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A CONSTRUCTIVE ALGORITHM FOR SENSITIVITY OPTIMIZATION
OF PERIODIC SYSTEMS*

TRYPHON T. GEORGIOUS. AND PRAMOD P. KHARGONEKAR$

Abstract. In a recent paper (A. Feintuch, P. P. Khargonekar and A. Tannenbaum, On the sensitivity
minimization problem for linear time-varying periodic systems, this Journal, 24 (1986), pp. 1076-1085), the
problem of weighted sensitivity optimization was considered for linear, discrete-time, periodic time-varying
systems. Here we present a constructive algorithm for solving this problem.
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1. Introduction. Zames formulated the weighted sensitivity optimization problem
in his seminal paper [14]. Since then, this problem has been thoroughly investigated
for linear time-invariant systems by many researchers. We refer the interested reader
to the recent survey paper of Francis and Doyle [7] for a good exposition and a
complete bibliography. Feintuch and Francis [5] considered this and related problems
for linear time-varying systems. Our work is motivated by the recent paper [6] of
Feintuch, Khargonekar and Tannenbaum where the problem of weighted sensitivity
optimization for linear, discrete-time, periodic time-varying systems is considered. In
[6] a formula for minimal weighted sensitivity was derived and the existence of an
optimal controller was established. Motivated by possible applications to multirate
sampled data systems, here we present a constructive algorithm for the computation
of optimal controllers. Our algorithm is based on a simple new way of solving the one
step extension problem for finite rank block Hankel matrices. The one-step extension
problem for general Hankel operators has been investigated in the masterful work of
Adamjan, Arov and Krein 1 ]. The interested reader is also referred to the recent book
[12] by Power for certain related extension problems.

In [10], Khargonekar, Poolla and Tannenbaum showed that to any p-output,
m-input, N-periodic, causal, linear,, discrete-time system, one can associate a pN-output,
mN-input causal linear time-invariant system with transfer function P(z) such that
P(oo) is (block) lower triangular. Indeed, lower triangularity is closely related to
causality. Feintuch, Khargonekar and Tannenbaum [6] showed that the weighted
sensitivity minimization problem of Zames [14] for periodic systems can be reduced
to the following problem: Given a pNmN transfer matrix T(z) with no poles on
the unit circle, find

/x inf { T(z) V(z)ll: V(z) is analytic in the complement of the open unit
disc including oo and V(oo) is block lower triangular}.

This reduction is accomplished using coprime factorizations, Youla parametrization
ofall stabilizing controllers, and inner-outer.factorizations. (There exist good algorithms
for these factorizations, e.g., see Doyle [4], Khargonekar and Sontag 11], Vidyasagar
[13], and the references cited there.)
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A formula for/z in (1.1) was given by Feintuch, Khargonekar and Tannenbaum
[6]. This formula shows that/z is the maximum of the norms of N Hankel operators.
Our paper is devoted to a constructive algorithm to obtain V(z) to solve (1.1) for the
special case of rational T(z). This algorithm combined with techniques for coprime
and inner-outer factorizations gives a complete constructive algorithm for obtaining
optimal controllers for weighted sensitivity minimization of periodic systems.

2. Main results. It has been shown by Feintuch, Khargonekar and Tannenbaum
[6] that the weighted sensitivity minimization of Zames [14] for N-periodic linear
time-varying finite-dimensional plants can be reduced to the following best approxima-
tion problem: Given a (possibly unstable) rational pN x mN matrix T(z), find

(1.1) /z =inf{[[T(z)-V(z)lloo: V(z)with entries in RHPNxmN
such that V(oo) is lower block triangular}.

It is assumed that T(z) has no poles on the unit circle. Here RHoo denotes the space
of all rational functions with real coecients which are analytic in the complement of
the open unit disc (including infinity). Each pN x mN matrix is considered as an
N x N square matrix with p x m block entries. The key constraint here is that V()
is required to be block lower triangular. (This corresponds to causality; see [6].) A
formula for was .given by Feintuch, argonekar and Tannenbaum [6] and it was
also shown that a V(z) achieving the minimum exists. Our main result is to give a
constructive algorithm to obtain V(z) which in turn can be used to obtain the optimal
controller. We should also note that a solution to this problem will also be a key step
in solving the general H-optimization problem of Doyle [4] in the setting of periodic
systems.

