SIAM J. MATH. ANAL. © 1987 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, September 1987 004

A TOPOLOGICAL APPROACH TO
NEVANLINNA-PICK INTERPOLATION*

TRYPHON T. GEORGIOUY

Abstract. We study the set of rational solutions of an (N +1)-point Nevanlinna-Pick problem, that
has degree bounded by N. Based on the invariance of the topological degree of a certain mapping under
deformation, we establish that when the (N +1)-point Nevanlinna-Pick problem is solvable, then for any
dissipation polynomial of degree N or less, there corresponds an interpolating function with dimension at
most N. Our results provide a novel topological proof for the sufficiency of Pick’s criterion for the solvability
of the Nevanlinna-Pick problem, and also give a solution to an extended interpolation problem.
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1. Introduction. The Nevanlinna-Pick interpolation theory has a long history in
mathematics. Its origin can be traced back to the beginning of the century in the work
of Pick [20] and Nevanlinna [19] and it has reached a high degree of achievement in
the recent work of Adamjan, Arov and Krein [1], Sarason [21], Sz.-Nagy and Foias
[25] and Ball and Helton [3].

In engineering, it was in a circuit theoretical context where interpolation theory
found the first applications (see Belevitch [4] and Wohlers [28]). In recent years,
renewal of interest in the Nevanlinna-Pick interpolation problem has been motivated
by a multitude of applications to system theoretic problems. These have been in the
area of robust control, circuit theory, approximation theory, filtering, and stochastic
processes (see Zames and Francis [30], Khargonekar and Tannenbaum [15], Helton
[11], Genin and Kung [7], Dewilde, Vieira and Kailath [6] and Delsarte, Genin and
Kamp [5]).

This paper addresses certain questions that carry a significant interest from an
engineering standpoint.

It is known that whenever an (N + 1)-point Nevanlinna-Pick problem is solvable,
there exist rational solutions of degree at most N. Generically, the solution is nonunique.
In this paper we present a study of the solutions of the (N + 1)-point Nevanlinna-Pick
problem that are at most of degree N. We show in Theorem 5.3 that for any dissipation
polynomial (for a definition, see § 4) of degree at most N there exists a corresponding
solution of degree at most N. This provides a description of the set of degree N
solutions. We must point out that the degree of the interpolating function is related
to the dimension of a controller in a feedback system, to the dimension of a modeling
filter of a stochastic process, or to the McMillan degree of a certain transfer function
in a circuit theoretic context. We show the above by exploiting the invariance of the
topological degree of a certain mapping under deformation.

This approach also provides an independent topological proof of the sufficiency
of Pick’s criterion for the solvability of the Nevanlinna-Pick problem.

Our results are applied to tackle the solvability of an extended interpolation
problem (see § 5) where, in addition to the N +1 interpolating conditions of the
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standard problem, we require that the real part of the function satisfy extra N interpolat-
ing conditions on the boundary of the ‘“stability” region. These N interpolating
conditions are interpreted as attenuation zeros of an associated transmittance function.

This work follows the lines of an investigation on the Carathéodory problem [8],
and a preliminary version was reported in [9].

A variety of different terminologies has appeared in connection with the Nevan-
linna-Pick problem. For instance, the reflectance of a passive system is known also as
a bounded real function or as a Schur function, etc. We have chosen to use a rather
mathematical terminology as it appears in the classical references (e.g. Akhiezer [2]),
although occasionally we indicate the “translation” of the various terms in the circuit
theoretic or stochastic terminology.

2. Notation and terminology.
C ={complex numbers}.
R = {real numbers}.
D = open unit disc

={zeC:|z|<1}.
X X° 94X indicate the closure, the interior and the boundary of a set X,
respectively.
H (D) = {functions holomorphic in D}
C =class C (for Carathéodory)

={f(z)e H(D): Re {f(z)} =0 for all z in D}.
S =class S (for Schur)

={f(z)e H(D): |f(z)|=1 for all z in D}.
z* = complex conjugate of zeC.
If a(z)=ap+a;z+- - -+a,z"+--+-€ H(D), then
a(z),=a*(z™")

=a¥+a¥fz '+---+a*z"+- - is analytic in C — D",

L*: the space of squarely integrable functions on 3 D.
H?: the space of L>-functions that have analytic continuation in D.

