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Spectral Estimation via Selective
Harmonic Amplification

Tryphon T. Georgiou, Fellow, IEEE

Abstract—The state-covariance of a linear filter is character-
ized by a certain algebraic commutativity property with the state
matrix of the filter, and also imposes a generalized interpolation
constraint on the power spectrum of the input process. This alge-
braic property and the relationship between state-covariance and
the power spectrum of the input allow the use of matrix pencils
and analytic interpolation theory for spectral analysis. Several al-
gorithms for spectral estimation will be developed with resolution
higher than state of the art.

Index Terms—Analytic interpolation, nonlinear spectral estima-
tion, spectral analysis, state covariances.

I. INTRODUCTION

I N THIS paper, we consider the following two basic ques-
tions. Suppose we are given a known linear filter driven by

some unknown stochastic process.What can we say a-priori
about the structure of the state-covariance of the filter?Then,
suppose we measure the state-covariance.What can we say
about the power spectrum of the input process?Both questions
turn out to have interesting ramifications in the context of
spectral estimation. Several algorithms for high resolution
spectral estimation will be based on the answers to these two
questions, summarized as follows.

1) The state-covariance of a linear filter is characterized by
a certain algebraic commutativity relation with the state
matrix of the filter (Theorem 1).

2) The state-covariance imposes an interpolation condition
on the power spectrum of the input (Theorem 2).

The first result allows the use of matrix pencils in order to de-
compose the state-covariance into components corresponding
to particular input signals (Corollary 3 andTheorem 5). Such
analysis can be used to identify dominant components of the
input. The second result is a generalization of an observation in
[4] and [5], where it was shown that the output covariance of
a first-order filter relates to the value of the input power spec-
trum at the pole of the filter. Knowing the state-covariance, an-
alytic interpolation [7], [20], [21] provides a parametrization of
all possible input power spectra (Section III). Particular inter-
polants are considered which correspond to emission and ab-
sorption spectra, and the envelope of the input power spectrum
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can be constructed based on the same theory (Sections IV, VI,
and VII). Several alternative methods for generating particular
spectra will be presented.

Our general methodology as it pertains to spectral estima-
tion requires a filtering stage where aninput-to-state(IS) filter
is used and the state-covariance is estimated from time-series
data. The filter may be chosen to weigh the spectral content of
a selected harmonic interval more heavily. As a consequence,
spectral analysis based on state-covariance statistics allows for
higher resolution over selected intervals. The analysis makes
use of the algebraic structure and of a canonical decomposition
of state-covariances. The particular decomposition is consistent
with the hypothesis that the input is made up of (a minimal
number of) sinusoids in background noise, and is a generaliza-
tion of a classical result of Carathéodory and Féjer for Toeplitz
matrices. As far as computation is concerned, it requires the sin-
gular value decomposition (SVD) of the state-covariance, while
the specifics follow analogous decompositions of Toeplitz ma-
trices which underly several modern nonlinear spectral estima-
tion methods [13].

In Section II, we briefly survey the framework underlying
modern nonlinear spectral estimation techniques. This requires
a finite number of estimated covariance lags, and the relevant
theory has connections to the moment problem and orthogonal
polynomials (e.g., [2], [10], [12], [24], and [25]). We outline the
techniques which, in subsequent sections, will be generalized to
the context of state-covariance data so as to highlight the analo-
gies. In particular, we discuss subspace methods which rely on
a suitable eigendecomposition of a Toeplitz matrix ([18],[25])
and then introduce a dual solution, again based on a decompo-
sition of a Toeplitz matrix, for a canonical absorption spectrum.
This material is novel since the current literature contains vir-
tually no method for identifying absorption spectra. Finally, we
discuss the Capon method, point out that the relevant “spectral
estimate” truly represents an envelope of spectral power, and
mention an enhancement for real-valued processes given in [23].

Section III deals with the algebraic structure of state-covari-
ances and their interpolation theoretic significance (also noted in
[11]). Theorems 1and2show how covariances relate to general-
ized interpolation constraints for the input spectrum. The section
concludes with an explanation of how to obtain such constraints
numerically from estimated state-covariances.

In Section IV, we present a canonical decomposition theorem.
This is a generalization of an analogous result in [11] and forms
the basis of our computational approach. It is also a generaliza-
tion of a classical result by Carathéodory and Féjer going back
to the beginning of the 20th century [6]. The Carathéodory and
Féjer result was rediscovered in more recent years by Pisarenko
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[18], and forms the basis of subspace methods for the estimation
of spectral lines.

Subsequently, in Sections V–VII, we develop analogs of
techniques surveyed in Section II to the new state-covariance
framework. More specifically, in Section V we develop sub-
space methods which are analogous to the widely used multiple
sIgnal classification (MUSIC) and estimation of parameters
by rotational invariant techniques (ESPRIT). In Section VI,
we discuss how to generate canonical absorption spectra based
on state-covariance data, and in Section VII we present an
analog of the Capon method, as well as an analog of [23] to the
state-covariance setting.

