I, Af) arcsin b,.
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Since (31) holds for all e we have

arcsin bl + arcsin b2 _> arcsinb,.

Therefore, bl V/1- b22 + b2v/1- bl2 _> b,Ar and so (a) fails. In case (ii) we proceed
similarly. Set Zl IIz and z2 := IIAr+/-z. Since bl _> 5(J/l, A/I’) 5(j/l +/-, 2/I’+/-)
we have (z, Zl) < arcsin bl. Also, 52 _> 5(Af, Af’) (j+/-, Af’-L) implies that
0(z, z2) < arcsin b2. Thus

arcsin bl -5 arcsin b2 _> 8(Zl, Z2)
)__ Omin(+/-, Jf+/-)

arcsin ba,Ark arcsin ba,

and (a) fails once again.
(b)(a) Suppose (b) holds for some b and b2 satisfying

(32) bl1 b + b21 b b,.

Similar reoning to the proof of Theorem 3 shows that we may take strict inequality
in (32). In particular, if []Q,,, c in (b), then ]Q,,,, 2c for all

" Ballu(’1),
’Ballu(,b)

and all Jr" e Bally(Af, b2). Theorem 1 then shows that statement (b) holds with bl
replaced by some b + e for e > 0. Since the left-hand side of (32) is monotonically
increasing in bl, it follows that (b) holds for some bl and 52 satisfying (32) with
strict inequality. Henceforth we will assume that this is the case. We also note from
Theorem 3 that bl, b2 < b,Ar.

We now show that there are subspaces /1’ 6 Graphu and A/" 6 Graphy with
5(j, J4’) < 51 and 5(Af, Af’) < 52 such that IIf,. [, is not invertible.

As in the proof of Theorem 3, let A := A,Ar, E be the spectral family of
A’A, and h E(A)+A/I of unit norm, for some arbitrary e > 0. Then [[Ah[[ <
T(A) -t- e b,r + e. Define p Ah + (1 A)IIArh and write A4_ := A/[ h,
Af_ := Af Hh, A/[ A/I_ + p, and Af := Af_ + p. We also write
q II_p and r "= IIr_p. We first show that

(33) 6(M,M,) (1 A)IIAhll V/1 IIAhll 2
V/1 -(1 A=)IIAhll

From Lemma 3 we know that

+ +

(34)

To evaluate (34) we must compute <h, q > and llq,,ll. First,

(35)

< h, q > < h,p >
+ (1  )1t 011

A + (1 A)(1 -llAhll)
1 (1  )llAt ll
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Next, using (30), we have

(36)

(qA, qA) A2 + 2A(1 A)[[p01[ 2 + (1 A)2jJqoJJ 2- A2 + (2A(1 A)+ (1 A)2) (1 -[[Ah[[ 2)
1 -(1 A2)[[Ah[[ 2,

where denotes equality to O(e). Equations (35) and (36) together show that

[(h, OA}[ 2 (1 -(1 )llAh[l=)
1 -(1 Au)[[Ah[I u + O(e)

from which (33) follows by simple manipulation. Next we show that

Allhhll(37) (Af, AfA)
V/1 (1 A2)IIAh[I 2

From Lemma 3 we know that

(38) 5(Af, AfA) V/1 [(i5o, A)[ 2.

To evaluate (34) we need the following computations:

(39)
(40)

(P0, rA} (IIh, (II+/- + 1-I po
(IIh, h}
1- IIAhll

-IIpoil 2

and

(41)

(rA, rA) ((IIf + IICpo)pA, (IIAf. + rlCpo)PA)
IlII+/-pll / IlIopll
AIII hll e / IIrIhll
1 ( A)IIAhll.

Equations (39)-(41) together show that

1- IIAhll e

1 -(1 :)llAhll

from which (37) follows by simple manipulation. Next we observe from (33) and (37)
that cA V/1 d + dA V/1 c IIAhll. Since cA is monotonically decreasing in A on
the interval [0, 1] we can choose A such that cA b e. Then for sufficiently small e,
we must have dA < b2; otherwise, we have a contradiction to (32) with strict inequality.
For the above choice of A and sufficiently small e we set A/[’ A/IA and Af’ AfA
which gives 6(.M,.M’) < bl and 6(Af, Af’) < b2. Lemma 3 shows that A/[’ e Graphu
and Af’ e Graphy. Also IIf,. Ia’ is not invertible since M’ C3 Af’ # {0}.

Now consider a sequence M Graphu, 1, 2,..., converging to M’ and a
sequence Aft’ Graphy, i 1, 2,..., converging to Af’. If there is a subsequence such

is not invertible, then there is a contradiction. Otherwise, we can find athat IIv;+/- ]a
subsequence so that YIf:+/-I is invertible. First observe that limi_, IlIIAf,+/-II,
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IInr,+/-II 0. Since IIf, I’ is not invertible, for any e we can find an x 6 4’ of
unit norm such that IlIIf,xll < e. Thus IlII+/- YII < e for sufficiently large i, where
y IIx. Since j Ad’ we also have IlIIAr:)ll < e for sufficiently large i.

This means that lim_ II(IInr, I)-111 cx. This violates the hypothesis.
Remark. The necessity part of the proof of Theorem 4 requires a simultaneous

perturbation of A/[ and Af. The construction removes orthogonally one-dimensional
subspaces from each of ]M and Af that are at an angle 0min(J,J) to each other, and
replaces them by a convex combination of these directions. The subspaces are each
perturbed through the required minimal angles and together violate the direct sum
property of Proposition 6(a).
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