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Spectral Estimation via Selective
Harmonic Amplification

Tryphon T. GeorgiouFellow, IEEE

Abstract—The state-covariance of a linear filter is character- can be constructed based on the same theory (Sections 1V, VI,
ized by a certain algebraic commutativity property with the state  and VIl). Several alternative methods for generating particular
matrix of the filter, and also imposes a generalized interpolation spectra will be presented.

constraint on the power spectrum of the input process. This alge- o | thodol it tains t tral esti
braic property and the relationship between state-covariance and ur general methodology as It pertains to spectral estma-

the power spectrum of the input allow the use of matrix pencils tion requires a filtering stage where aput-to-state(IS) filter
and analytic interpolation theory for spectral analysis. Several al- is used and the state-covariance is estimated from time-series
gorithms for spectral estimation will be developed with resolution  data. The filter may be chosen to weigh the spectral content of

higher than state of the art. a selected harmonic interval more heavily. As a consequence,
Index Terms—Analytic interpolation, nonlinear spectral estima-  spectral analysis based on state-covariance statistics allows for
tion, spectral analysis, state covariances. higher resolution over selected intervals. The analysis makes

use of the algebraic structure and of a canonical decomposition
of state-covariances. The particular decomposition is consistent
) ) ) with the hypothesis that the input is made up of (a minimal
I N THIS paper, we consider the following two basic quesyymper of) sinusoids in background noise, and is a generaliza-
tions. Suppose we are given a known linear filter driven yon, of a classical result of Carathéodory and Féjer for Toeplitz
some unknown stochastic procedghat can we say a-priori matrices. As far as computation is concerned, it requires the sin-
about the structure of the state-covariance of the filt€Hen, gular value decomposition (SVD) of the state-covariance, while
suppose we measure the state-covariaki¢eat can we say the specifics follow analogous decompositions of Toeplitz ma-
about the power spectrum of the input proceBsth questions  {rices which underly several modern nonlinear spectral estima-
turn out to have interesting ramifications in the context Gfon methods [13].
spectral es?ima’Fion. _Several algorithms for high resolution | section 11, we briefly survey the framework underlying
spectral estimation will be based on the answers to these §4gdern nonlinear spectral estimation techniques. This requires
questions, summarized as follows. a finite number of estimated covariance lags, and the relevant
1) The state-covariance of a linear filter is characterized llyeory has connections to the moment problem and orthogonal
a certain algebraic commutativity relation with the statgolynomials (e.g., [2], [10], [12], [24], and [25]). We outline the

. INTRODUCTION

matrix of the filter (Theorem L techniques which, in subsequent sections, will be generalized to
2) The state-covariance imposes an interpolation conditi¢ife context of state-covariance data so as to highlight the analo-
on the power spectrum of the inpdtieorem 2 gies. In particular, we discuss subspace methods which rely on

The first result allows the use of matrix pencils in order to dex suitable eigendecomposition of a Toeplitz matrix ([18],[25])
compose the state-covariance into components correspondind then introduce a dual solution, again based on a decompo-
to particular input signalsQorollary 3 and Theorem % Such sition of a Toeplitz matrix, for a canonical absorption spectrum.
analysis can be used to identify dominant components of tiiais material is novel since the current literature contains vir-
input. The second result is a generalization of an observationuirally no method for identifying absorption spectra. Finally, we
[4] and [5], where it was shown that the output covariance aliiscuss the Capon method, point out that the relevant “spectral
a first-order filter relates to the value of the input power speestimate” truly represents an envelope of spectral power, and
trum at the pole of the filter. Knowing the state-covariance, amention an enhancement for real-valued processes givenin [23].
alytic interpolation [7], [20], [21] provides a parametrization of Section Ill deals with the algebraic structure of state-covari-
all possible input power spectra (Section Ill). Particular inteences and their interpolation theoretic significance (also noted in
polants are considered which correspond to emission and ft]). Theorems And2 show how covariances relate to general-
sorption spectra, and the envelope of the input power spectrigad interpolation constraints for the input spectrum. The section

concludes with an explanation of how to obtain such constraints
numerically from estimated state-covariances.
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[18], and forms the basis of subspace methods for the estimatioW/e will explore a connection with analytic interpolation
of spectral lines. which is based on the following fact (e.qg., see [12}}; () is

Subsequently, in Sections V-VII, we develop analogs @fbounded positive measure if and only if the function
techniques surveyed in Section Il to the new state-covariance

framework. More specifically, in Section V we develop sub- ) = 1 /w 1+ )\6*1:0 do (6 @)
space methods which are analogous to the widely used multiple 2 J_p 1= Ae77¢
slgnal classification (MUSIC) and estimation of parameters =co+ 20 A+ -+ 2, A4 4)

by rotational invariant techniques (ESPRIT). In Section VI,
we discuss how to generate canonical absorption spectra baseghalytic in the open unit disc with positive-real paBuch a
on state-covariance data, and in Section VII we present &mction will be referred to agositive-real Starting fromf,, (A)
analog of the Capon method, as well as an analog of [23] to tH@ power spectrum can be recovered via
state-covariance setting. .

In Section VIII, we discuss two alternatives for quantifying da, (0) ~ lim R(fy(re’®)) db (5)
the selectivity of IS filters and suggest simple realizations for IS
filters with desired properties. Finally, in Section IX, we presefffhere¥t denotes “the real part of.” Thus, (3)—(5) establish a
simulation results that demonstrate the performance of the n@dg-to-one correspondence between covariance sequences
techniques and point to a substantial improvement over current
state-of-the-art techniques. €= (€0, €Ly ooy Cnoly Cny o)

positive-real functionsf, (), and bounded positive measures
do,(6).
The “half-spectrum” functiory,, (\) is central to the analysis
The purpose of this section is to give a brief survey of impoin this paper. Spectral estimation based on a partial covariance
tant concepts and techniques which will subsequently be genggguence
alized to the context of interpolation with state-covariance data.
Atthe same time, we introduce notation and review certain basic Cn—1 = (Co, €15 o, Cnt)

facts. . _ _ . amounts to an interpolation problem with a positive-real func-
Consider a discrete-time, wide-sense stationary, zero-megf () satisfyingn interpolation conditions at the origin for

scalar stochastic procegs with ¢ € 7, and denote its_ POWET jts Oth to (n — 1)th first derivatives. All solutions to such a
spectrum bydo,, (6). In general, the power spectrum is & poSiproblem can be described by a linear fractional transformation,
tive-bounded measure gr-, 7]. The regular part ofloy (6), ¢ g. see [1]. Historically, a particular solution, corresponding to
which is defined almost everywhere,dsy, reguiar = 54(#) 40 4 singulaw,, of the form (1) plus a constant, was used in the con-
[where &, (¢) is the spectral density functignwhile the re- ey of the Carathéodory problem [6] to show existence of solu-
maining singular part contains any spectral lines which may Rgns under suitable conditions (i.e., nonnegativity of a Toeplitz
present [e.g., Dirac function-)]. In the simplest case, whensorm made up of theys). The same solution was rediscovered
itis of finite-type, then itis precisely of the form in [18] and forms the basis of high resolution subspace methods.
This is discussed next.