In Section VIII, we discuss two alternatives for quantifying
the selectivity of IS filters and suggest simple realizations for IS
filters with desired properties. Finally, in Section IX, we present
simulation results that demonstrate the performance of the new
techniques and point to a substantial improvement over current
state-of-the-art techniques.

II. TOEPLITZ–CARATHÉODORY FRAMEWORK

The purpose of this section is to give a brief survey of impor-
tant concepts and techniques which will subsequently be gener-
alized to the context of interpolation with state-covariance data.
At the same time, we introduce notation and review certain basic
facts.

Consider a discrete-time, wide-sense stationary, zero-mean,
scalar stochastic process with , and denote its power
spectrum by . In general, the power spectrum is a posi-
tive-bounded measure on . The regular part of ,
which is defined almost everywhere, is
[where is the spectral density function], while the re-
maining singular part contains any spectral lines which may be
present [e.g., Dirac functions ]. In the simplest case, when
it is of finite-type, then it is precisely of the form

(1)

with s representing the frequencies of sinusoids embedded in
.
The covariance lags of

are simply trigonometricmoments

for (2)

of the power spectrum. The theory of moments [12],
[24] provides tools for characterizing admissible power
spectra from a finite number of such covariances
( ). This is usually referred to as the
Carathéodory problem.

We will explore a connection with analytic interpolation
which is based on the following fact (e.g., see [12]): is
a bounded positive measure if and only if the function

(3)

(4)

is analytic in the open unit disc with positive-real part. Such a
function will be referred to aspositive-real. Starting from
the power spectrum can be recovered via

(5)

where denotes “the real part of.” Thus, (3)–(5) establish a
one-to-one correspondence between covariance sequences

positive-real functions , and bounded positive measures
.

The “half-spectrum” function is central to the analysis
in this paper. Spectral estimation based on a partial covariance
sequence

amounts to an interpolation problem with a positive-real func-
tion satisfying interpolation conditions at the origin for
its 0th to th first derivatives. All solutions to such a
problem can be described by a linear fractional transformation,
e.g., see [1]. Historically, a particular solution, corresponding to
a singular of the form (1) plus a constant, was used in the con-
text of the Carathéodory problem [6] to show existence of solu-
tions under suitable conditions (i.e., nonnegativity of a Toeplitz
form made up of the s). The same solution was rediscovered
in [18] and forms the basis of high resolution subspace methods.
This is discussed next.

A. Carathéodory–Fejér–Pisarenko Solution

The Carathéodory–Fejér–Pisarenko (CFP) result states that if
a positive semidefinite (Hermitian) Toeplitz matrix

...
...

...

is singular and of rank ( ), then it is of the form

where , for , if

...
(6)
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and “ ” denotes “complex-conjugate transpose.” Moreover,
has a unique (left) zero-eigenvector of the form

Since

it follows that the modes are precisely the roots of the poly-
nomial

If we now define a polynomial to contain the first powers
of in the product

then it turns out that is also of degree , i.e.,

and that

is a positive-real function. In fact,

The real part of is zero at all points on the unit circle
except the poles of (cf. [12, p. 148]). The polynomials

and (or rather, in the notation of Geron-
imus [10, p. 10] and [12, p. 40]) are precisely theth “orthog-
onal–Szegö” polynomials of the first and second kind, respec-
tively, associated with thesingular quadratic form defined by

, and they both have all their rootson the unit circle (cf.
[10], [12]).

These facts directly yield a solution to the
Carathéodory interpolation problem. If and
denotes its lowest eigenvalue, then apply the above analysis to
thesingularpositive semidefinite Toeplitz matrix

(with the identity matrix of appropriate size,) to obtain
for this new set of data . Then, the function

is positive-real, satisfies the interpolation constraints in (4), and
the corresponding spectrum/measure is singular and given by

Thus, it consists entirely of spectral lines on a white noise “flat”
background.

The detailed theory and derivation of the above can be found
in [12, p. 151]; see also [25, p. 155] for an independent deriva-
tion.

B. Subspace Methods

An elegant and useful reformulation of the above [22], to
which we will return in due time, makes use of the elements
in the singular value decomposition

where is a unitary matrix and , . If

and represents the matrix formed out of the last
columns of which span the (right) null-space of , then
the nonnegative trigonometric polynomial

(7)

has roots precisely at . Note that
may have additional roots off the unit circle, but has no root on
the circle other than the above. This result underlies the method-
ology of MUSIC and a proof can be found in [25, p. 157].

Focusing on the signal subspace, the range of is
spanned by the columns of both

...
...

...

as well as the columns of . Thus,

where is an invertible matrix. The method of ESPRIT [19] is
based on the following observation. If

and

where 0 denotes a zero column of appropriate size, andthe
identity matrix, then

...
...

...

