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Completion of partially known turbulent flow
statistics via convex optimization

By A. Zare†, M. R. Jovanović† AND T. T. Georgiou†

Second-order statistics of turbulent flows can be obtained in direct numerical simula-
tions and experiments. Even though these statistics provide invaluable insights about
flow physics, they have not yet been incorporated in models to be used for control.
In this report, we develop a method to account for partially available velocity correla-
tions via stochastically forced linear dynamical models of low complexity. We formulate
a convex optimization problem aimed at identifying the statistics of forcing to the lin-
earized flow equations in order to match available velocity statistics and complete un-
available data. The solution to this covariance completion problem is used to design a
spatio-temporal filter that generates the identified forcing statistics. Our modeling and
optimization framework is verified using time-dependent stochastic simulations. These
confirm that second-order statistics of turbulent flows can indeed be reproduced by the
linearized Navier-Stokes equations with colored-in-time stochastic forcing.

1. Introduction

Nonlinear dynamical models of turbulent flows that are based on the Navier-Stokes
(NS) equations typically have a large number of degrees of freedom that makes them
unsuitable for control synthesis. Several techniques have been proposed for obtaining low-
dimensional models that preserve the essential dynamics; these include proper orthogonal
decomposition (POD) (Berkooz et al. 1993), balanced POD (Rowley 2005), Koopman
modes (Rowley et al. 2009; Mezić 2013), dynamic mode decomposition (Schmid 2010;
Jovanović et al. 2014), low-order Galerkin models (Holmes et al. 1998), and resolvent
modes (McKeon & Sharma 2010; Moarref et al. 2014). However, in all of these, control
actuation significantly alters the identified modes, which introduces nontrivial challenges
for control design (Noack et al. 2011).

In contrast, linearization of the NS equations around mean-velocity gives rise to mod-
els that are well-suited for analysis and synthesis using tools of modern robust control.
Furthermore, when driven by white-in-time stochastic excitation, such models have been
shown to qualitatively replicate structural features of wall-bounded shear flows (Farrell
& Ioannou 1993; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005; Moarref & Jo-
vanović 2012). However, it has also been recognized that white-in-time stochastic forcing
is too restrictive to reproduce all statistical features of the fluctuating velocity field (Jo-
vanović & Bamieh 2001; Jovanović & Georgiou 2010). Building on Georgiou (2002b,a);
Chen et al. (2013), we depart from white-in-time restriction and consider low-complexity
dynamical models with colored-in-time excitations that account for partially available
statistics. Such statistics may come from experimental measurements or direct numerical
simulations (DNS). We utilize nuclear norm minimization to develop a framework for
identifying the appropriate forcing into the linearized dynamics. Based on the solution
to the covariance completion optimization problem, a spatio-temporal filter is designed to
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Figure 1. Geometry of a pressure-driven turbulent channel flow.

realize the colored-in-time forcing correlations. Our method provides a means for design-
ing filters that not only explain the origin and directionality of input disturbances that
generate the observed turbulent statistics, but also enable the realization of identified
forcing structures via stochastic simulations.

Our report is organized as follows. In Section 2, we describe stochastically-forced lin-
earization of the NS equations around turbulent mean velocity and characterize the
structural constraints imposed on second-order statistics of the linearized flow equations.
In Section 3, we formulate the covariance completion problem and outline procedure for
designing spatio-temporal filters. In Section 4, we apply our modeling and optimization
framework to a turbulent channel flow and verify our results using stochastic simulations.
Finally, we summarize our developments in Section 5.

2. Problem formulation

The dynamics of incompressible Newtonian fluids are governed by the non-dimensional
NS and continuity equations,

ut = −(u · ∇)u − ∇P + (1/Reτ ) ∆u,

0 = ∇ · u.

We consider a pressure-driven turbulent channel, with geometry shown in Figure 1, where
u is the velocity vector, P is the pressure, ∇ is the gradient, and ∆ = ∇ · ∇ is the
Laplacian. The Reynolds number is defined as Reτ = uτh/ν, where h is the channel
half-height, uτ =

√
τw/ρ is the friction velocity, ν is the kinematic viscosity, τw is the

wall-shear stress (averaged over horizontal directions and time), ρ is the fluid density, and
t is time. In this formulation, spatial coordinates are non-dimensionalized by h, velocity
by uτ , time by h/uτ , and pressure by ρu2τ .

We study the dynamics of infinitesimal fluctuations around a turbulent mean velocity,
ū = (U(y), 0, 0), which implies translational invariance in the wall-parallel directions.
Velocity fluctuations in the streamwise, x, wall-normal, y, and spanwise, z, directions are
denoted by u, v, and w, and the linearized evolution model is given by

ψ̇(y, k, t) = A(k)ψ(y, k, t) + f(y, k, t)

v(y, k, t) = C(k)ψ(y, k, t).
(2.1)

Here, v = [u v w ]T is the fluctuating velocity vector, f is a zero-mean stochastic
forcing, and ψ = [ v η ]T is the state vector with v and η = ∂zu − ∂xw denoting the
wall-normal velocity and vorticity fluctuations. The dynamical generator in Eq. (2.1) is
the well-known Orr-Sommerfeld/Squire operator (around turbulent mean velocity U(y))
and the operator C(k) establishes a kinematic relation between ψ and v. Both of these
are parameterized by the wavenumber vector k = (kx, kz). A more detailed description
of the operators in Eq. (2.1) can be found in Jovanović & Bamieh (2005).
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Finite-dimensional approximations A(k) and C(k) of the operators A(k) and C(k)
are obtained using a pseudospectral scheme with N Chebyshev collocation points in the
wall-normal direction (Weideman & Reddy 2000), yielding

ψt(k, t) = A(k)ψ(k, t) + f(k, t),

v(k, t) = C(k)ψ(k, t),
(2.2)

where ψ(k, t) and v(k, t) are complex vectors with 2N and 3N components.