Il. TOEPLITZ—CARATHEODORY FRAMEWORK

doy singular(8) = Z 27py6(0 — 6) do (1) A. Carathéodory—Fejér—Pisarenko Solution

k=1 The Carathéodory—Fejér—Pisarenko (CFP) result states that if

] ) ) ) ] a positive semidefinite x n (Hermitian) Toeplitz matrix
with €y s representing the frequencies of sinusoids embedded in

Yt &) C1 v Cp—1
The covariance lags of;

c—1 co Cn—2
Tnfl =
ck::E{ygyé_i_k}, k=0,1,....,n—1
Con+tl Conit2 -~ Co
are simply trigonometricnoments is singular and of rank: (<n), then itis of the form
A — (I8 38y
a=5 [ o), fork=01.. (@ Tns 2 piG(™)G(e™)
s =

—T

wherep; > 0,fori=1,2, ... . m, 0, Z 0 if L £k
of the power spectrum. The theory of moments [12],

[24] provides tools for characterizing admissible power ,,10_
spectrado, from a finite number of such covariances G(ej"f) . elvi ©6)
( = 0,1,...,n — 1). This is usually referred to as the o :

Carathéodory problem. i (n—1)8;
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and “” denotes “complex-conjugate transpose.” Moreoverhus, it consists entirely of spectral lines on a white noise “flat”

T,,_1 has a unique (left) zero-eigenvector of the form background.
The detailed theory and derivation of the above can be found
p=lay -+ amn 0 --- O0O]. in [12, p. 151]; see also [25, p. 155] for an independent deriva-
tion.
Since

B. Subspace Methods

0=¢Tn1¢" = pilg-G(*))? An elegant and useful reformulation of the above [22], to
i=1 which we will return in due time, makes use of the elements
in the singular value decomposition

it follows that the modes’?: are precisely the roots of the poly-

nomial Ty — 71 = Udiag{oy, 0o, ..., o, 0, ..., OMJ*

PN =ao+ar A+ -+ a, A

wherelJ is a unitary matrix and; > 0,7 =1, ..., m. If
If we now define a polynomial(\) to contain the firsk powers
Of )\ in the pI’OdUCt l] = [lfl tmo lfrn—l—l :n]
PN (co + 26N+ -+ 2¢, 1 A7) andU,, 1 ., represents the matrix formed out of the last m
columns ofU which span the (right) null-space @f,_;, then
then it turns out that(\) is also of degreen, i.e., the nonnegative trigonometric polynomial
,(/}()\) =bo+b A+ + b A" d(ejev 6_19) G(eje) Um,-l—l :nU:;H_l . nG(Gje) (7)
and that hasm roots precisely a6, ..., 6,,}. Note thatd(A, A71)

may have additional roots off the unit circle, but has no root on

FolA) i= PN LN 42 ALy (") the circle other than the above. This result underlies the method-
A= gy T T n—1 © ology of MUSIC and a proof can be found in [25, p. 157].
Focusing on the signal subspace, the rangg,aof, — 71 is
is a positive-real function. In fact, spanned by the columns of both
z"': 14+ \ed 1 1 '1
pz — dedti’ G. - 6]-01 61.92 ... ejfm
The real part offo(\) is zero at all points on the unit circle =181 =18 . i(n—1)fm

except the poles ofy(A) (cf. [12, p. 148]). The polynomials
$(A) andyp(\) (or rather A (A1) in the notation of Geron- as well as the columns @f, .,,,. Thus,
imus [10, p. 10] and [12, p. 40]) are precisely theh “orthog-
onal-Szegd” polynomials of the first and second kind, respec-
tively, associated with theingular quadratic form defined by here® i . fibl trix. Th thod of ESPRIT [191
T,,_1, and they both have all their roots the unit circle (cf. wheretis an invertivle matrix. 1he method o [19]is
[10], [12]). based on the following observation. If

These facts directly yield a solutionf,(\) to the . .
Carathéodory interpolation problem. T,_; é )O and 7 Biop := [In-1, 0] and Fuotom := [0, In—1]

denotes its lowest eigenvalue, then apply the above analysig\iQere 0 denotes a zero column of appropriate size/andthe

Gs = lfl:rn®

the singular positive semidefinite Toeplitz matrix (n — 1) x (n — 1) identity matrix, then
Tnfl _7_17 @jel 0 . 0
0 &% ... 0
(with I the identity matrix of appropriate size,) to obtain RiopGs | : - | = Rbottom G-
for this new set of datéey — 7, 1, - - -, ¢). Then, the function (') (') ejém
(A =7+ PN Moreover, the range d&, is the same as the rangel«z&,tlJ,]L e
() It follows that the diagonal matriiag(e/®: , - - -, /%) is sim-
is positive-real, satisfies the interpolation constraints in (4), arlllar to the matrix
the corresponding spectrum/measure is singular and given by (RioplU1 :m) (RbottomUL s m)
do(8) = 7df + Z 21 pr6(6 — 6y df. whereg denotes “left inverse.” Hence, the frequendigsk =

i1 1, ..., m, can be readily computed. In practice these can be
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computed as the eigenvalues of the “least squares” soliffionHere, 7 is the smallest eigenvalue @f,_; and@()), /(\) are
Of (RiopUt:m)X = (RiottomUi:m), While U is obtained by thesmth orthogonal polynomials (of first and second kind, re-
an SVD of the sampled Toeplitz matrix. This is the method a&fpectively) of the sequendé, — 7, é1, - - -). We finally arrive

ESPRIT (cf. [25, p. 164]). at a canonical spectrum, consistent with the original data,
which is dominated by absorption lines. This corresponds to the
C. Dual Absorption Spectrum positive-real function
Very much as the Carathéodory—Fejér—Pisarenko solution R
corresponds to a singular spectrum, which is made up of £ = f()\)—l (N 9)
spectral lines, the solution we present below gives rise to an i ( )+z/;( )
alternative canonical spectrum which has absorption lines
instead of emission lines. The corresponding spectrum is regular, i.e., without any spectral
The key idea relies on the fact thatfunction f () is posi- lines, and is given by
tive-real if and only if( f(\))~! is positive-real The proof of
this fact is straightforward. Simply observe that if a function ‘(/J eje)r
is positive-real, it cannot have any roots inside the open unitda(g) =R{f.(*)}do =+ S d6. (10)
disc. Thus, its inverse is analytic as well. Then observe that ‘,;.(/A)(eje) +z/j(eje)‘

the inverse of any complex number+ jb, with a > 0, is
(a — jb)/(a® 4 b%) which again has positive-real part.