Moreover, the range of is the same as the range of .
It follows that the diagonal matrix is sim-
ilar to the matrix

where denotes “left inverse.” Hence, the frequencies,
, can be readily computed. In practice these can be
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computed as the eigenvalues of the “least squares” solution
of , while is obtained by
an SVD of the sampled Toeplitz matrix. This is the method of
ESPRIT (cf. [25, p. 164]).

C. Dual Absorption Spectrum

Very much as the Carathéodory–Fejér–Pisarenko solution
corresponds to a singular spectrum, which is made up of
spectral lines, the solution we present below gives rise to an
alternative canonical spectrum which has absorption lines
instead of emission lines.

The key idea relies on the fact thata function is posi-
tive-real if and only if is positive-real. The proof of
this fact is straightforward. Simply observe that if a function
is positive-real, it cannot have any roots inside the open unit
disc. Thus, its inverse is analytic as well. Then observe that
the inverse of any complex number , with , is

which again has positive-real part.
Using the above observation, we are led to the following con-

struction. Given the partial covariance sequence , consider
the “analytic” upper triangular portion of

...
...

...
...

Then, define by means of its inverse

...
...

...
...

the inverse sequence

That is, , , etc. This is also a partial
covariance sequence. To see this, note that the corresponding
Toeplitz matrix, which is given by

(8)

is positive semidefinite.
We now apply the CFP solution to this new set of data and ob-

tain a positive-real function which interpolates the values

Here, is the smallest eigenvalue of and , are
the th orthogonal polynomials (of first and second kind, re-
spectively) of the sequence . We finally arrive
at a canonical spectrum, consistent with the original data ,
which is dominated by absorption lines. This corresponds to the
positive-real function

(9)

The corresponding spectrum is regular, i.e., without any spectral
lines, and is given by

(10)

It contains absorption lines at the roots of , which are all on
the unit circle.

D. Spectral Envelopes

The so-calledCapon methodis usually introduced as follows.
Given the Toeplitz covariance of a stochastic process ,
and any frequency, a finite-impulse response (FIR) filter

is sought, which allows exponential signals at the given
frequency to pass unscathed, i.e.,

while it minimizes the “total output energy”

...

The envelope , plotted over all s, is then taken as a spectral
estimate [25, p. 197].

Our terminologyspectral envelopeoriginates in thelittle
known factthat

where

and satisfies (2) for

(11)

In other words, represents the maximal spectral “mass”
located at which is consistent with the data, or equivalently,
it represents the amplitude of the largest possible spectral line
at amongst admissible spectra.
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Either way, the solution can be obtained by least squares by
solving

or

(12)

respectively. Of course, in both cases the solution is the same,
given by

and coincides with the (unique) eigenvalue of the matrix pencil

Several alternative expressions can be found in [10], e.g., in
terms of orthogonal polynomials or a suitable reproducing
kernel. Also, in the classical work of Geronimus [10], one can
find a detailed study of the asymptotic properties of such a
quantity when the length of the partial sequence increases
toward .

For our current purposes, we need the formalism in (11). In
case is known to be real, then only spectra with an even
symmetry need to be considered. The maximal spectral mass at

is given by

where

(13)

This notation is nonstandard and obviously differs from the
“Hermitian part of” since is already Hermitian.
Equivalently, is given by the smallest of the two eigen-
values of the matrix pencil

These “real” envelopes were introduced in [23].
We have now concluded our sketchy overview of the classical

Toeplitz–Carathéodory framework, and are ready to introduce
the key new elements of our approach.

III. STRUCTURE OFSTATE-COVARIANCES AND

GENERALIZED INTERPOLATION

Consider a single-input/-output dynamical system, where
the output is the -state vector itself

where (14)

The pair , where is an matrix and an vector,
is assumed to be controllable andis assumed to be a stable

matrix (i.e., with eigenvalues in the interior of the unit disc).
Such a system will be referred to as aninput-to-state filter (IS
filter). We use to designate the delay operator ,
and hence, the transfer function of (14) is

... (15)

From this point on, analogies with the Toeplitz–Carathéodory
framework can be sought by specializing to the case whereis
thecompanionmatrix

...
...

...
...

...
(16)

Obviously, in this case

for

Thus, the notation in, e.g., equation (6), is consistent
with the above and intended to highlight analogies with the
forthcoming material.

Another interesting case is when

for

Then, is a bank of first-order filters while can be taken
to be diagonal. Such a filter bank was used in [4], [5]. In gen-
eral, may have an arbitrary Jordan structure (subject to the
controllability condition that requires to be cyclic).

Now let the IS filter in (14) be driven by . The covariance
of the state-process

(17)

is, of course, a positive-semidefinite matrix. But, besides
being positive semidefinite, state-covariances are characterized
by a certain algebraic condition which depends on the filter pa-
rameters and is given below.

Theorem 1: A positive semidefinite matrix is a state-co-
variance matrix of (14) for a suitable input process if and only
if it is of the form

(18)

for a matrix which commutes with , with being the
unique (positive definite) solution to the Lyapunov equation

. Furthermore, any such matrix is uniquely
defined from (18) modulo an imaginary constant with

.
Proof: Deferred to the Appendix.