3. Nevanlinna-Pick interpolation. Consider two sets of N +1 points in C,
z={z.:z.eDfork=0,1,-+--,N} and w={w.:w.eC fork=0,1,---, N}

For simplicity we will always assume that the points z, are all distinct. The Nevanlinna-
Pick problem can be stated as follows.

ProBLEM NP (z, w). Construct, if possible, a function f(z) € C that satisfies the
interpolation conditions

(3.1) f(z)=w, fork=0,1,+-+,N.
In particular,

(NP,) find necessary and sufficient conditions on the data (z, w) for the existence
of a solution f(z), and

(NP,) give a complete description of the set C(z, w) of all C-functions satisfying
(3.1).

The solvability criterion was derived by Pick and a constructive algorithm was
provided by Nevanlinna—we now outline these. For a more detailed exposition see
Walsh [27].
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Pick criterion. There exists a function f(z)e C that satisfies (3.1) if and only if
the Pick matrix

wy + W?‘ N
1-z.z¥

P(z,w):= [
x,1=0
is nonnegative definite.
A similar interpolation problem can be stated in terms of functions of class S
instead of C. Both formulations are equivalent. However, the Nevanlinna recursive
scheme is simpler to describe in terms of S-functions. Define

z—z,

L (z)= for k=0,1,:--, N.

1~ zz*

Nevanlinna recursive scheme. A function f(z) € C satisfies the interpolation condi-
tions (3.1) if and only if

(3.22) Re wo=0
and

1 f(z)—wo

— 1
(3.2b) 51(z) = {o(z) DT we
belongs to the class S and satisfies the interpolation conditions
. - f(ZK) - WO

(3.3) 51(2¢) = v = Lo(2,) lm fork=1,2,---,N.

Furthermore, a function s5;,(z) € S such that
sl(zx)=l’1,,< for k=L1+1,---, N

exists if and only if either

1 si(z)—vy
3.4 <1 d = ) 15| to S,
(3.4a) foul and  s..4(2) = i(z) 1-vksi(z) belongs to S,
or,
(3.4b) logl=1 and s(z)=v,=vy="""=0vN

In case (3.4a) holds, s;.,(z) satisfies

1 UI,K(ZK) — U

for k=1+1, -+, N.
1 - U;I,(Ivl,:((zx) K

sl+l(zx) = vl+1,x = {K(ZK)—

(For a proof see Walsh [27].)
Notice that at each step of this procedure the number of interpolation conditions
is reduced. Thus, it leads to a recursive solution of NP (z, w). This is summarized below.
ProposiTION 3.5. The NP problem is solvable if and only if Re wy>0 and either

(3.5a) loeul<1 fork=1,---, N
or

(3.5b)  |ull<1 fork=1,--,m—1 and |vpm|=1, Vpm='""=0mn-
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In the later case the solution is unique, whereas in the former case the general solution
is obtained using

- 1+ 8o(2)51(2)
(3.6a) f(z)=j Im wy+Re Wol—fo(z)sl(z)
and
_ out+(2)sina(2) _ -1 ...
(3.6b) si(2)= 1+ 05541(2) 5144(2) forl=mn=1, !

from v, 1=1,- -, nand an arbitrary s.,(z) € S.

We are interested in the “indeterminate” case when there is more than one solution.
A necessary and sufficient condition for the problem to be indeterminate is (3.5a). This
condition is equivalent to the positive definiteness of the associated Pick matrix. Hence,
from now on, we will assume that P is positive definite.

In the indeterminate case, one particular solution of the NP problem is obtained
by setting s,.,(z) =0 in (3.6). We state some related facts in the following proposition.