Using the above observation, we are led to the following col-contains absorption lines at the roots/gh), which are all on
struction. Given the partial covariance sequenge;, consider the unit circle.

the “analytic” upper triangular portion &7,
D. Spectral Envelopes

Co 201 2cz - 2ep The so-callecCapon methoés usually introduced as follows.

0 ¢ 2¢ - 2059 Given the Toeplitz covariancE,_; of a stochastic process,,
W = . and any frequency, a finite-impulse response (FIR) filter

0 O o - Co wp = Z et

Then, define by means of its inverse

is sought, which allows exponential signal$? at the given

C 260 26 - 20 frequency to pass unscathed, i.e.,
0 ¢é 26 --- 26,2
Wil = n—1
Z hé@jw =1
0 0 0 Co =0

theinverse sequence while it minimizes the “total output energy”

) . , ho
Cp—1 = (607 Cly, =y cn71)~
p(0) =E{|ury =[ho -+ hno1]Tus
Thatis,ég = ¢;', & = —c1/c3, etc. This is also a partial
covariance sequence. To see this, note that the corresponding
Toeplitz matrix, which is given by

En—l

The envelope(6), plotted over alb's, is then taken as a spectral
estimate [25, p. 197].

Ty = 5 (W*1 + (Wfl)*) Our terminologyspectral enveloperiginates in thelittle
* known factthat
— W—l (W —;W ) (W—l)*
=W, (WL (8) p(f)=sup {hlr(l) (0(0+¢)—0o(0—¢)): wheredos >0
isfi <k<n-1;.
is positive semidefinite. and satisfies (2) fob < k < n 1}
We now apply the CFP solution to this new set of data and ob- (11)
tain a positive-real functiogf(A) which interpolates the values
¢t In other words,p(#) represents the maximal spectral “mass”
. located at? which is consistent with the data, or equivalently,
A()\) — i PN it represents the amplitude of the largest possible spectral line

) at @ amongst admissible spectra.
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Either way, the solution can be obtained by least squaresdmatrix (i.e., with eigenvalues in the interior of the unit disc).
solving Such a system will be referred to asiaput-to-state filter (IS
' filter). We use) to designate the delay operatof — x5 _1,
p(0) = Ir%n {hTnih* h=(ho, ..., hn_1), hG(e??) = 1} and hence, the transfer function of (14) is

or g1(A)
o G == )= | (15)
p(0) = max {p: T,,_1 — pG(c’®)G(®)* > 0} (12) gn(N)
respectively. Of course, in both cases the solution is the samgem this point on, analogies with the Toeplitz—Carathéodory
given by framework can be sought by specializing to the case wHase
® 1 the companiommatrix
p(0) = 7 A— -
G(e?)* T, 1 G(e) 0 0 0 0 1
and coincides with the (unique) eigenvalue of the matrix pencil A= 1 0 0 0 b= 0 ) (16)
Tt — pG()G(I) . 00 --- 10 0

Several alternative expressions can be found in [10], e.g., @pviously, in this case

terms of orthogonal polynomials or a suitable reproducing )

kernel. Also, in the classical work of Geronimus [10], one can gi(A) = A", fori=1,2,....n

find a detailed study of the asymptotic properties of such_a . o _ . .

quantity when the length of the partial sequeage; increases NS, the notatiorz(¢’") in, e.g., equation (6), is consistent

toward co. with the above and intended to highlight analogies with the
For our current purposes, we need the formalism in (11). fArthcoming material. _

casey, is known to be real, then only spectta(-) withaneven ~ Another interesting case is when

symmetry need to be considered. The maximal spectral mass at 1
L . = 1=1,...,n.
6 is given by g (\) .y fori=1,...,n
max {p: T, -1 — pS{G(c’)G(e)"} = 0} Then,G()\) is a bank of first-order filters whilet can be taken
to be diagonal. Such a filter bank was used in [4], [5]. In gen-
where eral, A may have an arbitrary Jordan structure (subject to the
o i0 i0va controllability condition that required to be cyclic).
S{G(")G()} Now let the IS filter in (14) be driven by,. The covariance
1 N FON & —q — 70\ * -
=5 (G()G(?) + Gle™ )G ?)") . (13) of the state-process
1 ™ h e
This notation is nonstandard and obviously differs from the =5 (G(&7*) doy (0)G(%)) (17)

—_—T

“Hermitian part of” sinceG(e’?)G(c’?)* is already Hermitian.
Equivalently, p(¢) is given by the smallest of the two eigenys, of course, a positive-semidefinitex n matrix. But, besides

values of the matrix pencil being positive semidefinite, state-covariances are characterized
, , by a certain algebraic condition which depends on the filter pa-
Too1—pS {G(@]H)G(@w)*} . rameters and is given below.
) _ Theorem 1: A positive semidefinite matrixd” is a state-co-
These “real” envelopes were introduced in [23]. variance matrix of (14) for a suitable input process if and only

We have now concluded our sketchy overview of the classiGal; is of the form
Toeplitz—Carathéodory framework, and are ready to introduce
the key new elements of our approach. p= E(WE +EWY) (18)
2

Ill. STRUCTURE OF STATE-COVARIANCES AND

for a matrix W which commutes with4, with £ being the
GENERALIZED INTERPOLATION

unique (positive definite) solution to the Lyapunov equation

Consider a single-inputtoutput dynamical system, whereE— AEA* = bb*. Furthermore, any such matriX is uniquely
the output is thex-state vector itself defined from (18) modulo an imaginary constant with « €

JR.
xy = Azp_1 + byr, Wherek € Z. (14) Proof: Deferred to the Appendix.
Then x n matrix W specifies generalized interpolation con-

The pairA, b, whereA is ann x n matrix andb ann x 1 vector, ditions for admissible input power spectra as claimed in the fol-
is assumed to be controllable ardis assumed to be a stabldowing theorem.
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Theorem 2:Let P, W be as in Theorem 1. If a power specas a set oh? linear equations itn. — 1 parameters—the real

trum do, (9) satisfies (17), then the positive-real function (3and imaginary parts abys fork =1, ..., n — 1 andR{wo}.
satisfies Provided P is a state-covariance matrix as hypothesized,
according toTheorem lequation (23) has a solution which is
fy(A") =W, (19) unique modulo the imaginary part af,. The imaginary part

f wg cannot be determined and is irrelevant anyhow? lfias

een obtained from experimental data and does not exactly
satisfy (23), then a least-squares solution for the coefficients
R{wo}, wi, ..., w,_1 can be sought, from which one can
determine an estimate for a suitalbié = w(A) via (20).