The matrix specifies generalized interpolation con-
ditions for admissible input power spectra as claimed in the fol-
lowing theorem.
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Theorem 2: Let be as in Theorem 1. If a power spec-
trum satisfies (17), then the positive-real function (3)
satisfies

(19)

Conversely, if is positive-real and satisfies (19), then (5)
defines a power spectrum such that (17) holds.

Proof: Deferred to the Appendix.
Since commutes with , which is cyclic, then

(20)

with a polynomial of degree .
Thus, according toTheorem 2, the property which characterizes
“half-spectra” consistent with , is that they agree with on
the eigen-spectrum of . An alternative way of writing (19) is
either

(21)

with the Blaschke product

(22)

and a function which is analytic in the open unit disc, or
simply, to say that vanishes at the eigenvalues
of , taking multiplicities into account. Either way, this is a
standard generalized interpolation problem and all solutions can
be expressed via linear fractional transformations on a “free”
parameter [21], [26]. In particular, the formulas in [8, Sec. 8.3]
can be readily modified to parametrize positive-real interpolants
analytic on the disc. (The formulas as they appear in [8, Sec. 8.3]
apply to contractive interpolants which are analytic in the RHP,
hence, the Möbius map has to be used to
transform both their range and domain.)

The following is an immediate corollary toTheorem 1which
is central to the proof of several subsequent results.

Corollary 3: If are state-covariance matrices for the IS
filter (14) such that , then is also a state-
covariance for the same filter.

Proof: According toTheorem 1, there exist matrices
and which commute with and satisfy

and

respectively. Hence, their difference is of the same form, i.e.,
, for . Since

the conclusion of the corollary follows fromTheorem
1.

Finally, we conclude the section by indicating that equation
(18) can be used to obtain the interpolation datum. Consider

(23)

as a set of linear equations in parameters—the real
and imaginary parts of s for and .
Provided is a state-covariance matrix as hypothesized,
according toTheorem 1equation (23) has a solution which is
unique modulo the imaginary part of . The imaginary part
of cannot be determined and is irrelevant anyhow. Ifhas
been obtained from experimental data and does not exactly
satisfy (23), then a least-squares solution for the coefficients

can be sought, from which one can
determine an estimate for a suitable via (20).

IV. CANONICAL DECOMPOSITION

A complex sinusoidal input , , to the IS filter in
(14), gives rise to a state-covariance equal to and
of rank one. Conversely, a singular state-covariance can only
originate from such distinct sinusoidal input compo-
nents. We highlight this fact as a separate lemma since it is of
independent interest.

Lemma 4 [11, Prop. 1]:The state-covariance matrix
defined in (17) is singular of rank if and only if it is of
the form

(24)

for a selection of distinct , and , for .
Building on this lemma and onCorollary 3 the following

canonical decomposition of state-covariance matrices can be
shown.

Theorem 5: Let be state-covariances of the IS filter
(14). Then there exists a unique minimal set of dis-
tinct values along with corresponding values (

), such that

(25)

Moreover, is the smallest eigenvalue of the matrix pencil
, and .

Proof: Deferred to the Appendix.
The decomposition provides a representation of(corre-

sponding to ) as a superposition of a minimal number of sinu-
soids on top of a suitably scaled background (corresponding to

). The background typically represents a known process, e.g.,
white or colored noise, or a sinusoidal component at a known
frequency. The theorem is a (slight) generalization of [11, Th.
1] which is cast for . It is also generalization of the
Carathéodory–Féjer–Pisarenko result discussed in Section II-A
which corresponds to as in (16).

We conclude the present section with a lemma from [11]
which shows that “directions” in excited by sinusoids at dif-
ferent frequencies are linearly independent.

Lemma 6 [11, Lemma 3]:If and for
, are pairwise distinct, then the columns

of

are linearly independent.
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V. SUBSPACEMETHODS

In order to exploitTheorem 5for the purpose of spectral-line
estimation we need to assess a value foras well as compute
the s from an experimentally obtained.

With exact knowledge of the state-covarianceand the co-
variance for the “background noise” signal, the decomposi-
tion in Theorem 5becomes

where

(26)

Consider the singular value decomposition

with a unitary matrix and
the diagonal matrix of singular values. Partitioninto the sub-
matrices containing columns and , i.e.,

(27)

It follows that:

1) The range spaces (column spans) of , , and
coincide. This is thesignal subspace.

2) The null spaces (right kernel) of , , and
coincide and is spanned by the columns of

. This is thenoise subspace.
When is only an estimate of the state-covariance, a value

for can be assessed by identifying a “break” point in the sin-
gular values s. The next task is to identify the frequencies

s and the corresponding residuess. To this end we rewrite
1) and 2) as follows:

(28)

and

(29)

respectively, where is an invertible matrix. Condition (28)
forms the basis of thesignal-subspace method, whereas (29) the
basis of anoise-subspace method.