Let

T(z)= E Yz-
be the Fourier series expansion of T(z) (which converges on an open set containing
the unit circle). We are seeking a function

V(z)= vz-j=O

in RH such that Vo is lower (p x m)-block triangular and T- V[] is minimized.
Our solution is to first obtain Vo with the required constraint, and then obtain the rest of
V(z) using Glover’s algorithm [9].

From the work of Adamjan, Arov and ein 1 we know that

inf T(z)- Vo- V(z)][

where (z) = vlz- is in z-RH,is equal to the norm ofthe Hankel operator.

D )t_ ’)/-2

1-, ’)’- 7-2 Y-3

Y2 ’)/-3. ’)/-4.
where D To- Vo.

The operator F is thought of as a bounded linear operator acting between the Hilb’ert
spaces of square summable one-sided sequences-denoted by h2:

mNFe’h2 ht.
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This result is the matrix version of the Nehari problem. In case T(z)- Vo is a rational
matrix valued function, a constructive procedure to obtain a rational Q(z) minimizing
T(z)-Vo- Q(z)[[ is given by Glover [9], and Ball and Ran [2]. Thus, we only need

to consider a one-step extension problem for the finite-rank Hankel operator given by
the matrix F [Yl-j-kJ o. We want to determine an "extension" D in RpNxmN, subject
to the given constraint that the upper block triangular part ofD is specified, so that [[I’e
is minimized. In the process of solving the generalized Nehari problem, Adamjan, Arov
and Krein [1] have provided a solution to a one-step extension problem for block
Hankel operators. However their solution does not seem to lend itself either to an
easily computable scheme in the case of finite-rank Hankel operators, or to a procedure
dealing with the case where D is paritially specified as is required in our case.

It is a standard result in realization theory (see the book by Fuhrmann [8]) that
if F is a finite-rank Hankel operator, then there exists a triple of matrices (F, G, H),
where F is square n x n (n being the smallest such integer possible), H is pN x n, and
G is n x mN, such that the entries Y-k admit a factorization

(2.1) 7-k HFk-I G, k 1, 2,. ..
Moreover, this induces a factorization of F into a product OR, where

and

F:’G. .]" h’- Rn" (u," i=0, 1,...) E F’Gu,,
i=0

H

0= "R,-+hPV’x+(HF’x"i-0,1,’’’),

are bounded linear maps. These are the usual teachability and observability maps and,
because of minimality, are surjective and injective respectively. In view of this factoriz-
ation, F is given by

(2.2) Fe= 0G

Let P, Q, , A be defined as follows:

(2.3) P := RR*, Q := 0"0,

0FR

:= p1/2, A := Q1/2,

where )1/2 denotes the "Hermitian square root of," and )* denotes the "adjoint
of." Also define the following finite matrix.

He: AG AFt;

We now have the following proposition.
PROPOSITION 2.4. With the above notation IIre He I1"
Proof. Define

U:=[I0
V:=[ I’0

0
R" mS ,,rV

R’E-’ RmN + "+ R + h2

A_10, "RpN + hN -+ RpN + R",
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where Ik denotes the k x k identity matrix. (That the indicated inverses exist follows
easily from the fact that R is surjective and 0 is injective.) It is easily seen that

era. := R*(RR*)-IR hv hv

is the orthogonal projection onto the range of R*, and that

,/TO ;--0(0"0)-10*. hv- hf
is the orthogonal projection onto the range of 0. It is now straightforward to verify that

(2.5a) UU* I+ rl*,

(2.5b) U*U Imp+

(2.5c) V*V-- IpN + fro,

(2.5d) VV*=

We now prove that Fe V*HeU*. Note first that He VFeU. Then

V*HeU* V’V1

0 ’o OG 0FR 0 .
=[ D HRlt* ]ro0G o0FRwa*

But Wo0 0, and Rra. R[R*(RR*)-R] R. Consequently,

V.HeU.=[D Ha] =Fe0G 0FR

Finally, from (2.5b) and (2.5d) it follows that

and this completes the proof.
Thus, our original problem has no.w become" Obtain D subject to the original

constraints, so that it minimizes He II. Note that the entries of He are now finite matrices,
and moreover, the quantities E, A can be obtained from (F, G, H) by first computing
P and Q as solutions to the following Lyapunov equations (see [9]):
(2.6a) P FPF* + GG*,
(2.6b) Q F*QF/ H*H,
and then taking the Hermitian square roots of P and Q (see (2.3)). Below, we focus
on how to explicitly compute such a D, given F, G, H, E, A.