Conversely, iff, (A) is positive-real and satisfies (19), then (Sg
defines a power spectrum such that (17) holds.
Proof. Deferred to the Appendix.
SinceW commutes with4, which is cyclic, then

= f— ... n71
W =w(d) =wol +w A+ +uwnad (20) IV. CANONICAL DECOMPOSITION
with w(\) = wo+- - -+w,_1 A"~ apolynomial of degree—1. A complex sinusoidal input/*?, k € Z, to the IS filter in
Thus, according tdheorem 2the property which characterizes(14), gives rise to a state-covariance equéfte’’ )G(c’?)* and
“half-spectra” consistent witP, is that they agree witlw(A\) on  of rank one. Conversely, a singular state-covariance can only
the eigen-spectrum of*. An alternative way of writing (19) is originate fromm < n such distinct sinusoidal input compo-

either nents. We highlight this fact as a separate lemma since it is of
independent interest.
) =w(A) = B(A)q(A) (21)  Lemma4[11, Prop. 1]:Then x n state-covariance matrix

. defined in (17) is singular of rank: < « if and only if it is of

with B(\) the Blaschke product the form
det(AI — A*) s . o
B = Gei =) (22) P= kZ_l PLG(S* )G (24)

andg(X) a function which is analytic in the open unit disc, ofor a selection of distincf., andp;, > 0, fork =1, ..., m.

simply, to say thatf(A\) — w(A) vanishes at the eigenvalues Building on this lemma and oorollary 3 the following

of A*, taking multiplicities into account. Either way, this is acanonical decomposition of state-covariance matrices can be
standard generalized interpolation problem and all solutions cgfown.

be expressed via linear fractional transformations on a “free” Theorem 5: Let P, Q be state-covariances of the IS filter
parameter [21], [26]. In particular, the formulas in [8, Sec. 8.3114). Then there exists a unique minimal setof< n dis-

can be readily modified to parametrize positive-real interpolartifict valuess), along with corresponding valugg > 0 (k =
analytic on the disc. (The formulas as they appearin [8, Sec. 813k, ..., m), such that

apply to contractive interpolants which are analytic in the RHP,

hence, the Mobius map— (1 — z) /(1 + z) has to be used to " o B
transform both their range S‘;md d()){T(]ain.) : P =po@+ Z prG(e™ )G ()" (25)
The following is an immediate corollary ftheorem which =t
is central to the proof of several subsequent results. Moreover,pg is the smallest eigenvalue of the matrix pereit
Corollary 3: If P, @ are state-covariance matrices for the I1$Q, andm = rank(P — po@).
filter (14) such that? — @ > 0, thenP — Q is also a state- Proof: Deferred to the Appendix.
covariance for the same filter. The decomposition provides a representatiorypfcorre-
Proof: According toTheorem lthere exist matriceB’p  sponding taP) as a superposition of a minimal number of sinu-
andW¢ which commute with4 and satisfy soids on top of a suitably scaled background (corresponding to
(). The background typically represents a known process, e.g.,
pP= %(WpE + EW}) white or colored noise, or a sinusoidal component at a known

frequency. The theorem is a (slight) generalization of [11, Th.
and . 1] which is cast forQ = E. It is also generalization of the
Q= 5(WQE + EWS) Carathéodory—Féjer—Pisarenko result discussed in Section II-A
which corresponds td, b as in (16).
respectively. Hence, their difference is of the same form, i.e.,We conclude the present section with a lemma from [11]
P—Q = (1/2)(WaAE + EW}), for Wa = Wp — Wq. Since which shows that “directions” i excited by sinusoids at dif-
P—@Q > 0the conclusion of the corollary follows froftheorem ferent frequencies are linearly independent.

1. Lemma 6 [11, Lemma 3Jif m < =n and 6; for
Finally, we conclude the section by indicating that equatioh = 0, 1, ..., m, are pairwise distinct, then the columns
(18) can be used to obtain the interpolation datéimConsider Of

2P =W, 1 (A*)" LE + - + W AT E + (Wo + wo)l [G(e™), G(™), ..., Q™))

+wEA+ - +wp_EA" ! (23) are linearly independent.
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V. SUBSPACEMETHODS polynomial d can be estimated after we perform an SVD
on P — poQ. The frequencied; for £ = 1, ..., m can be
identified in a variety of ways. In particular, generalization of
the fs from an experimentally obtainek. Spectraland Root MUSIC(cf. [25]) havg been d|scuss§d in
[11] for the case where the input noise is assumed white, i.e.,

With exact knowledge of the state-covariarféend the co- h _ % Bel first tion these t thods f
variance( for the “background noise” signal, the decomposiw enq) = £. Below, we first mention these two methods from

tion in Theorem Secomes [11], since they also apply to gener@l and then list a third
possibility which appears more reliable in practice.

In order to exploifTheorem Sor the purpose of spectral-line
estimation we need to assess a valuerfoas well as compute

P — poQ = G diag(py, ..., pm)G* 1) Spectral Music:

Identify 0ys for k. = 1, ..., m as the values
where on [—n, 7] where 1/(d(¢’?, ¢=7%)) achieves the
) ) m-highest local maxima.

G, = [G(&M), ..., G(e?™)] (26)  2)  Root Music:

Identify 8s with the angles of then-roots of
d(A, A71) which have amplitude<1 and are closest
to the unit circle.
3) Residue Music:
Identify ;s with the angles of then roots of
d(X\, A1) which have the largest corresponding
residues in the decomposition of main theorem. More
specifically:
_ 3a) Selectadinm < ¢ < n—1allowing some margin be-
U=1Um Untiin]: 27) yond the known, or estimated, value Typically £ can
be selected as either equatite 1, or as a slightly con-
servative estimate of a “break” in the singular values of
P.If £is selected to be less than— 1 then a pre-se-

Consider the singular value decomposition
P — poQ =UXU*

with U a unitary matrix an& = diag(oy, ..., o, 0, ..., 0)
the diagonal matrix of singular values. Partitidrinto the sub-
matrices containing columns: m and(m + 1) : n, i.e.,

It follows that:

1)  Therange spaces (column spansyef poQ), G, and
U; . coincide. This is theignal subspace

. . lection of a set of candidaté.s fork = 1, ..., fis
2) Trle nul sSpaces (”ght kernel) @t — po@Q, G, and necessary following methods A) or B) above.
Uf.,, coincide and is spanned by the columns of
3b) Compute

Upm+1:n- This is thenoise subspace
When P is only an estimate of the state-covariance, a value G0
for m can be assessed by identifying a “break” point in the sin-

_ i j6:
gular valuess,s. The next task is to identify the frequencies V= G, G (1)
#xs and the corresponding residygs. To this end we rewrite G(ed%)*
1) and 2) as follows: and
Uim=G,M (28)
and diag v-ip Vi
OZG:UnH—l:n (29) lag{pl, LR p[} - ( _pOQ)( )
3c) Select and re-ordék,s fork = 1, ..., m as the fre-

respectively, wherd is an invertible matrix. Condition (28)

forms the basis of theignal-subspace methpahereas (29) the quencies corresponding to the largest residues among

basis of anoise-subspace method PLy oo P .
We point out that traditionaRoot MUSICas well asSpec-
A. Analysis Based on the Noise Subspace tral MUSIC (e.g., see [25]) generate estimates for the frequency

of possible spectral lines. The generalization of either method
to the new state-covariance provides similar information but
not necessarily a power spectrum which is consistent with the
data.Residue MUSI®©n the other hand produces the parameters
in the decomposition (25) and corresponds directly to a power
A\ A7) = G A Ungr Ui GV (30) spectrum which is consistent with the covariance data. This is

Condition (29) in combination withemma &jives rise to the
following fact.