A. Analysis Based on the Noise Subspace

Condition (29) in combination withLemma 6gives rise to the
following fact.

Proposition 7 [11, Th. 1(iv)]: With and as
above and as inTheorem 5, the function

(30)

has precisely roots on the unit circle at for
.

The proposition suggests generalizations of MUSIC as
follows. Starting from an estimated sampled covariance, and
given information on the background noise, either assumed
white or colored of a known signature, the trigonometric

polynomial can be estimated after we perform an SVD
on . The frequencies for can be
identified in a variety of ways. In particular, generalization of
Spectraland Root MUSIC(cf. [25]) have been discussed in
[11] for the case where the input noise is assumed white, i.e.,
when . Below, we first mention these two methods from
[11], since they also apply to general, and then list a third
possibility which appears more reliable in practice.

1) Spectral Music:
Identify s for as the values

on where achieves the
-highest local maxima.

2) Root Music:
Identify s with the angles of the -roots of

which have amplitude 1 and are closest
to the unit circle.

3) Residue Music:
Identify s with the angles of the roots of

which have the largest corresponding
residues in the decomposition of main theorem. More
specifically:

3a) Select an in allowing some margin be-
yond the known, or estimated, value. Typically can
be selected as either equal to , or as a slightly con-
servative estimate of a “break” in the singular values of

. If is selected to be less than then a pre-se-
lection of a set of candidate s for is
necessary following methods A) or B) above.

3b) Compute

(31)

and

3c) Select and re-order s for as the fre-
quencies corresponding to the largest residues among

.
We point out that traditionalRoot MUSICas well asSpec-

tral MUSIC (e.g., see [25]) generate estimates for the frequency
of possible spectral lines. The generalization of either method
to the new state-covariance provides similar information but
not necessarily a power spectrum which is consistent with the
data.Residue MUSICon the other hand produces the parameters
in the decomposition (25) and corresponds directly to a power
spectrum which is consistent with the covariance data. This is
of the form

where represents the assumed shape of power for the
“background noise” which corresponds to a state-covariance.
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B. Analysis Based on the Signal Subspace

Condition (28) suggests an alternative way to identify the fre-
quencies in the decomposition ofTheorem 5. This is summa-
rized in the following proposition.

Proposition 8: Under the notation and assumptions ofThe-
orem 5and defined as in (27), there is a unique solution
to the following matrix equation

where is a row vector and a matrix. The
eigenvalues of are precisely for .

Proof: Since

it follows that

(32)

with as in (26) and

Using (28) we have that

(33)

where

and

Equation (33) is linear with constraints and
entries in the variables . A solution exists by virtue of the
above analysis.

Further, the solution is unique. To see this we need to prove
that the (right) null space of is trivial, i.e., it contains
only the zero vector. First note that this null space is trivial if and
only if the null space of is trivial. By simple algebra it
can be shown that this is equivalent to the null space of
being trivial as well. Thus, in order to prove our claim we need
to prove that the columns of are linearly independent. It
suffices to show that is linearly independent of the columns of

when . Thus, assuming , we consider
the square matrix

Since the numerator of

is of degree , it cannot have any root other than
(which are obviously roots). Hence

is nonsingular, and since , this
proves our claim. Therefore (33) has a unique solution.

Finally, the sought roots ( ) are eigenvalues
of because relates to via a similarity transformation.

In practice, when is estimated from a break point in the
singular values of , better accuracy is often obtained
if we begin with a conservative estimatefor the number of
frequencies to be considered, with , and then
identify of them with the largest residue, as we did in the
method C) in Section A.

VI. A BSORPTIONSPECTRA

The construction in Section II-C carries over to the more gen-
eral framework of IS filters and their state-covariances.

Theorem 9: Let be a state-covariance of the IS filter (14),
and as inTheorem 1. Define

and

The following hold

1) If is positive-real and , then

is positive-real and .
2) is a state-covariance of the IS filter (14).

Proof: As shown in Section II-C, is positive-real if and
only if is positive-real. Since it follows
that . This proves i).

Since satisfies

(34)

(35)

as well as, it is of the form required byTheorem 1, it follows that
it is a state-covariance of the IS filter. Note that commutes
with since does. This shows 2).

Equation (35) is important due to the following practical con-
sideration. If is obtained from experimental data as a sample
covariance and is computed from it via least squares and (23)
(as explained in Section III), then estimatingfrom the right
hand side of (34) may not produce a positive definite quantity,
whereas (35) always does!

The above proposition can be used to produce spectra from
a sample covariance matrix. When such spectra are selected,
based on an which contains spectral lines (e.g., using the ear-
lier canonical decomposition), then the spectra corresponding
to will have absorption lines at the frequencies of the
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spectral lines of . We summarize below an option based on the
earlier canonical decomposition.

