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Avoiding Ambiguity in Beamspace Processing
Ali Nasiri Amini, Student Member, IEEE, and Tryphon T. Georgiou, Fellow, IEEE

Abstract—In direction finding of narrow-band signals using
antenna arrays with a large number of elements, the so-called
beamspace matrix is often used to project the measurements into
a lower dimension subspace. This reduces computation time and
allows for parallel processing. On the other hand, beamspace
preprocessing may introduce ambiguity, i.e., spurious estimated
directions. We show that when the null space of the beamspace
matrix is suitably designed, ambiguity within any sector of interest
can be avoided.

Index Terms—Antenna arrays, direction of arrival (DOA) esti-
mation, spectral analysis.

I. INTRODUCTION

I N direction of arrival (DOA) finding of narrow-band sig-
nals using array sensor measurements, the ambiguity arises

when the array has identical responses to different sets of DOAs.
A well-known example of ambiguity is in uniform linear array
(ULA), when the intersensor spacing is greater than half of the
wavelength of the impinging waves. We assume throughout that
this is not the case; however, additional ambiguity may be intro-
duced by beamspace preprocessing. This is the subject of this
letter.

A number of high-resolution direction-finding techniques
use beamspace preprocessing to reduce computation, improve
performance in environments that include spatially colored
noise, and enhance resolution. Among them, subspace direc-
tion-finding techniques such as MUSIC and ESPRIT are known
as the most promising high-resolution algorithms. Combining
beamspace preprocessing with subspace techniques has been
suggested by a number of researchers (see [1, p. 1243] and
references therein).

The essence of subspace techniques is eigendecomposition
of sample spectral matrix (i.e., covariance matrix) to retrieve
DOAs. The computational complexity of these algorithms is
dominated by eigendecomposition that is of order , with

being the dimension of the spectral matrix. In order to re-
duce computation time and minimize numerical problems, the
original data are projected into lower dimension subspace (i.e.,
the beamspace) before further processing. A well-designed
projection matrix, i.e., beamspace matrix, may have additional
advantages, such as attenuating strong interfering signals and
whitening spatial color noise.
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Different schemes, such as conventional beams (Fourier
beams), Dolph–Chebychev, and Taylor series, have been pro-
posed for beamspace design (see [1, p. 1065]). In this letter, we
show that applying such beamspace matrices often introduces
spurious DOAs. To avoid such ambiguities, we propose a new
scheme for designing the beamspace matrix.

The organization of the letter is as follows. In Section II, the
subspace algorithms and beamspace versions of them are re-
viewed briefly. Then, the ambiguity problem of beamspace ver-
sion of subspace methods is discussed. Subsequently, Section III
gives two practical examples of ambiguity that are adopted from
a recent textbook in array processing [1]. In Section IV, a spe-
cific class of beamspace matrices is presented whose members
are shown to be free of ambiguities. Moreover, they have a
nulling property that can be used to attenuate strong interfering
signals. This is also verified by numerical examples at the end
of this section. Concluding remarks are given in Section V.

II. SUBSPACE METHODS FOR DOA ESTIMATION

Consider a ULA that consists of sensors with intersensor
spacing . We refer to it as a standard linear array. Sup-
pose uncorrelated plane waves impinge on it from different
directions with . The following notation is
used:

where “ ” denotes the transpose. The vector is known
as the steering vector, while is the direction cosine vector. In
the narrow-band snapshots model, the received snapshots are

(1)
Vectors and represent received signals and ad-
ditive noise, respectively. Throughout, we assume that

, where “ ” denotes complex con-
jugate transpose, and is the identity matrix of the appropriate
dimension. The direction-finding problem is to identify from
the snapshot record. Note that corresponding to each , there
are two directions and ; however, this type of ambiguity
is not the subject of this letter. We just consider the problem of
retrieving from the received snapshots.

A suitable eigendecomposition of the spectral matrix (co-
variance matrix) allows retrieval of . The spectral matrix is
a second-order statistic of the snapshots, i.e.,

This is usually estimated via
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Model (1) implies that

(2)

The matrix is diagonal since the impinging waves are as-
sumed to be uncorrelated.

On the other hand, a singular value decomposition (SVD) of
gives that

(3)

where is a unitary matrix, and the above summands
correspond to splitting the contribution of the largest singular
values from the rest. It is easy to show that

(4)

where “ ” denotes the range of the matrix (i.e., column space).
This range is referred to as the signal subspace, while its com-
plement is referred to as the noise subspace (see [2, pp.
155–157]).