Proposition 7 [11, Th. 1(iv)]: With G(\) and U,,,41.,, as
above andl;, as inTheorem 5the function

of the form
has preciselym roots on the unit circle ate’®* for m
k=1,...,m. do(8) = podoq(8) + Y _ 2mprd(6 — 64) db
The proposition suggests generalizations of MUSIC as b1

follows. Starting from an estimated sampled covariaR¢cand
given information on the background noise, either assumethereds(8d) represents the assumed shape of power for the
white or colored of a known signature, the trigonometritbackground noise” which corresponds to a state-covarighce
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B. Analysis Based on the Signal Subspace is of degreen — 1, it cannot have any root other than

Condition (28) suggests an alternative way to identify the frd’**> ---» ¢’*} (which are obviously roots). Hence

quencies in the decomposition Bheorem 5This is summa- #(0) = [G(0), G.]is nonsingular, and sinde= G(0), this

rized in the following proposition proves our claim. Therefore (33) has a unique solution.
: / re (33) '
Proposition 8: Under the notation and assumptionsTaie- - inally, the soughtroots™ (k = 1, ..., m) are eigenvalues

orem 5andU; ., defined as in (27), there is a unique solutiof?f & becauseb relates to® via a similarity transformation.
to the following matrix equation In practice, whenn is estimated from a break point in the

singular values o — po (), better accuracy is often obtained
Ui b AU 1 if we begin with a conservative estimatefor the number of
1im =1 1im] d frequencies to be considered, with- 1 > ¢ > m, and then

identify m of them with the largest residue, as we did in the
wherey is al x m row vector and? am x m matrix. The method C) in Section A.

eigenvalues of are precisely’/® fork =1, ..., m.
Proof: Since VI. ABSORPTIONSPECTRA
G\ =T = A)' The construction in Section II-C carries over to the more gen-

eral framework of IS filters and their state-covariances.

_ _ —1
=04 AT - A4 Theorem 9: Let P be a state-covariance of the IS filter (14),

it follows that andW as inTheorem 1Define
G, =[b b - b|+A-G,-© (32) Wi=wt
_ ) and
with G, as in (26) and . 1 . R
Pi=(WE+ EW).
O = diag(e??, /%, ..., &%),
_ The following hold
Using (28) we have that 1) If f is positive-real angf(A*) = W*, then
Uiom=b[1 1 -+ 1|M+ A -G,6M FO) = fO0
=bu+A-G.MM oM
=bu+A-Up.n® is positive-real angf(A*) = W.
b L 33 2) P is a state-covariance of the IS filter (14).
=1 Utim] M (33) Proof: As shown in Section II-Cf is positive-real if and
onlyif f ::Affl is positive-real. Sincg(A) f(A) = Litfollows
where that f(A*) f(A*) = I. This proves i).
SinceP satisfies
wi=[1 1 - 11M
and P=XWE+ EW
&= MtOM. 2
=-(W'E+EW"™ (34)

Equation (33) is linear withn x » constraints aneh x (m+1) 2 1
entries in the variableg, ®. A solution exists by virtue of the =w! Q(EW* +WEYW*)!
above analysis. I w1

Further, the solution is unique. To see this we need to prove =W PWT) ™ 20 (35)
that the (right) null space & Al .,,]istrivial, i.e., it contains . . .
only the zero vector. First note that this null space is trivial if an?f welltats, itis of _the forr?trr?qluslrﬁﬁl Hy]’\?otre?%ﬁ}tlﬂollows thtat
only if the null space ofb AG] is trivial. By simple algebra it LIS a state-covariance ot In€ 1> iter. Note commutes

can be shown that this is equivalent to the null spadé d& ] W'tg A s{!nce?; dpgs. Tht|s sthdowst Zzh followi fical
being trivial as well. Thus, in order to prove our claim we need quation (35) is important due to the following practical con-

to prove that the columns @ G,] are linearly independent. It S|dera}t|0n. pré{;’ pbtalnedtfr(;rp eXp.te”.mIematl dataasa Sdarr;}::)gle
suffices to show thdtis linearly independent of the columns ofrovanance andis computed iromitvia feast squares an (23)

G, whenm = n — 1. Thus, assuming. = n — 1, we consider (as explained in Section Ill), then estimatirﬁgfrom the right
thé square r;atrix ' ’ o ' hand side of (34) may not produce a positive definite quantity,

whereas (35) always does!

M) = [G(N), G The above proposition can be used to produce spectra from
a sample covariance matriX. When such spectra are selected,
Since the numerator of based on arf which contains spectral lines (e.g., using the ear-

lier canonical decomposition), then the spectra corresponding
det M(X\) = c(I — XA)™b to f := ! will have absorption lines at the frequencies of the
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spectral lines of . We summarize below an option based on the Evidently, theps can be obtained by computing the smallest
earlier canonical decomposition. eigenvalue of the corresponding matrix penélls pQQy andP—

1) CANONICAL ABSORPTION SPECTRABegIn with a state-co- pQs, rea1, respectively, in complete analogy with Section 1I-D.
varianceP. Determiné¥’ as inTheorem tandP as inTheorem In particular, sinceank(Qs) = 1 we have
9. Determinepy, andé;. as inTheorem Swhen the theorem is
applied toP instead ofP. The computation opy, 65 can be p(0) = ' 1 '
done using, e.qg., residwausic as described in Section V with G(e??)*P~1G ()
@ = F as inTheorem 1Then#, will correspond to absorption hile
lines for a power spectrum consistent with the covariance daty
p. L. o 36 6\6)) —

To verify the last statement, note that the positive-real funcpreal(e) = min {p: det (P = 3 (G()G()7)) = 0}
tion

(38)