1) CANONICAL ABSORPTION SPECTRA: Begin with a state-co-
variance . Determine as inTheorem 1and as inTheorem
9. Determine and as inTheorem 5, when the theorem is
applied to instead of . The computation of can be
done using, e.g., residueMUSIC as described in Section V with

as inTheorem 1. Then will correspond to absorption
lines for a power spectrum consistent with the covariance data

.
To verify the last statement, note that the positive-real func-

tion

has poles at these frequencies. Hence, will have
zeros at the same points, and so will its real part . Of
course these will be shared by the relevant spectrum which is
defined from the radial limits of the .

VII. SPECTRAL ENVELOPES

In this section, we present a generalization of the methods in
Section II-D to state-covariance data. Hence, we seek to com-
pute the envelope of maximal spectral power

where

nonnegative measure satisfying (17)

As in Section II-D, we also define where s are
further restricted to have an odd symmetry about so
that they correspond to a real-valued time series(if that is
known to be the case). Below, the notationapplied to prod-
ucts , follows our earlier convention (13).

Proposition 10: Let be a state-covariance of the IS filter
(14), then

Proof: First note that

(36)

and

(37)

respectively, represent the state-covariance of the (complex and
real, resp.) sinusoidal signals , .

Corollary 3 implies that, for any given ,
is an admissible state-covariance. Hence, the decomposition

allows a power spectrum of the form
. Therefore, a spectral

line at of amplitude is consistent with . It is
easy to see that is the maximal such amplitude consistent
with the data. Analogous argument proves the case of .

Evidently, the s can be obtained by computing the smallest
eigenvalue of the corresponding matrix pencils and

, respectively, in complete analogy with Section II-D.
In particular, since we have

(38)

while

VIII. I NPUT-TO-STATE FILTER CHARACTERISTICS

Given state-covariance data, , and IS filter parameters
, then the , s, and s in the decom-

position ofTheorem 5remain the same when the data are
replaced with , and the filter pa-
rameters by , with ,

. Here, is any invertible matrix. To see this, simply
note that if (25) holds, then

Hence, it is convenient to normalize the filter parameters via
similarity transformation so that , and this is what will be
followed in here. The frequency characteristics of IS filters, for
the purposes of the decomposition inTheorem 5can be quanti-
fied by the frequency function

(39)

In case no information on the “color” of the input noise is
available we can use , being the state-covariance of
white noise input (i.e., a controllability grammian) which satis-
fies . Such a normalization was used in [11].
Guidelines to obtain suitable characteristics are summarized
below:

If is taken in a Jordan form

...
...

...
... (40)

and in the interval (resp.
), then a low-pass (resp. high-pass) characteristic

is obtained. Similarly, if is complex, the pass-band of
is centered around the phase of. To obtain a bandpass

characteristic with a real filter, can be chosen in the follwoing
block-Jordan form:

...
...

...
... (41)
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with

, and . In this case, again the choice
can be used.

Other characteristics might also be useful in quanti-
fying the resolution of IS filters, e.g., the sensitivity

of the state covariance on the
frequency of sinusoidal inputs.

IX. CASE STUDIES

We first present two simulation studies where the goal is to
resolve two closely spaced sinusoids. We compare traditional
MUSIC and ESPRIT with the subspace methods of Section V.
Next we present an example of a typical absorption spectrum
for which the approach in Section VI is appropriate. Finally we
compare the Capon method and the method in [23] (both out-
lined in Section II-D), with those presented in VII. Invariably,
spectral estimation based on suitably selected IS filters, shows
remarkably better resolution.

In each example, the IS filter parameters are chosen following
the guidelines of the previous section. The time series

is used to generate the state processvia ,
for , with . The time series

is used to obtain the sample state-covariance matrix

Here, we take . However, in general, if the time-constant
of the IS filter is significant, then can be chosen to ensure
a level of stationarity for .

A. Subspace Methods

Case 1—Closely Spaced Sinusoids:We generated time-se-
ries data according to

with , , a Gaussian zero-mean white
noise with variance , and uniformly distributed on

. We compared the following six different methods: 1)
standard Root MUSIC; 2) ESPRIT; 3) standard root MUSIC
after a pre-filtering of the data with a lowpass scalar filter; 4)
ditto for ESPRIT; and finally, 5) the noise-subspace method
(residue MUSIC) of Section V-A and 6) the signal-subspace
method of Section V-B.

We tested whether the methods are capable of resolving the
two sinusoids based on data points, i.e., when the

frequencies and are closer than the theoretical resolution
limit of periodogram-based methods. We report on 1000
simulation runs. In each, we considered the outcome successful
if the method identified one, and only one spectral line, in each
of the two intervals

and

where (and hence is the
mid point). For values of noise varianceabove 0.35, methods
1)–4) almost always fail. Thus, we used .

For 5) and 6), we used a low-pass IS filter of order 30 as
in (40) with For 3) and 4) we used a standard But-
terworth filter of order 10 and 3 dB frequency at 0.5. En-
coding for standard MUSIC and ESPRIT was taken from our fa-
vorite reference [25] with parametersmusic(y,4,30) ; es-
prit(y,4,30) .