Therefore, our problem has now been reduced to obtain a pN x mN matrix D
whose (p x m)-block entries above the main diagonal are completely specified by yo,
and which minimizes

IIHell= aG AFE

Let D be represented by

Xll d12 d13 dlN]
X?l X?2 d23 d2.N/

LXN1 XN2 XN3 XNNd
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where the entries indicated are p x m matrices, the d’s being specified by 3o and the
x’s representing the entries to be filled in. Define

He:= D HE

0

Rk := [00 Inkm]"
We now have the following proposition.
PROPOSITION 2.7. /x max (IIL,HeR-,II,’", IILRollt.
The matrix LrHeRs-k is the top right n + kin) x n + Nm kin) submatrix of He.

Note that LkHeR-k, for k 0, 1,. ., N are all the maximal rectangular submatrices
of e whose entries do not depend on the variables x. (It will be seen that the norm
of LoHeR, is equal to the norm of LHeRo, and this is why only one of the two appears
in the expression of the above proposition.) The proof is based on the following very
impoaant result--see the book by Power [12] and also [3] for a proof of this result.

LEMMA 2.8 (Parrott, Davis-Kahan-Weinberger). Consider the block matrix

here A, B, C, X are matrices of compatible dimensions. en

Moreover, the above infimum is attained by the choice

(.9 X -*( *-’C.

In case the indicated inverse does not exist, then this should be interpreted as a
pseudo-inverse. Also, in [3], one can find a description of all possible choices for X
that attain this infimum.

Proof of Proposition 2.7. By the results of Adamjan, Arov and ein 1], as we
mentioned earlier, it follows that . =inf IlVell.

Xik

From Proposition 2.4 we now have that

/z inf He inf 11/e II,
Xik

where the last equality follows from the unitary equivalence of He and He. By repeated
application of Lemma 2.8 we now have that

=max {ll(LeRo)ll, inf II(Lr-lI:IeR,,r)llt
xj,...,xjj
IjN--1

=max {II(,N0)II,’’’,

=max { LNff’IeRo LN- IIR LoIteRN }.
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A final point to be noted is that the first and the last term of the above expression are
equal. We have

(ZNIIeR’ 11--I1( II IIHE ]

But

AF2
2-1R=

OFR

and

VV* In+pN and E-1RR*E In.
Consequently, IIt,,,I:IeRo[I- IIFII. It follows similarly that IILoI eR,,,ll- IIFII, and this
completes the proof, l-]

It can be readily shown that the matrices

LkHeRN-k, k 1,’", N,

are directly related to the operators Ak, k= 1,..., N respectively, of Feintuch,
Khargonekar and Tannenbaum [6], and that in fact they have equal norms. Thus, in
Proposition 2.7, we have a formula for the optimal sensitivity/x, that is equivalent to
the one given in [6]. But, in addition to that, the sequence of steps (2.9) in the proof
of the Proposition 2.7 leads to the following procedure to obtain a V(z) that solves
the problem (1.1).

ALGORITHM.
1. Obtain a minimal realization (F, G, H) of the negative Fourier coefficients

(Yk" k<=-l) of T(z); i.e., (F, G, H) satisfy (2.1).
2. Obtain P, Q by solving Lyapunov equations (2.6a) and (2.6b) and find their

Hermitian square roots E, A, respectively.
31. Select xl using (2.9) to minimize IILI:IeRNll. Note that in LII2IeRn, the only

variable is Xll and the rest of L1HeRv is com letely specified.
32. Select (X21,X22) to minimize IIL2HeRnlI. Note that L2HeRN contains

Xll, x21, x22 as the only variables. In this step x obtained in step 31 is used. Again
(2.9) is used to select (x21, x22).

3j. Select (Xjl, x;2,’’’, x;;) to minimize L I:I R for j 3, 4,. , N, where the
entries Xkl,’’’, Xkk, for 1 =< k<=j 1 have already been determined at the previous
steps. This is done by applying (2.9) to the corresponding submatrices of L;HeRn.

4. Let Vo 3’0-D. Now using techniques of Glover [9] obtain

i=1

such that

tx T(z) vo- Q(z)[[o.

For this last step, see also Ball and Ran [2]. Then V(z)= Vo+ V(z) is a solution
to (1.1).

We would like to note that only the elements of D are calculated by recursively
applying (2.9) (N-1) times. After obtaining D, the procedure of Glover [9] or Ball
and Ran [2] can be used to obtain V(z).
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