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Decomposition of Toeplitz matrices

via convex optimization
Tryphon T. Georgiou Fellow, IEEE

Abstract— We point out that autocovariance functions of
moving-average processes of any given order m, can be char-
acterized via a linear matrix inequality (LMI). This LMI-
condition can be used to decompose any Toeplitz autococo-
variance matrix into a sum of a singular Toeplitz covariance
plus the autocovariance matrix of a moving average process
of order m and of maximal variance. The decomposition is
unique and subsumes the Pisarenko harmonic decomposi-
tion which corresponds to m = 0. It can be used to account
for mutual couplings between elements in linear antenna ar-
rays, or identify colored noise consistent with the covariance
data. The same LMI-condition leads to an efficient compu-
tation of the least order of a MA-spectrum which agrees
with covariance moments.

Keywords—Spectral analysis, Pisarenko harmonic decom-
position, moving average processes, convex optimization;
EDICS: DSP-TFSR.

I. Introduction

THE observation that singularities in covariance matri-
ces reveal a deterministic linear dependence between

observed quantities, forms the basis of a wide range of
techniques, from Gauss’ least squares to modern subspace
methods in time-series analysis. In particular, the so-called
Pisarenko harmonic decomposition [3], [7], relies on a de-
composition of a Toeplitz covariance matrix into a singular
one and a positive scalar multiple of the identity—the first
corresponding to a deterministic component and the sec-
ond to a white noise process. The present work suggests a
more versatile framework where a given Toeplitz covariance
is decomposed according to the hypothesis that the under-
lying process consists of a deterministic component and a
moving average one. The moving average component of
a prespecified order m can be selected to have maximal
variance. This allows a unique decomposition which gen-
eralizes the spirit of the Pisarenko dictum.

A decomposition into a low order moving average part
plus a deterministic component seems appropriate in mod-
eling mutual coupling between elements in antenna arrays
in the context of direction of arrival (DOA) estimation
where spectral lines are also present. It may also provide
a convenient framework for modeling continuous spectra
and colored noise. Such a decomposition was introduced
in [2] in the process of seeking suitable multivariable gen-
eralizations of the Pisarenko harmonic decomposition for
general state-covariance matrices. In the present note we
specialize such a decomposition in the context of Toeplitz
matrices. We also introduce and study a sequence of pa-
rameters gm for m = 0, 1, . . . representing the fraction of
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the energy/variance of the underlying process which can
be accounted for by a moving average one of order m. The
behaviour of gm as a function of m may suggest suitable
choices for the order of the continuous part of the spectrum
(e.g., m selected at a point of “discontinuity”). Further,
the smallest value m for which gm = 1 is guaranteed to
occur after a finite number of steps and is the least order
of a MA-spectrum that can account for the complete set of
covariance data.

Section II discusses theoretical and computational issues
of the proposed decomposition, while Section III presents
an academic example that elucidates the key ideas. It
should be emphasized that the proposed decomposition
leads to alternatives of the Pisarenko paradigm which are
similarly consistent with given covariance data. The prac-
tical significance of the methodology appears considerable
in cases of low SNR, and is currently under investigation.

II. Theoretical considerations

Throughout we consider a scalar, discrete-time, zero-
mean, stationary stochastic process {uk : k ∈ Z} taking
values in C with m ∈ N. We denote by

Rk := E{uℓu
∗
ℓ−k},

for k, ℓ ∈ Z, the sequence of covariances and by dµ(θ) the
corresponding power spectrum for which

Rk =

∫ 2π

0

e−jkθdµ(θ),

where “∗” denotes the “complex-conjugate”, j :=
√
−1,

and E{·} is the expectation operator.
It is well-known that a covariance sequence {Rℓ : ℓ ∈

Z and R−ℓ = R∗
ℓ} is completely characterized by the non-

negativity of the Toeplitz matrices

Rℓ :=











R0 R1 . . . Rℓ

R−1 R0 . . . Rℓ−1

...
...

. . .
...