Below, we tabulate the number of successful hits and, in
Fig. 1, we display the scatter diagram of values forversus

identified by each method.

Method success / 1000 runs

1) Root MUSIC
2) ESPRIT
3) prefiltered Root MUSIC
4) prefiltered ESPRIT
5) Section V-A
6) Section V-B

Methods 3) and 4) were suggested for the purpose of a “fair
comparison” by an anonymous referee. The fact, that methods
3) and 4) are only marginaly better than 1) and 2), suggests that
filtering alone is not the main factor behind the higher resolution
of methods 5) and 6).

Case 2—Variance of Frequency Estimates:This is similar
to Case 1 except for the fact that the time-series has only one
sinusoidal component

with , uniformly distributed on , and
Gaussian white-noise with variance . A single sinusoid
was chosen so as to compare the variance of estimates on an
equal footing, because in this case, we do not differentiate fail-
ures as in Case 1.

The results we report are based on 1000 runs, each time gen-
erating a 100 samples of the process. We used a low-pass IS
filter as in (40) with and dimension 20. The figures we
obtained when comparing standard ESPRIT (coded as in [25];
usingesprit(y,2,20) ), with the signal-subspace method
of Section V-B are as follows:

ESPRIT Section V-B

Mean estimate of

Standard deviation



GEORGIOU: SIGNAL ESTIMATION VIA SELECTIVE HARMONIC AMPLIFICATION 39

We note that the standard deviation of the estimate using Sec-
tion V-B shows a dramatic improvement when compared to the
estimate via standard ESPRIT.

B. Absorption Spectra

In current literature there are no standard methods for the de-
tection of the “absence of spectral energy.” Indeed, the identi-
fication of absorption lines is not as reliable as the detection of
spectral lines. With this caveat we present one example of the
type of spectra that may be suitable for applying the approach.

We consider a notch-filter with transfer function

with absorption frequency at . Unit-variance,
zero-mean, Gaussian white noise is used to drive the notch filter
and a 1000 data points of the output time serieswere used.
The time series is shown along with the corresponding peri-
odogram in Fig. 2. It is quite evident that, although the power
at low frequencies is small, any attempt to gauge the location of
an absorption line would be futile.

For the purposes of applying Section VI a low pass was
selected as in (41) having three blocks with eigenvalue

. Following the steps of Section VI, a frequency
was identified.

C. Spectral Envelopes

We conclude by comparing the methods of Section VII with
the Capon method of maximum likelihood, e.g., as encoded in
[25, p. 196], and with the one in [23]. These methods generate
spectral envelopes as explained in Sections II-D and VII.

Once again we generated a time-series of 300 data points ac-
cording to

with Gaussian zero-mean white noise and in
(independently distributed as usual). The Capon and

Shankwitz–Georgiou [23] methods used a sample Toeplitz
matrix of size , and accordingly, for the methods of
Section VII we estimated a state-covariance matrix of
an IS filter designed as in (41) with five Jordan blocksof
size with eigenvalues . This is low pass with a
cutoff of about one.

Fig. 3 shows with dashed line the Capon estimate and with
solid line the estimate according to [23], as explained in Sec-
tion II-D. On the same figure vertical arrows are used to indi-
cate the frequency and, scaled by a factor of 0.2, the amplitude
of the two sinusoids.

Similarly Fig. 4 shows with dashed and solid lines the spectral
envelopes computed using the theory of Section VII. The dashed
line indicates computed according to (38), while the solid
line represents which takes into account the fact that
the signal and sinusoids are real. It is apparent that over the
passband of the IS filter, the resolution is significantly increased
as compared with the earlier methods. It is instructive to observe

Fig. 1. Scatter diagram.

Fig. 2. Time-series and FFT of output of the notch filter.

Fig. 3. Capon (dashed) and [23] (solid) envelopes.

that improvement in resolution over a frequency band is traded
off with a degradation elsewhere.
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Fig. 4. “Complex” (dashed), “real” (solid) envelopes via Section VII.

X. CONCLUDING COMMENTS

This work was motivated by Byrnes, Georgiou, and Lindquist
[4], [5], where it was noted that output covariances of first-order
filters provide Nevanlinna–Pick interpolation conditions for the
input power spectrum. It also builds on [11] which explored the
use of state-covariances in a generalization of MUSIC. How-
ever, the scope of the present work has been to expose an un-
derlying theory for spectral analysis viaTheorems 1, 2, and
Corollary 3, and thereby, present a state-covariance framework
for nonlinear spectral estimation techniques. It is interesting to
speculate whether an analogous viewpoint of characterizing co-
variances for nonuniform arrays of varying spacial geometries
and of spectra which are consistent with such statistics, will be
beneficial in sensor array processing.