ProOPOSITION 3.7. Let the Pick matrix P be positive definite and let fy(z) denote the
solution of the NP problem that is obtained by setting s,,,(z)=0. Then, (a) fo(z) is a
rational function, and (b) if fo(z) = mo(2)/ xo(z) with mo(z) and xo(z) coprime polynomials
in z, then max {deg my(z), deg xo(2z)}=n and xo(z) # 0 for all ze D",

Proof of Proposition 3.7. From (3.6) it is easy to see that f(z) is a rational function
of degree less than or equal to n. (The degree of a rational function mwy(z)/ xo(z) is
defined to be the maximum of {deg 7¢(z), deg xo(z)} where m(z), xo(z) are polynomials
in z.) Also using (3.6), one can derive that

7o) Xo(2) s+ Xo(2)mo(2)5 = k nI;I:(z—zK)(z“—z’,f)

for some scalar k> 0. Now, since |z <1 for all k, xo(z) (and for that matter mo(z)
also) cannot have a root on 9D, otherwise, xo+(z) would have a root at the same point.
This cannot happen because the right-hand side of the above has no root on 4D.
Finally, that x,(z) has no root outside D° is a consequence of the fact that fy(z) is a
C-function (Proposition 3.5). Q.E.D.

4. Rational C-functions. A well-known characterization of rational C-functions
is given below (see Siljak [24]).

ProrosITION 4.1. Let w(z), x(z) be coprime polynomials in z. The rational function
7(z)/ x(z) belongs to C if and only if

(4.1a) w(z)+x(z)#0 forall ze D¢
and
(4.1b) d(z,z7 ") =m(2)x(2)e + x(2)7(2), =0 for all ze3D.

A polynomial d(z, z7') € C[z, z'] that satisfies (4.1b) will be called a dissipation
polynomial (following Kalman [12]). The degree of the highest power of z will be
called the degree of d(z,z™"). (A necessary condition for d(z, z') to be a dissipation
polynomial is that d(z, z7'),, = d(z, z'). Hence deg d(z, z™") is also equal to the highest
power of z ')

Allowing the polynomials 7(z), x(z) to have common factors, condition (4.1a)
can be somewhat relaxed. The following modification of (4.1) will be utilized in the
sequel.
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ProrosITION 4.2. Let w(z), x(z) be polynomials in z (not necessarily coprime). If

(4.2a) 7w(z)+x(z)#0 for all ze D (and not necessarily in D°)
and
(4.2b) d(z,z7")=0 forall zeaD,

then 7 (z)/x(z) is a C-function.
Proof. From

|7 (z)+ x(2)P=|m(z) — x(z)?=2d(z,z7")=0 for zeoD,

it follows that any root of 7(z)+ x(z) on 4D is also a root of 7w(z)— x(z) and hence,
of both 7 (z) and y(z). After extracting all common roots of 7(z) and y(z) that lie
on 3D, we are left with a pair of polynomials (7(z), ¥(z)) that satisfy (4.1a), (4.1b)
and also 7 (z)/x(z) = 7(z)/x(z). Therefore, w(z)/x(z) is in C. Q.E.D.

5. Interpolation with rational C-functions of degree N: Main results.

PrOBLEM 5.1: I(z, w, £). Let (z, w) be a set of N+1 interpolating conditions,
and let ¢={¢&: é.€0D, k=1,2, - -, N}. Find necessary and sufficient conditions for
the existence of a rational function f(z) = w(z)/ x(z) € C that satisfies the interpolation
conditions

(5.1a) f(z.)=w, fork=0,1,--- N,
and also
(5'1b) W(fx)X(fx)*"’X(fx)’”(fx)*=0 for k = 13 Y N.

Note that in case 7 (z), x(z) have no common factor, conditions (5.1b) can be
written as

(5.1¢) Ref(£)=0 fork=1,---,N

(which represent Lowner-type interpolation conditions). In a circuit theoretic context
the points &.€dD correspond to attenuation zeros for the corresponding Schur-
bounded real transmittance function s(z). That is, if s(z) =1/z[f(z)—f(0)1/ [f(z)+
f(0)*], then (5.1c) implies that |s(£)|=1 and hence the attenuation
log|s(&.)|=0for k=1,2,---, N.

Although we have two sets of interpolation conditions it turns out that the
solvability depends again on the positive definiteness of the Pick matrix.

THEOREM 5.2. Problem I(z, w, £) is solvable if and only if the Pick matrix associated
with (z, w) is positive definite. Moreover, in this case, there always exists a solution of
degree less than or equal to N.

Theorem 5.2 is a direct corollary of the following more general one.