The signal subspace is fully specified by . Moreover, it can
be shown that the correspondence

(5)

is one to one (see [2, pp. 155–157]). Therefore, can be
uniquely identified from the signal subspace, and there is no
ambiguity. In practice, we work with the sample spectral matrix

, and hence, the signal and noise subspaces can only be ap-
proximated. The variety in subspace algorithms (e.g., MUSIC,
ESPRIT) stems from different estimation techniques for the
signal subspace as well as different approximation schemes to
fit a set of DOAs to the estimated subspace.

In the beamspace approach, a matrix projects snap-
shots to a lower dimensional subspace. It is assumed that

and . Then, the eigenstructrue of matrix
is explored instead of to reduce the compu-

tational burden of subspace algorithms. In particular, SVD on
gives

(6)

where is again a unitary matrix, and the above sum-
mands correspond to splitting the contribution of the largest
singular values from the rest. Equation (2) implies that

(7)

It is easy to conclude from (6) and (7) that
. The similarity between this equation and (4) suggests

that may be utilized like a signal subspace in order to
retrieve and referred to as the beamspace signal subspace. An
orthonormal basis for this subspace can be estimated via SVD
of . Then, is chosen to approximate
with (see [1, pp. 1243–1251]). Different algorithms
have been proposed to this end. For instance, similar to spectral
MUSIC, DOAs are determined as the locations of the highest
peaks of the function

(8)

This function is known as “MUSIC pseudo-spectrum” (see [1,
p. 1244]). Other variants of MUSIC and ESPRIT for beamspace
are discussed in [3] and [4], respectively.

The pitfall in this methodology is that the counterpart of (5)
does not hold for the beamspace signal subspace, i.e., the corre-
spondence

(9)

is not necessarily injective (i.e., one to one). In this case, there
may be more than one corresponding to , which
causes ambiguity.

It is easy to verify that the mapping (9) is an injection if and
only if for any set of distinct , the vectors

are linear independent. Thus, the
maximum number of sources that can be identified without am-
biguity can be assessed through the following definition.

Definition 1: Beamspace dimensionality of , denoted by
, is the maximum integer such that if

are distinct, then the vectors are linear
independent.1

Consequently, up to sources can be identified without am-
biguity if and only if .

III. EXAMPLES OF AMBIGUITY

One of the important applications of beamspace prepro-
cessing is to modify subspace techniques for the cases that the
additive noise is colored with unknown statistics. Beamspace
matrices can be designed to act as a “spatial bandpass filter”
that attenuates signals from sectors other than the sector of
interest. By using parallel beamspace processors, range can
be divided into small sectors. The white noise assumption is
more realistic within these small sectors (see [1, p. 1063]). The
following two examples that are adopted from [1] show that
beamspace processors may produce spurious DOAs, even in
the processing sector.

Example 1: We use the beamspace matrix proposed in Ex-
ample 8.10.1 of [1, p. 1069]. Consider a standard ten-element
linear array and the following matrix:

which is a Taylor series matrix centered at
. The beamspace matrix is obtained via

. It can be easily verified that
are linear

dependent, which means that . Therefore,
, ,

produce identical beamspace signal
subspaces. Consequently, a source or a jammer at
may disguise itself as a source in the processing sector.

Example 2: Consider a standard 20-element linear
array. We use a beamspace centered around
that is obtained by orthogonalizing the following matrix:

1This is akin to dimensionality of the array manifold (see [5]).
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Fig. 1. MUSIC pseudo-spectrum. (Top) 	 = f0:020; 0:007g (Bottom)
	 = f0:020;�0:181g.

Such a beamspace matrix is referred to as the discrete Fourier
transform (DFT) beamformer in the signal processing literature,
and it is referred to as the Butler beamformer in the classic
antenna literature. Putting the conventional beams closer than

has been suggested in [1, p. 1066]. It can be verified that
are linear dependent.

Therefore, applying this beamspace matrix when causes
ambiguity.

Two scenarios are numerically explored where two
equal-power (unit amplitude) uncorrelated signals are im-
pinging on the array from and

. The noise power is assumed
, and the spectral matrix is estimated from 200 in-

dependent snapshots. Fig. 1 shows the MUSIC-pseudo-spectra
for the two scenarios. It is seen that in both scenarios, there are
many spurious peaks out of the processing sector. Note that in
the second scenario, there exists spurious peak, even within the
processing sector.

In practice, a well-designed provides high attenuation in
sectors far from the processing sector; thus, sources or jammers
located there do not disguise themselves. Yet, a certificate is
needed to insure that sources within or close to the processing
sector do not produce spurious DOAs in the sector of interest.
Unfortunately, verifying such criterion for a given is not an
easy task, since all possible DOA combinations in the vicinity
of the processing sector should be checked. Yet, this is a case
where design is easier than analysis.