R−ℓ R−ℓ+1 . . . R0











(1)

for all ℓ. At the same time, the infinite sequence of Rℓ’s
specifies the power spectrum dµ uniquely. However, it is
often the case that only a finite set of second-order statis-
tics is available, and then, it is of interest to character-
ize possible extensions of the finite covariance sequence
{R0, R1, . . . , Rn}, or equivalently, characterize the totality
of consistent power spectra. When only {R0, R1, . . . , Rn} is
known and Rn > 0, the family of power spectra is infinite,
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whereas if Rn is singular, then Rℓ is specified uniquely for
ℓ > n by the requirement that Rℓ ≥ 0. In this case the un-
derlying process is deterministic (see e.g., [7, Section 3.9.2])
and the unique power spectrum consists of pure spectral
lines (see e.g., [7, Section 4.5 and Exercise 4.5], or [2, The-
orem 5] for a considerably more general setting).

If {vk, k ∈ Z} is a moving average process of order m,
then the corresponding covariance sequence

Qℓ := E{vkv∗k+ℓ}

vanishes for ℓ > m. In this case, all successive principle
minors of the infinite banded Toeplitz matrix

Q :=



















Q0 . . . Qm 0 . . .
...

. . .
. . .

. . .

Q−m

0
. . .

...
. . .



















(2)

are positive. Consistently with (1), we denote by Qℓ the
(ℓ + 1) × (ℓ + 1) principle submatrix of (2). Although Q

is made up of finitely many parameters, testing whether
Qℓ > 0 for all ℓ is not a “finite” test1. Alternatively, the
spectral density

q(ejθ) := Q∗
me−jmθ + . . . + Q0 + . . .Qmejmθ, (3)

is a nonnegative trigonometric polynomial which is also
2 ×ℜe(F (ejθ)) where

F (z) :=
1

2
Q0 + Q1z + . . . + Qmzm

=
1

2
Q0 + zC(I − zA)−1B

for z = ejθ. Here A is a m × m companion-shift matrix
and B,C compatible column and row vectors of length m
given by

A =









0 0 . . . 0 0
1 0 . . . 0 0
0 1 0 0
...

...
0 0 . . . 1 0









, B =









1
0
...
0
0









, and

C =
[

Q1 . . . Qm

]

. (4)

Since F (z) is analytic inside the unit disc, then the con-
dition that q(ejθ) ≥ 0 for all θ ∈ [−π, π] is equivalent to
F (z) being a “positive-real” function, i.e., having nonneg-
ative real part inside the unit disc. The positive realness
property can be most efficiently characterized via a linear
matrix inequality:

Proposition 1: The finite sequence {Q0, . . . , Qm} is a
partial covariance sequence of a moving average process of

1This issue underlies basic questions in linear estimation to which
the periodogram is an easy way out, since it provides an approximate
spectral density to a given set of covariances in the form of a moving
average spectrum.

order m if and only if there exists an m×m matrix P ≥ 0
such that, with A,B,C as in (4),

[

P − A∗PA C∗ − A∗PB

C − B∗PA Q0 − B∗PB

]

≥ 0. (5)

Proof: In essence, the statement of the proposition
is a special case of the well-known as the “positive-real
lemma” ([4], see e.g. [1, Théorème 3.1]) which applies to
more general (A,B) pairs.

Testing condition (5) amounts to a convex optimization
problem, and so is the following:

Problem 1: Given a finite non-negative definite Toeplitz
matrix Rn for n ∈ N, and given m ∈ N, determine the max-
imal value for Q0 ≥ 0 for which there exist Q1, . . . , Qm ∈ C

and an m × m matrix P such that with Q as in (2) and
Qn defined accordingly,

(6a) P ≥ 0

(6b) condition (5) holds, and

(6c) Rn ≥ Qn. (6)

Conditions (6a-c) are standard linear matrix inequalities
and Problem 1, which asks for the minimum of a linear
functional subject to (6a-c), is readily solvable numerically
using software which are standard in e.g., the Matlab LMI
toolbox. A routine for solving Problem 1 which uses this
Matlab LMI-software is provided at the author’s website
[8].