1+ GM VIII. I NPUT-TO-STATE FILTER CHARACTERISTICS

=po+ Z Pk T cion ) . i
Given state-covariance dafd, @, and IS filter parameters
F G(\) = (I — MA)~1b, then them, ps, andfs in the decom-
has poles at these frequencies. Herf¢a) = f(A)~* willhave position of Theorem Semain the same when the ddta@ are
zeros at the same points, and so will its real f#&rf (c’%)}. Of replaced with?, = MPM*, Q, = MQM* and the filter pa-
course these will be shared by the relevant spectrum whichygneters by, (A) = (I — AA,)~tb,, with A, = MAM
defined from the radial limits of th&{ f(\)}. b, = Mb. Here,M is any invertible matrix. To see this, simply

note that if (25) holds, then
VII. SPECTRAL ENVELOPES

In this section, we present a generalization of the methods in P, = poQ, + Z P MG(e?) QeI M.
Section II-D to state-covariance data. Hence, we seek to com- 1

pute the envelope of maximal spectral power . _ _ _ _
Hence, it is convenient to normalize the filter parameters via

p(8) := sup {lim (00 +¢)—e(§—¢)): do € EP} similarity transformation so th& = I, and this is what will be
e—0 followed in here. The frequency characteristics of IS filters, for
where the purposes of the decompositionliheorem an be quanti-

fied by the frequency function

¥ p := {do nonnegative measure satisfying (17) S0) = ] — A0 | = [0-ODGE. (39)
As in Section 1I-D, we also defing,..(#) wheres(f)s are
further restricted to have an odd symmetry abéut= 0 so In case no information on the “color” of the input noise is
that they correspond to a real-valued time seyigqif that is available we can us@ = E, E being the state-covariance of
known to be the case). Below, the notatidrapplied to prod- White noise input (i.e., a controllability grammian) which satis-

uctsG(e#?)@(c?)*, follows our earlier convention (13). fies ¥ = bb* + AEA*. Such a normalization was used in [11].
Proposition 10: Let P be a state-covariance of the IS filterGuidelines to obtain suitable characteristics are summarized
(14), then below:

' If Aistaken in a Jordan form
p(#) = max {p: P — pG(c’*)G(c7®)* > 0}

r 1 0 --- 0

preat(6) = max {p: P — pS (G()G()") > 0} 0 r 1 - 0
Proof: First note that A= 1o : (40)

0 0 0 1

Qo :=G()G(?) (36) 000 r
and b = 1[0,....0,1] andr in the interval0o < r < 1 (resp.

Qo, reat =3 (G(79)G (")) (387) —1 < » < 0), then a low-pass (resp. high-pass) characteristic
s(#) is obtained. Similarly, ifr is complex, the pass-band of
respectively, represent the state-covariance of the (complex apgh is centered around the phaserofTo obtain a bandpass
real, resp.) sinusoidal signaté"?, cos(k6). characteristic with a real filtert can be chosen in the follwoing
Corollary 3implies that, for any givefy, A := P—p(60)Qs,  plock-Jordan form:
is an admissible state-covariance. Hence, the decomposition

P = A + p(60)Qq, allows a power spectrum of the form R I 0 - 0
do(8) = doa(0) + p(60)8(0 — 6o) df. Therefore, a spectral 0O R I - 0
line até = 6, of amplitudep(fy) is consistent withP. It is A=+ = : (41)
easy to see that(6,) is the maximal such amplitude consistent 0 0 0 I

with the data. Analogous argument proves the casgs0Ofcai. 0O 0 0 --- R
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with frequencie®; and#, are closer than the theoretical resolution
. limit 27 /N of periodogram-based methods. We report on 1000
R=| 9" (60) sinfo } I— [ 1 0} simulation runs. In each, we considered the outcome successful
—rsin(fp) rcosby 0 1 if the method identified one, and only one spectral line, in each

. . _of the two intervals
0 < r < 1, and0 < 6y < . In this case, again the choice

b=1[0,...,0,1] can be used. _ _ (6; — 26,61 +6) and [0 — &, 6z + 26)
Other characteristics might also be useful in quanti-

fying the resolution of IS filters, e.g., the Sens't'v'tywhereé — (6: — 6,)/2 (and hence, + & = 6, — & is the

if 76 \* :
1|‘|r(ech/ljlgr)1§y((§f )sicrisjesjoi) d!\l ig;uge state covariance on themid point). For values of noise varianpgabove 0.35, methods
' 1)-4) almost always fail. Thus, we usggl = 0.35.

For 5) and 6), we used a low-pass IS filter of order 30 as
in (40) with» = 0.3 For 3) and 4) we used a standard But-
We first present two simulation studies where the goal is terworth filter of order 10 and-3 dB frequency at 0.5. En-
resolve two closely spaced sinusoids. We compare traditioralding for standard MUSIC and ESPRIT was taken from our fa-

MUSIC and ESPRIT with the subspace methods of Section %orite reference [25] with parametersusic(y,4,30) ; €S-

Next we present an example of a typical absorption spectrynit(y,4,30)

for which the approach in Section VI is appropriate. Finally we Below, we tabulate the number of successful hits and, in
compare the Capon method and the method in [23] (both ok&ig. 1, we display the scatter diagram of values fpversus
lined in Section 1I-D), with those presented in VII. Invariablyf- identified by each method.

spectral estimation based on suitably selected IS filters, shows

IX. CASE STUDIES

remarkably better resolution. Method success / 1000 runs
In each example, the IS filter parameters are chosen following
the guidelines of the previous section. The time series 1) Root MUSIC 4
2) ESPRIT 36
Y =1y, y1, Y2, .-, UN_1} 3) prefiltered Root MUSIC 15
4) prefiltered ESPRIT 160
is used to generate the state processia x;, = Az _1 + by, 5) Section V-A 527
fork=0,..., N —1,withz_; = 0. The time series 6) Section V-B 963
{e - onva} Methods 3) and 4) were suggested for the purpose of a “fair

comparison” by an anonymous referee. The fact, that methods
3) and 4) are only marginaly better than 1) and 2), suggests that
N1 filtering alone is not the main factor behind the higher resolution
p_i 3w, of methods 5) and 6). _ o
N ! Case 2—Variance of Frequency Estimatdsis is similar

to Case 1 except for the fact that the time-series has only one
Here, we take = 0. However, in general, if the time-constankinusoidal component
of the IS filter is significant, the > 0 can be chosen to ensure

a level of stationarity forz;.. Vi = vk +sin(b1k + ¢1)

is used to obtain the sample state-covariance matrix

A. Subspace Methods with 6; = 0.1, ¢; uniformly distributed on[0, 2x], and
Case 1—Closely Spaced Sinusoid¥e generated time-se- Gaussian white-noise with varianpg = 1. A single sinusoid

ries data according to was chosen so as to compare the variance of estimates on an
. equal footing, because in this case, we do not differentiate fail-
Ye=vet g sin(61k + ¢1) + sin(62k + ¢2) ures as in Case 1.