MAIN THEOREM 5.3. Let (z, w) be a set of N +1 interpolating conditions such that
the associated Pick matrix is positive definite, and also let d(z,z™') be an arbitrary
dissipation polynomial of degree at most N. Then, there exists a pair of polynomials
(m(z), x(z)) such that

(533) f(Z) = :Ej))e C and satisﬁesf(zk) =W, for k=0,1,---, N,
(5.3b) m(2)x(2) 5+ x(2)7(2)=kd(z,z7") for some k>0,

(5.3¢) deg f(z)=N.
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The proof of the above makes use of Topological Degree Theory (see § 6) and
thus provides a novel approach to establish the sufficiency of Pick’s criterion for the
solvability of the NP problem which follows.

CoRroLLARY. If the Pick matrix P(z, w) is positive definite, then the NP (z, w)
problem is solvable.

Proof. This is a direct consequence of Theorem 5.3. Q.E.D.

Naturally, one would like to know whether NP (z, w) (or I(z, w, £)) has a solution
of degree strictly less than N and for that matter, to determine the minimal degree
(see Youla and Saito [29] and Kalman [13]). Unfortunately, this question seems to
be tractable only by methods of decision theory. In fact, the problem of finding the
minimal degree of a rational solution f(z) when NP (z, w) is solvable, is a decidable
one. The reason for that is that both the set of interpolation conditions and the
conditions that guarantee that f(z) belongs to C (see Proposition 4.1 and also Siljak
[24]) can be phrased in terms of the solvability of a finite set of equations that depend
polynomially on the coefficients of f(z). For the existence of a solution the theory of
Tarski [26] and Seidenberg [23] can be used. However, using the tools developed for
the proof of Theorem 5.2 we obtain the following.

ProPosITION 5.4. The set of N + 1-pairs (z, w) for which NP (z, w) is solvable but
has no solution of degree strictly less than N, is open and nonempty for all N.

Below we demonstrate the implications of our results to a particular case.

Example 5.5. Consider the problem NP (z, w) where z ={0,3} and w ={1, 2}. The

associated Pick matrix
2
P~ o)
3 16/3

is positive definite. Consequently, the NP (z, w) is solvable. The general solution is
given by

1+ zs,(2)
1—2zs,(2)

f(2)=

where s,(z) is an S-function that satisfies

1 2
\3)=73

and a general expression for it is given by (3.6b).
Let us restrict our attention to f(z) of degree 1 or less. A rational function f(z)
that meets the interpolation data (z, w) is given by

(5.6) f(z)=11_t—gz where @ =2(1+ ).

In order for f(z) to belong to C it is necessary and sufficient that
(5.7) |+ B|+|a—B|=2.

This follows easily from Proposition 4.1.

Let us now consider solutions of I(z, w, ¢) for various points £ =exp {j0}€dD. It
can easily be verified that for all £# +1 there exists a degree 1 function f(z)e C as
above, such that

(5.8) Re f(£)=0.
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For instance, if £ =—1, then the required f(z) is

1+z

-
1—72

f(z)=

(For all other choices of ¢, f(z) has complex coefficients.) It is straightforward to verify
(5.6)-(5.8). However, for £=+1, the function f(z) sought in Theorem 5.1 is

flzy =

This satisfies (5.6), (5.7) and also (5.1b). But f(z) has a pole at £ =+1 and, in this case,
linz Re f(z) =3#0.

In the general case, similar situations occur with probability zero. In other words, with
generic data (z, w, £), the solutions to I(z, w, £) have no poles on 3D and in this case
(5.1¢) is equivalent to (5.1b).

6. Proof of the main results. First we recall certain tools of the geometric-functional
theoretic approach of Sarason [21] to the interpolation problem.