Proposition 2: If Q0, . . . , Qm and P represent the solu-
tion to Problem 1, and accordingly Rn,Qn are as stated
before, then their difference given below is nonnegative and
singular:

Sn := Rn − Qn. (7)

Proof: Sn is clearly nonnegative from (6c). To show
that it is singular, assume the contrary. Then, if Q0 is
replaced by Q0 +ǫ and the same values for Q1, . . . , Qm and
P are used, conditions (6a-c) are still valid for a sufficiently
small ǫ > 0. This is true because a small increase in Q0

so that Sn is still positive, does not invalidate (5). This
contradicts the assumption that Sn originates from solving
Problem 1 since Q0 is not maximal.

We introduce the sequence of parameters gm, for m =
0, 1, . . ., via

gm = Q0,m/R0

where the expanded indexing Q0,m indicates that the value
for Q0 is obtained as in Problem 1 for a particular choice
of m. These parameters represent the fraction of the en-
ergy/variance in the data {R0, R1, . . . , Rn} that can be at-
tributed to a moving average component of order m.

Proposition 3: If Rn > 0, then for m = 0, 1, 2, . . ., gm is
non-decreasing, 0 < gm ≤ 1 and there is a finite m1 such
that gm = 1 for all m ≥ m1. If on the other hand Rn is
singular, then gm = 0 for all m ≥ 0.

Proof: Assume first that Rn > 0. Clearly, Q0,m > 0.
Also, from (6c), we deduce that Q0,m ≤ R0. Hence, 0 <
gm ≤ 1. The sequence is nondecreasing because moving
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average processes of a given order trivially include those of
lower order.

We now sketch the proof that gm → 1 in a finite number
of steps. Since Rn > 0, there exists a covariance exten-
sion Rn+1, Rn+2, . . . which corresponds to a maximal en-
tropy power spectrum (e.g., see [3], [7]) and is consistent
with the first n + 1 covariance “samples” that make up
Rn. The corresponding spectral density

∑∞
k=−∞ Rkejkθ is

strictly positive and continuous (hence uniformly approx-
imable by trigonometric polynomials which already shows
that gm → 1 as m → ∞). But furthermore, the maxi-
mum entropy extension Rn+1, Rn+2, . . . decays geometri-
cally. This is due to the fact that it corresponds to an
all-pole model with poles that do not lie on the circle.
Therefore, there is a finite value m1 for which the “tail”
∑

|k|>m1
Rkejkθ is sufficiently small to ensure positivity of

the sum over the remaining k’s (i.e. over |k| ≤ m1) —but
this remaining terms correspond to a moving average spec-
tral density which is consistent with the data. This proves
the claim.

Now consider the case where Rn is singular. Since Qn

corresponds to a moving average process, it is necessarily
positive definite. Hence, Rn − Qn must be negative when
projected on the null space of Rn. Therefore Qn ≡ 0, and
so is Qm,0 and gm for any m.

III. An example

We consider as our data a Toeplitz matrix R4 made up
of the following partial covariance sequence

Rℓ =
√

5 − |ℓ| for ℓ = 0,±1,±2,±3,±4. (8)

The fraction gm of the energy/variance that can be ac-
counted for by a moving average process of order m, as a
function of m, is shown in Figure 1 for m = 0, 1, . . . , 10.
Note that g8 = 1 and hence, that gm = 1 for m > 8 as well.
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Fig. 1. gm vs. m