IV. AMBIGUITY-FREE BEAMSPACE DESIGN

The main idea is to design such that the locations of the
spurious DOAs are known and fixed, regardless of . There-
fore, by removing these known spurious DOAs in the estima-
tion process, ambiguity can be easily resolved. The drawback is
that for these finite number of directions, ambiguity still exists.
However, if these directions are selected outside of the sector
of interest, then there is no ambiguity within that sector. To this
end, the null space of , denoted by , is specified
such that it contains distinct evaluations of the steering
vector at chosen directions. This can be explained in light of the
following proposition.

Proposition 1: Suppose

span (10)

and . Then, for , the
matrix is full-column rank.

Proof: Note that has full-column rank.
Thus, when is column-rank deficient,
there exist ’s such that

This means

and then, are linearly
dependent. Hence, since any distinct set of
are linear independent, we conclude that if , then

is full-column rank.
Thus, with (10) in place and ,

implies that is an actual source direction
(i.e., ). In other words, the only possible spurious DOAs
are , which we have already specified at in-
nocuous locations. One such choice for the beamspace matrix
is the well-known conventional beams, where rows of the
DFT matrix are chosen to form (see [1, p. 1066]). In this
case, the removed rows specify null directions.

In radar and communication applications where the location
of the jamming signals is roughly available, it is natural to atten-
uate the spatial sector around them. This calls for a beamspace
design scheme that provides attenuation in this particular spatial
sector (i.e., the interval ) as well as a certificate for
nonambiguous DOA estimation in the complement of (i.e.,

). We present such a design scheme in the sequel.
If columns of form an orthonormal basis for ,

then is effectively a completion of into a unitary matrix
. Thus, equivalently, can be designed instead of .

To ensure attenuation within the interval , it is
natural to minimize a gain functional such as

(11)

This requirement is equivalent2 to maximization of

trace

where ’s are columns of , and elements of the square matrix
are

.

2To see this, note that

jj Wa( ) jj d + jj C a( ) jj d =

jj [W C ]a( ) jj d =N( �  ):
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Fig. 2. Beam patterns for W .

This optimization problem can be interpreted alternatively as
maximizing the gain functional (11) over the interval (e.g.,
the processing sector).3 The reason is that the integral of the gain
functional (11) over is constant, i.e.,

To avoid ambiguity within the processing sector (i.e., ),
is subject to have null directions in . Note that

maximizing

(12)

subject to the existence of directions in such that
is not a convex optimization

problem. A simple and yet effective heuristic algorithm that
successively chooses a null direction that maximizes the corre-
sponding summand in (12) is given below.

1) ,
2) for

a)

b)
c) .

The simulation below highlights the potential of this technique
for the beamspace design.

Example 3: Consider a standard ULA with . Two
equal-power uncorrelated signals impinge from directions

and . Also, three jammers with power
10 dB less than signals impinge from the band
that are simulated by a uniform distribution in this band. We
use independent snapshots and project them by
two beamspace matrices with . The first beamspace
matrix is computed by the proposed algorithm when

, . The null directions are computed as
, and its

beam patterns are plotted in Fig. 2. The second beamspace
matrix is the conventional beam matrix with five beams
around the midpoint .

3This is akin to discrete prolate spheroidal sequences (DPSS) beamspace (see
[1, p. 1069]). The difference is that here, W is subject to have N � n null
directions outside the processing sector.

Fig. 3. Scatter diagram of the estimated DOAs. (Left) ApplyingW (proposed
beamspace). (Right) ApplyingW (conventional beams).

TABLE I
RESULTS OF SIMULATION IN EXAMPLE 3

We use the spectral MUSIC algorithm to identify sources.
Fig. 3 is the scatter diagram of the estimated and resulted
from 300 simulations. It is seen that generates better esti-
mates for DOAs. Table I contains the statistical properties of
the identified DOAs as well as failure rates. A failure occurs
when the MUSIC pseudo-spectrum does not have two peaks in
the sector of interest. It is clear that outperforms .

V. CONCLUDING REMARKS

We presented examples of well-known beamspace processors
that produce spurious DOAs. It was shown that beamspace may
introduce spurious DOAs unless the number of sources is less
than the beamspace dimensionality. Thus, for a reliable direc-
tion-finding algorithm, the beamspace dimensionality should be
determined. On the other hand, calculating the beamspace di-
mensionality requires an exhaustive search over all possible di-
rection combinations, which is impossible in practice. We pre-
sented a specific class of beamspace matrices that can be applied
as preprocessors without the risk of ambiguity. It is shown that
this class is rich enough to accommodate practical demands that
motivate beamspace processing.
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