The results we report are based on 1000 runs, each time gen-

with ¢, = 0.1, 6, = 0.15, 14, a Gaussian zero-mean Whiteerating a 100 samples of the process. We used a low-pass IS

noise with variancepo, and ¢1, ¢ uniformly distributed on fiIter.as in (40) withr = Q.3 and dimension 20. The figureg we
[0, 27]. We compared the following six different methods: 15)bta|ned when comparing standard ESPRIT (coded as in [25];

standard Root MUSIC; 2) ESPRIT; 3) standard root MUSIESingesprit(y,2,20) ), with the signal-subspace method
after a pre-filtering of the data with a lowpass scalar filter; 47 Section V-B are as follows:

ditto for ESPRIT; and finally, 5) the noise-subspace method -
(residue MUSIC) of Section V-A and 6) the signal-subspace 0, =0.1 ESPRIT  Section V-B
me\}/tlzofeg:esdeviﬂ(;?hz;?ﬁe methods are capable of resolving the Mean estimate of,  0.09728 0.09957
two sinusoids based o = 100 data points, i.e., when the Standard deviation  0.09992 0.00681
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We note that the standard deviation of the estimate using S °2
tion V-B shows a dramatic improvement when compared to tl o8

estimate via standard ESPRIT.

0.18 x
ox
0.14
B. Absorption Spectra
0.06 0.08 v 0.1 0.12
In current literature there are no standard methods for the ¢ 4» moee
tection of the “absence of spectral energy.” Indeed, the ider ., §
fication of absorption lines is not as reliable as the detection o x
spectral lines. With this caveat we present one example 0f1 il < e :
type of spectra that may be suitable for applying the approac ® ) :
We consider a notch-filter with transfer function 006 0.8 0.1 0.12

1—1.9754)\ + A2

9N = 35 T oran — a2

with absorption frequency at/20 = 0.1572. Unit-variance,
zero-mean, Gaussian white noise is used to drive the notch fil
and a 1000 data points of the output time segigsvere used.

The time series is shown along with the corresponding peFig.

odogram in Fig. 2. It is quite evident that, although the power
at low frequencies is small, any attempt to gauge the location of
an absorption line would be futile.

For the purposes of applying Section VI a low pass was
selected as in (41) having three blocks with eigenvalue
0.5 + 0.15. Following the steps of Section VI, a frequency
#; = 0.1149 was identified.

C. Spectral Envelopes
We conclude by comparing the methods of Section VII with

the Capon method of maximum likelihood, e.g., as encoded i in ®

[25, p. 196], and with the one in [23]. These methods generate
spectral envelopes as explained in Sections II-D and VII.

Once again we generated a time-series of 300 data points ac
cording to

Vi = v + 0.5sin(0.1% 4 ¢1) + sin(0.5% + ¢2)

with 1, Gaussian zero-mean white noise agd, ¢» Iin

[0, 2] (independently distributed as usual). The Capon and
Shankwitz—Georgiou [23] methods used a sample Toeplitz
matrix of sizel0 x 10, and accordingly, for the methods of
Section VIl we estimated & x 10 state-covariance matrix of
an IS filter designed as in (41) with five Jordan blocksof
size2 x 2 with eigenvalue®.6 + 0.25. This is low pass with a
cutoff of about one.

Fig. 3 shows with dashed line the Capon estimate and with
solid line the estimate according to [23], as explained in Sec-
tion 11-D. On the same figure vertical arrows are used to indi-
cate the frequency and, scaled by a factor of 0.2, the amplitude
of the two sinusoids.

Similarly Fig. 4 shows with dashed and solid lines the spectral
envelopes computed using the theory of Section VII. The dashec
line indicatesy(#) computed according to (38), while the solid

music with pre-filtered dala
T
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Fig. 2. Time-series and FFT of output of the notch filter.
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line representg...1(#) which takes into account the fact thafFig- 3. Capon (dashed) and [23] (solid) envelopes.

the signal and sinusoids are real. It is apparent that over the

passband of the IS filter, the resolution is significantly increasdidlat improvement in resolution over a frequency band is traded
as compared with the earlier methods. Itis instructive to observf with a degradation elsewhere.
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a2s \ ' With G(\) as in (15), its entries; () form a basis foiC. In-
deed, these are generalized Cauchy kernels whose inner product
“evaluates” at the spectrum of*; e.g., if f{(A) € Hs then

GO 000 =5 [ 1)) a0
-~ " YT = A) Thdb
— 0 <i NI e ar) d9> ot

2 J_,

=0 f(A")e;

where

1 15

¢ :=10,...,0,1,0,...,0] witha1lintheith spot.
Fig. 4. “Complex” (dashed), “real” (solid) envelopes via Section VII.
Consider the ordinary right shift(\) — Az(X) in Hz, and
X. CONCLUDING COMMENTS denote byS thecompressed shifinto K:

This work was motivated by Byrnes, Georgiou, and Lindquist S: K — K:z(\) - i Az(N)
[4], [5], where it was noted that output covariances of first-order

filters provide Nevanlinna—Pick interpolation conditions for thg 4 byS* the adjoint operator. It is instructive to express both

input power spectrum. It also builds on [11] which explored the gnd.5* with respect to the basi§()). Starting withS*, this
use of state-covariances in a generalization of MUSIC. HoWiaps the general element G(X) of K into

ever, the scope of the present work has been to expose an un-
derlying theory for spectral analysis vTEheore_ms 12, and A eI — AA)Y M =TIy, A teb 4 cAb 4 AeAZb 4 ..
Corollary 3, and thereby, present a state-covariance framewor )
for nonlinear spectral estimation techniques. It is interesting to =1y, cAb+ AeA™b + ...
speculate whether an analogous viewpoint of characterizing co- =cA-(I-2A)"".
variances for nonuniform arrays of varying spacial geometries
and of spectra which are consistent with such statistics, will Barning to S we first need the Grammian
beneficial in sensor array processing.
© . de :
B= (e, o) = [ (cngleeny )
x ™
APPENDIX
PROOFS which coincides with the solution odf = b0* + AEA* and

noted earlier on. I/ is the sought matrix representation for
We give a brief exposition of needed concepts and facts frafen

generalized interpolation. These allow a rather compact deriva-

tion of the results presented earlier in the paper. We restrict our (c1G(N), 2 AG(N)) = (et MG(N), c2G(N))
attention to a finite-dimensional framework since this is all we

need, and accordingly, we follow our earlier notation regard|qgust hold for all rown-vectorsc,, ¢» € C™. Hencee, EA*c} =

G(A), A, b, n, etc. Algo_, %" denotes the “complex conjugatec MEc; and thereforell = EA*E~1. We summarize for fu-
transpose” or the “adjoint operator” depending on the conte re reference:

as is customary. When we want to emphasize “complex conju-
gate” of scalar quantities we occasionally use™ . )