Two alternative spectra for (8) are shown in Figures 2
and 3 for comparison. The first is based on interpreting
the data as originating from a white background noise on

top of a deterministic component consisting of sinusoidal
signals. The maximal energy level for the white noise (ac-
cording to the Pisarenko dictum) is shown by the horizontal
line in Figure 2 while the power spectrum of the determin-
istic component corresponds to the spectral lines shown.
Similarly, Figure 3 shows the power spectral density of a
moving average component of order 3 which is consistent
with data and has maximal variance, along with spectral
lines that account for the remaining energy. Both spectra
shown in Figures 2 and 3 are consistent with the data. Yet
the latter adjusts for colored MA(3)-noise. If such noise is
indeed present in the underlying process, and our intention
is to identify spectral lines, accounting for the color of the
noise may reduce bias and other effects.
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Fig. 2. Power spectrum corresponding to white noise + sinusoids
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Fig. 3. Power spectrum corresponding to a MA(3)-component +
sinusoids

Remark 1: It is interesting to point out that there is not
a uniform bound on m1 in Proposition 3 (i.e., a bound
that depends only on n and not on the particular values
making up Rn). To see this, consider {R0 = 1, R1,k =
(k−1)/k} and let k → ∞. If there was a fixed value m1 and
a set {R2,k, . . . , Rm1,k} consistent with the hypothesis of a
moving average model of order m1 or less, then as k → ∞,



4 SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS – DECEMBER 2005

convergent subsequences for the Rℓ,k’s having limits Rℓ for
2 ≤ ℓ ≤ m would give rise to a nonnegative trigonometric
polynomial 1 + 2 cos(θ)+ 2R2 cos(2θ)+ . . .+ 2Rm cos(mθ).
But this is impossible because the limit partial sequence
{R0 = 1, R1 = 1} is already singular (since det(R1) = 0)
and has the unique nonnegative extension Rℓ = 1 for all ℓ.

IV. Concluding remarks

It is pointed out that the positive-real lemma provides
an effective way to characterize autocovariance functions
of moving-average processes. Utilizing this fact and in a
way analogous to the well-known Pisarenko dictum, any
given Toeplitz covariance matrix Rn can be decomposed
into a sum Sn + Qn consistent with the decomposition of
the underlying process into a deterministic component plus
a MA(m) component of maximal variance. The Pisarenko
harmonic decomposition corresponds to the special case
where m = 0. In applications, the choice of m may be
dictated by prior information on the nature of the com-
ponent that corresponds to Qn (e.g., its order), or by a
more detailed analysis of the effect of m on the variability
of a certain number of sinusoids that we anticipate in the
component corresponding to Sn.

The characterization of MA-autocovariances in Proposi-
tion 1 also allows an efficient solution to a long standing
problem, the computation of the least order MA-spectrum
which fully accounts for the given moments (see [5], [6]
and the references therein). Indeed, provided Rn > 0 (see
Proposition 3) there is a finite minimal value m1 for which
gm1

= 1. This is determined after successive evaluation of
the increasing sequence gm for m = 1, 2, . . . , m1. Clearly
the sought least MA-order is m1 and the parameters of the
corresponding MA(m1) model are obtained by the LMI-
solver (cf. [8]). This is an efficient alternative to the ex-
panding hull algorithm proposed in [5].
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[2] T.T. Georgiou, “The Caratheéodory-Fejér-Pisarenko decompo-
sition and its multivariable counterpart,” submitted to the
IEEE Trans. on Automatic Control, September 2005; preprint:
arXiv:math.OC/0509225v1 9 Sep 2005.

[3] S. Haykin, Nonlinear Methods of Spectral Analysis, New
York, Springer-Verlag, 247 pages, 1979.

[4] R.E. Kalman, “Lyapunov functions for the problem of Lur’e in
Automatic Control,” Proc. of the National Academy of Sciences,
49(2): 201-205, 1963.

[5] A. O. Steinhardt, “Correlation matching by finite length se-
quences,” IEEE Trans. on ASSP, 36(4): 545-559, 1988.

[6] A. O. Steinhardt and J. Makhoul, “On the autocorrelation of
finite length sequences,” IEEE Trans. on ASSP, 33(6): 1516-
1520, 1985.

[7] P. Stoica and R. Moses, Introduction to Spectral Analysis,
Prentice Hall, 2005.

[8] www.ece.umn.edu/users/georgiou/files/MA decomposition.m