APPENDIX

PROOFS

We give a brief exposition of needed concepts and facts from
generalized interpolation. These allow a rather compact deriva-
tion of the results presented earlier in the paper. We restrict our
attention to a finite-dimensional framework since this is all we
need, and accordingly, we follow our earlier notation regarding

, etc. Also, “ ” denotes the “complex conjugate
transpose” or the “adjoint operator” depending on the context,
as is customary. When we want to emphasize “complex conju-
gate” of scalar quantities we occasionally use “.”

Let denote the usual Hardy space of functions which are
analytic in the unit disc with square-integrable radial limits, and
define

where as in (22). That
is, contains all functions in which are orthogonal to those
that vanish on the spectrum of . (See [3], [17], and [21] for
the role of in operator theory; cf. [9], [16], and [14] for its use
in systems theory.)

With as in (15), its entries form a basis for . In-
deed, these are generalized Cauchy kernels whose inner product
“evaluates” at the spectrum of ; e.g., if then

where

with a 1 in the th spot.

Consider the ordinary right shift in , and
denote by thecompressed shiftonto :

and by the adjoint operator. It is instructive to express both
and with respect to the basis . Starting with , this

maps the general element of into

Turning to we first need the Grammian

which coincides with the solution of and
noted earlier on. If is the sought matrix representation for,
then

must hold for all row -vectors . Hence
and therefore . We summarize for fu-

ture reference:

(42)

(43)

A key result which will be repeatedly needed in the sequel
is the celebrated commutant lifting theorem [21, Th. 1]. A spe-
cial version which is sufficient for our purposes is summarized
below (cf. [11, Lemma 4], [26], [7], [20]).

Lemma 11: If is an operator on that commutes with
and the real part of is positive semidefinite, then there exists
a function which is analytic in the open disc and has pos-
itive-real part there, such that . If the real part of
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is singular and finite-dimensional, then the interpolantis
unique.

A. Proofs of Theorem 1 and Theorem 2

We recall for convenience the notation for the set of power
spectra consistent with a given state-covarianceof (14):

We first assume that is a state-covariance of (14), and show
that it is of the form claimed inTheorem 1. Since is a state-
covariance, is not empty. So we consider and the
corresponding “positive-real half spectrum”

It follows that

(44)

where is a representation of the mapping

with respect to the basis for . Despite the fact that
may not be bounded, the above mapping exists and can

be identified, e.g., with the limit of
since is finite dimensional. Note that here and throughout,

denotes conjugating only the coefficients of , as
opposed to which would include the argument. Recall
that is a matrix representation of

Hence, and therefore commutes with.
The same arguments verify the first part ofTheorem 2.

Namely, if are as inTheorem 1and satisfies (17),
then obtained from (3) satisfies the noted interpolation
condition .

We now show the converse toTheorem 1, namely that, if a
nonnegative matrix is of the form
for a which commutes with , then it is a state-covariance
of (14): Since commutes with , which is cyclic, it can be

expressed as a function of, and in particular, a polynomial
function

with of degree . Via
, the matrix defines the operator

which commutes with . According to (42)–(43) the
real part of is

Hence the real part of is nonnegative. Therefore, according to
Lemma 11, can be selected in the form with a
positive-real function. It is now easy to see that defined as
in (5) via radial limit of serves as the required power
spectrum yielding .

We now argue the second part ofTheorem 2, namely thatif
is positive-real which satisfies , then it de-

fines a power spectrum consistent with. Clearly a nonnega-
tive defined via radial limit of as above satis-
fies the equations following (44) on, until ,
which is precisely by assumption.

We finally show thatany such as in Theorem 1 is unique
modulo an imaginary constant with . Begin with
(23),

Since is a state-covariance and, by the earlier arguments,
of the form , with commuting with

, we can certainly determine a polynomial for which
and therefore the above equation has a solution.

Clearly, the imaginary part of cannot be determined from
this equation. Other than that we need to show that the values
for are uniquely defined.

It suffices to show that if

(45)

then is identically equal to an imaginary constant. Setting
with as usual, the real part of is

singular and therefore the positive-realclaimed byLemma 11
is unique. If is this unique interpolant ofLemma 11 and the
corresponding nonnegative measure, since , both and

are obviously zero. If now is any polynomial satisfying
(45), assumed real at to avoid the obvious indeterminacy
of by an additive imaginary constant, then

In order for , needs to have the minimal poly-
nomial of as a factor. Since is a controllable pair,
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is cyclic, and the minimal polynomial has degree. But the de-
gree of is , therefore is the zero polynomial. This
completes the proof of uniqueness.

B. Proof of Theorem 5

If is the smallest eigenvalue of the pencil , then
according toCorollary 3, is a state-covariance.Lemma
4 then shows that it is of the form required in (25) and that

. We now show that this is minimal.
Assume an alternative decomposition

Clearly, , otherwise . Then

where both sides represent state-covariances. If
then the two decompositions are identical by virtue of
Lemma 6. When then we distinguish two cases.
First, : then since the left hand
side has full rank. Second, : then by Propo-

sition 4 . But
, for otherwise will not be the smallest

eigenvalue of the pencil. Hence, again by virtue ofLemma 6,
.
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