Let H, denote the usual Hardy space of functions which are ST K =Ko G = ed - G (42)
analytic in the unit disc with square-integrable radial limits, and S:K—=K:c-G(\) — cEA*E™Y - G()). (43)
define

A key result which will be repeatedly needed in the sequel
K:= Hy;& B(A)H, is the celebrated commutant lifting theorem [21, Th. 1]. A spe-
cial version which is sufficient for our purposes is summarized
where B(\) = det(A — A*)/det (I — AA) as in (22). That below (cf. [11, Lemma 4], [26], [7], [20]).
is, I contains all functions i{» which are orthogonal to those Lemma 11:If 7" is an operator oiC that commutes witht
that vanish on the spectrum df*. (See [3], [17], and [21] for and the real part df’ is positive semidefinite, then there exists
the role ofKC in operator theory; cf. [9], [16], and [14] for its usea function f(\) which is analytic in the open disc and has pos-
in systems theory.) itive-real part there, such thdt = f(5). If the real part ofl’
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is singular andc finite-dimensional, then the interpolaifitis expressed as a function af, and in particular, a polynomial
unique. function

A. Proofs of Theorem 1 and Theorem 2 W = w(A) =wol + wiA+---+ w,_1 A" !

We recall for convenience the notation for the set of power

spectra consistent with a given state-covariaRaaf (14): with w(A) = wo + --- + w,—1 A"~ of degreen — 1. Via
cG(N) — cWGE(X), the matrixW defines the operatdf* =

do(0) ., w(S*) which commutes with5*. According to (42)—(43) the
G(e”) )} real part ofT is

Sp= {da(e) >0:P = / i <G(Cw)

x 27
We first assume tha? is a state-covariance of (14), and show 1<(T +THG, G) = 1 (Ew(A*) +w(A)E)
that it is of the form claimed iTheorem 1SinceP is a state- 2 %
covariancey p is not empty. So we considér € ¥ p and the = E(EW* +WE)=P.

corresponding “positive-real half spectrum”
. " Hence the real part &f is nonnegative. Therefore, according to
FO = 1 / 1+ Ae™ do(6) Lemma 117" can be selected in the fori= f(S) with f(\) a
2 J_ 1= X3¢ positive-real function. Itis now easy to see that#) defined as
in (5) via radial limit of R{ f(A)} serves as the required power

It follows that spectrum yieldingP.
- We now argue the second partieorem 2namely thaif
pP= 1 (G(?) do(8)G(®)*) 1, (A) is positive-real which satisfieg, (A*) = W*, then it de-
2 fines a power spectrum consistent with Clearly a honnega-
= 111% ( ( )y R(F(rA))G(A)) tive do, (#) defined via radial limit ofR{ f,(\)} as above satis-
1 fies the equations following (44) on, unil /2)(EW™* + W E),
= hnﬁ 3 (( ), YG(A)) + <G()\), f(7’)\)G()\)>) which is preciselyP by assumption.
e 1 We finally show thatany suchiW” as in Theorem 1 is unique
= lim - (< frNG )\)> <G()\), f(r)\)G()\)>) modulo an imaginary constart! with o« € jR. Begin with
2 (23),
=5 (FOTHEM), GO0) + (GO, TOTHEM)
2P =w(A)E + Ew(A*)
1
=5 (WGQ), GA)) +(G(A), WG(N) =w, 1AV E 4 4w AE + (wo +wo)
— * — w\n—1
%(WE + EW™), (44) +w F(A")+ -+ @, 1 E(A")".
] ) ) Since P is a state-covariance and, by the earlier arguments,
whereW is a representation of the mapping of the form (1/2)(EW* + W E), with W commuting with
L A, we can certainly determine a polynomial( ) for which
z(A) = e f(AT7)z(A) w(A) = W and therefore the above equation has a solution.

Clearly, the imaginary part ofyy cannot be determined from
with respect to the basi&(\) for K. Despite the fact that this equation. Other than that we need to show that the values

F(A~1) may not be bounded, the above mapping exists and den R{wo}, wy, ..., w,_; are uniquely defined.
be identified, e.g., with the limit oIl (f, + fi AL + ) It suffices to show that if
since K is finite dimensional. Note that here and throughout,
f(X\) denotes conjugating only the coefficients $f)), as w(A)E + Ew(A*) =0 (45)
opposed tof(\) which would include the argument. Recall
that A is a matrix representation of thenw(\) is identically equal to an imaginary constant. Setting
T = w(S*) with T = w(S5) as usual, the real part @f is
5% z(N) — e A~ tz(N). singular and therefore the positive-rdatlaimed byLemma 11
is unique. Iff is this unique interpolant dfemma 1 andde the
HenceW = f(A) and therefore commutes with. corresponding nonnegative measure, sifice- 0, both f and

The same arguments verify the first part Bheorem 2 do are obviously zero. If now(\) is any polynomial satisfying
Namely, if P, W are as irTheorem Janddo, () satisfies (17), (45), assumed real at= 0 to avoid the obvious indeterminacy
then f,(\) obtained from (3) satisfies the noted interpolationf wo by an additive imaginary constant, then
condition f(A) = W.

We now show the converse ftheorem 1namely that, if a w(A) = f(A) =
nonnegative matrix’ is of the formP = (1/2)(W E + EW™*)
for a W which commutes witt4, then it is a state-covarianceln order forw(A) = 0, w(A) needs to have the minimal poly-
of (14): SinceW commutes withA4, which is cyclic, it can be nomial of A as a factor. SincéA, b) is a controllable pairA
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is cyclic, and the minimal polynomial has degreeBut the de-

gree ofw isn — 1, thereforew(A) is the zero polynomial. This

completes the proof of uniqueness.

B. Proof of Theorem 5

If po is the smallest eigenvalue of the pengil— pQ, then
according taCorollary 3, P — ppQ is a state-covarianceemma

4 then shows that it is of the form required in (25) and that!*?!

m < n. We now show that thig: is minimal.
Assume an alternative decomposition

7

P = 0hQ+ 30 AGE G
k=1

Clearly, po > pj, otherwiseP’ — p( @@ # 0. Then

by — P0)Q+ > A G(T )G )"

k=1

=Y AGEhaEy
k=1

where both sides represent state-covariancesy If= po

then the two decompositions are identical by virtue off21]
Lemma 6 When pj; > po then we distinguish two cases.

First, rank(Q)) = n: thenm’ > n since the left hand
side has full rank. Secondanng) < n: then by Propo-
sition 4 (s — po)Q = L, pLG(eI*)G(e?) . But
9,1 & {01, ..., 6}, for otherwisepy will not be the smallest

eigenvalue of the pencil. Hence, again by virtueLefmma 6
m' > m.
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