Let B(z) denote the finite Blaschke product (all-pass function) with simple zeros
at z,, k=0,1,---, N; i.e.,
N 2=z lzd

B(z)= 11

w=0ol—2z%z =z,
(where |z.|/z. is replaced by 1 when z,=0). Let K denote the subspace of H”
K = H*©B(z)H>

The orthogonal projection in L* with range K is denoted by [ ]x, whereas ( , ) denotes
the inner product in L%
K is an (N +1)-dimensional vector space and a commonly used basis for K is

1
B={gx(2)=r__—'zg,'<=0, 1. ,N}-
Note that for all q(z) in H?, (q(z), g.(2)) = q(z.).

Any element g(z) in K can be represented as the ratio

_x(z)
q(z)= "2)’

where x(z) is a polynomial of degree N and

N

r(z)= 11 (1—z¥z).
k=0
Let C(z, w) be the set of solutions of NP (z, w). The Pick matrix is assumed to be
positive definite. Consequently, by Proposition 3.7, there exists a solution f(z) in
C(z, w) that also belongs to H(D°). Define the linear operator

T:K->K:q(z)~>[f(2)4(2)]k.

It turns out that T depends only on the interpolation data (z, w) and not on the
particular solution f(z) in C(z, w). Moreover, as it will become clear below, T can be
defined directly on the basis of (z, w) (and does not require the solvability of NP (z, w)).
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LEMMA 6.1. Let p(z) =[f(2)q(z)]k, where q(z) € K, and f(z)e C(z, w) N H(D*)
as above. Then p(z) is independent of the particular f(z), it depends only on (z, w) and
it satisfies

p(z.)

q(z.)

Proof. Let q(z) =Y, b.g.(2) and p(z) =% 1_, a.8.(z). Then
p(z) =(p(2), 8(2)) =([f(2)4(2)]k, 8« (2))

=w, k=0,1,---,N

=wq(z).
This is a set of N +1 equations in the N +1 coefficients of p(z):
Qo woq(2o) Wo bo
G ‘{1 _ qu_ (z1) _ Wi . G I?l
an wng(zn) WN bn

where G is the Gram matrix

G = [(gc(2), &i(2))] 'IJ’=D = [1 —1 z}"] =0

Since the g.(z), k=0, 1, - -, N are linearly independent, G is nonsingular. (This can
also be shown directly by computing the determinant of G. G is related in a simple
way to the so-called Hilbert matrix and a formula for the determinant of a Hilbert
matrix can be found in Knuth [16, p. 36].) Thus, T is the linear transformation specified
by p(z) = Tq(z) where

a, W b,
(6.12) “ =6 " cl?|. Q.E.D.
an ' WN bN

PrOPOSITION 6.2 (Sarason [21]). The Pick matrix P is the real part of T.
Proof. Let q(z)= Z:;O b.g.(z). Then,

2 Re([f(2)q(2)]k, 4(2)) =([f(2)q(2)]k, 4(2)) +(q(2), [f(2)q(2)]k)

+
. w'bK. Q.E.D.

K,1=0 1 yv4

(6.1b)

Let f(z) e C(z, w) N H(D®) as before. Define the following linear map:

V: K-> K:q(z)>u(z) =[(1+f(2))q(2)]k-
Since f(z) € C, then 1+ f(z) has an inverse in H(D®) and V¥ is invertible. Define
Y=V K->K:u(z)>q(z)=[1+£(2))"q(2)]Ix-
Note that ¢ (and also V') depends only on (z, w) and not on our choice of f(z) € C(z, w).
This can be readily established as in Lemma 6.1 and, in point of fact, if u(z) =2u,g,,
then ¢[u(z)]=q(z) =2b,q, where
b, 1/(1+ wo) U

b, 1/(1+w,) Uy

(6.2a) <= G G

b o ya+wal Lus
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We also note that if p(z)=T[q(z)] then u(z)=p(z)+q(z). Using these facts we
proceed to the proof of Theorem 5.3.

Proof of Theorem 5.3. Given u(z) € K we can readily obtain a pair (p(z), q(z))e
K x K, by q(z)=¢[u(z)] and p(z) = T[q(z)] using (6.1a) and (6.2a), such that

z—g—; is a rational function of degree at most n,
(6.2b) P(z) _ . (Lemma 6.1),
q(z)

p(2)+q(z) = u(2).

Let q(z) = x(z)/r(z) and p(z) = w(z)/r(z) where 7 (z), x(z) are polynomials of degree
n and r(z) is as earlier. Consider the function

e(z) = p(2)q(2)4+q(2)p(2)

_ m(@x(@ytx(2)m(2)y
r(2)r(2),

=d(z,z ")p(z) with zeaD

where p(z) =(r(z), r(z),)”" (e(z) can be considered as an L'-function).
In order for p(z)/q(z) = w(z)/ x(z) to be a C-function it is sufficient (by Proposi-
tion 4.2) that

(6.3a) u(z)#0 for all ze D¢
and
(6.3b) d(z,z7")=0 forall zeaD.

We will establish the theorem by studying the correspondence
u(z)>d(z,z7"),

and showing that the image of {u(z): u(z) € K, such that (6.3a) holds} contains the set
of all polynomials d(z, z7") of degree at most n that satisfy (6.3b) (and are properly
normalized). We now proceed to consider a normalization of u(z) and d(z,z™") so
that their correspondence becomes a continuous map between smooth manifolds.

Both e(z) and p(z) can be easily seen to be in L* Let e, (resp., p) with k€ Z
denote the Fourier coefficients of e(z) (resp., p(z)). The polynomial d(z,z™") is of
degree N (in both z and z™") and it holds that

N
€= Y dp-.
k=—N
On the other hand, using Proposition 6.2, we have that if q(z) =Z:’=0 b.g.(z) then
bo
eo=(b¥---bX)P| : |
by

Since P is positive definite, e, # 0 (unless g(z)=0).
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We now define the sets:

K=" N k=-N
Y,={d(zz ")€Y such that d(z,z")=0 for all zeaD},
X ={u(z) e K such that u(0)=1},
X, ={u(z) € X such that u(z)#0 for all ze D},

W = {rational functions 7 (z)/x(z) of dimension at most N that satisfy
7(z)/ x(z) =w, for k =0,1,- -+, N}.

Also we consider the following mappings:
~ 1
0:K—{0}>Y:q(z)>d(z,z7") =-e—d(z, z7h),
0

where ey, d(z,z"') and p(z) are computed from q(z) as before, and
w=00|x:X>Y:u(z)>d(zz7").

Both mappings are completely specified by the interpolation data, and since 0 € x(X),
it is easy to see that w is a continuous map. Now, X and Y are (smooth) linear
manifolds of real dimension 2N, and X; and Y, are compact subsets of X and Y
respectively. On the other hand the mapping

p() _7(z)
q(z) x(z2)

where q(z)=¢(u(z)) and p(z)= T(q(z)), is clearly surjective. Hence, in order to
establish the theorem we only need to show that

o(X)2Y,.

X->W:u(z)»

To show this we will exploit the dependence of w on the interpolation data w.
Consider z being fixed and define the set of w that render P(z, w) positive definite:

B:={weCN"*! such that P(z, w) is positive definite}.

We want to establish that B is a pathwise connected set. This follows immediately
from the continuous dependence of w on the parameter v, k=1,2, -+, N and the
fact that the positive definiteness of P is equivalent to the conditions

Rewo>0 and [v.|<1 fork=1,2---,N.

Now, provided the Pick matrix is positive definite (nonsingular would suffice), w
is a continuous map. Also, w depends continuously on the parameters w. We shall
indicate this by writing ,,.

Since B is pathwise connected, we can construct a (continuous) homotopy H
from w,, to w,; by following a continuous path from an initial w;,={w,=1, k=
0,1,- -+, N} to any other point w in B, i.e.,

H:Xx[0,1]->Y,

such that H(u(z),0)=w,, (u(z)) and H(u(z), 1) = w,(u(2)).
We now proceed as follows: we first show that

H(Xi; t)2 Y+’
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for t =0, and then that the same property holds for all t € [0, 1]; i.e., it remains invariant
under the homotopy.

We first note that fy(z) =1€ C(z, w;,). Then, the map H(-,0) = ww, (-) assumes
a simple form where

q(z)=3u(z)=p(2).
If q(z) = x(z)/r(z) as before,
2x(2)
Wy, - X > Y:_r(_'z)"_) kX(Z)X(Z)* s

where k is a positive scalar making kx(z)x(z), an element of Y. By the Riesz-Fejer
Theorem ([10, p. 21]) any element of Y. assumes a unique representation

d(z,27") = kx(2)x(2)y,

with y(z) a polynomial in z, devoid of zeros in D.
From the above it readily follows that

c
o, (X9)=Y,.
Moreover, the correspondence

(6.4) w,,,

x¢: X5 Y, is bijective.

Now let d(X,, o, d ) denote the topological degree of the map w at d relative to
the set X, . The topological degree is a “measure” of the number of preimages in X,
of the point d under the mapping w. In particular (6.4) implies that

(6.5) d(X,,H(-,0),d)=1 forallde Y9,

where Y9 indicates the interior of Y,. For a comprehensive exposition of various
aspects of degree theory see Lloyd [17] and Milnor [18].
We now show that

(6.6) d(X,,H(-,1),d)=1 forallde Y? and te[0,1].

This follows from a very powerful theorem on the invariance of the degree under
homotopy (Lloyd [17, p.23]) after we prove that the image of the boundary of X,
never intersects the interior of Y,:

6.7) H@GX,,)NYS.= forall te[0,1]

(see also Lloyd [17, p. 32], Milnor [18] and Schwartz [22] for the case of continuous
deformations of maps between smooth manifolds).

We now prove (6.7). Assume that the above intersection was not empty and let
d(z,z7")=H(u(z),t)e Y3, where u(z)esX,, and te[0,1]. Hence, u(a)=
p(a)+q(a)=0 for some value z=ae€adD. Also

d(z,27) = k[ p(2)4(2): + a(2)p(2),]
=2Tlp(@)+ 4P 1p() - a(2)F1=0,

for all ze gD, while k is a positive scalar. Hence,
d(a,a ") =0,

and d(z, z7") is not in the interior of Y,. This is a contradiction.
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Consequently, (6.7) is valid. Then, (6.6) follows from (6.5) and (6.7). Finally,
(6.6) implies that

Y(-)l— S H(X+’ 1) = ww(X+)’
which in turn, due to the compactness of X4 and the continuity of w, (), implies that
Y.< w,(X9).

This establishes the theorem. Q.E.D.

Proof of Theorem 5.2. From the Pick criterion it follows that P(z, w) being
nonnegative definite is a necessary condition for I(z, w, £) to be solvable. To show the
sufficiency part, let

N

d(z,z7) =11 (z— &)z~ &F)
k=1
and apply Theorem 5.3. Q.E.D.
Proof of Proposition 5.4. Consider the interpolation data (z, w) where

wo=1+a, aeC and w.=1 fork=1,2,:-:-,N.

The Pick matrix depends continuously on the parameters w and, consequently, it also
depends continuously on the parameter a. For a = 0 the Pick matrix is positive definite.
Hence, for a # 0 but is sufficiently small, the Pick matrix is still positive definite and
NP (z, w) admits a solution. However, there is no rational function of degree strictly
less than N that interpolates (z, w) unless a = 0. To see this, assume that such a function
f(z) exists, and let f(z) = w(z)/ x(z), where 7w (z), x(z) are polynomials of degree less
than N. Then,

m(2)=x(2) _
x(z)
for N different values of z. Therefore, 7w(z)— x(z), being of degree at most N —1, is

identically zero. Hence, f(z) =1, which is a contradiction. This establishes the propo-
sition. Q.E.D.

f(z)—1= 0

7. Concluding remarks. Theorems 5.2 and 5.3 provide existence-type results to an
inherently nonlinear problem. However, the homotopy used in the derivation can be
used to provide an algorithmic way to find the sought solutions. For a study of homotopy
methods as they relate to deriving numerical algorithms see the work of Kellogg, Li
and Yorke [14].

In this paper we have presented a description of the set of interpolating functions
of degree N to the (N +1)-point NP problem. However, it is not known at the moment
whether the correspondence in Theorem 5.3 represents in fact a parametrization of
this set; i.e., whether the correspondence between interpolating functions of degree N
and dissipation polynomials as in Theorem 5.3 is in fact bijective.

Finally, a simple criterion to determine whether there exists an f(z) in C(z, w)
of degree strictly less than N is still lacking. Such a criterion seems necessary for a
thorough understanding of minimal degree solutions to NP (z, w) as considered in
Youla and Saito [29] and Kalman [13].
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