2.1. Second-order statistics of linearized NS equations

At any k, the steady-state covariance matrix of the velocity vector in Eq. (2.2) is given
by

Φ(k) = lim
t→∞

〈v(k, t)v∗(k, t)〉 ,

where v∗ is the complex conjugate transpose of the vector v, and 〈 · 〉 is temporal ensemble
averaging. The matrix Φ(k) contains information about second-order statistics of the
fluctuating velocity field and it can be computed as

Φ(k) = C(k)X(k)C∗(k),

where X is the steady-state covariance matrix of the state ψ in Eq. (2.2). When a stable
system, given by Eq. (2.2), is driven by zero-mean white-in-time stochastic forcing,

〈f(k, t1) f∗(k, t2)〉 = Z(k) δ(t1 − t2),

with covariance Z(k) = Z∗(k) � 0,X(k) and Z(k) are related via the Lyapunov equation,

A(k)X(k) + X(k)A∗(k) = −Z(k). (2.3)

For homogeneous isotropic turbulence, Jovanović & Georgiou (2010) showed that the
velocity covariance can be exactly matched using the linearized NS equations subject
to white-in-time solenoidal forcing with appropriately selected second-order statistics. In
turbulent channels, however, the matrix Z(k) = −(A(k)X(k) +X(k)A∗(k)) fails to be
negative semi-definite for numerically-generated covariances X(k) of the state ψ. Figure 2
shows the eigenvalues of Z(k) in a channel flow with Reτ = 180 and k = (2.5, 7). It can
also be shown that there is no positive semi-definite completion of partially available
flow statistics, which corresponds to system (2.2) driven by white-noise, and hence Z in
Eq. (2.3) is sign indefinite. Thus, the second-order turbulent channel flow statistics cannot
be reproduced by the linearized NS equations with white-in-time stochastic forcing. In
this report, we depart from the white-in-time restriction and consider low-complexity
dynamical models with colored-in-time excitations that successfully account for partially
available statistics. Such statistics may come from experimental measurements or direct
numerical simulations.

3. Completion of partially known statistics

Motivated by the necessity to account for turbulent flow correlations by models of
low complexity, we next formulate the problem of completing partially available second-
order statistics. The statistics of forcing are unknown and sought to explain the available
correlations, and the complexity is quantified by the rank of the correlation structure
of excitation sources. As shown by Chen et al. (2013), this provides a bound on the
number of input channels and explains the directionality of input disturbances. While
the system dynamics impose a linear constraint on admissible velocity correlations, such
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Figure 2. Negative eigenvalues of the forcing covariance resulting from Eq. (2.3), in a channel
flow with Reτ = 180 and k = (2.5, 7), indicate that turbulent velocity covariances cannot be
reproduced by the linearized NS equations with white-in-time stochastic forcing.

an inverse problem admits many solutions for the forcing correlations. We use nuclear
norm minimization to obtain correlation structures of low complexity.

3.1. Covariance completion problem

The covariance completion problem can be formulated as

minimize
X,Z

‖Z‖∗
subject to AX + XA∗ + Z = 0

(C X C∗) ◦ E − G = 0

X � 0.

(CC)

Here, matrices A, C, and G denote problem data, and Hermitian matrices X and Z are
optimization variables. Entries of G represent partially available second-order statistics,
e.g., one-point correlations in the wall-normal direction; see Figure 3 for an illustration.
These wave-number parameterized one-point velocity correlations have been obtained
in direct numerical simulations (Del Alamo & Jimenez 2003; Del Alamo et al. 2004).
The symbol ◦ denotes an element-wise matrix multiplication and the matrix E is the
structural identity,

Eij =

{
1, Gij is available

0, Gij is unavailable.

The constraint set in (CC) represents the intersection of the positive semi-definite cone
and two linear subspaces: the Lyapunov-like constraint, which is imposed by the linearized
dynamics, and the linear constraint, which relates X with the available statistics G.

In (CC), the nuclear norm, i.e., the sum of singular values of a matrix,

‖Z‖∗ :=
∑
i

σi(Z),

is used as a proxy for rank minimization (Fazel 2002; Recht et al. 2010). The convexity of
the optimization problem (CC) follows from the convexity of the nuclear norm objective
and the convexity of the constraint set (Boyd & Vandenberghe 2004). This optimization
problem can be formulated as a semi-definite program (SDP) whose globally optimal
solution can be found efficiently using standard SDP solvers for small problems. For
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Figure 3. Structure of the matrix G in (CC). At each pair of horizontal wavenumbers (kx, kz),
available second-order statistics are given by diagonal entries of the blocks in the velocity co-
variance matrix.

Figure 4. Spatio-temporal filter, given by Eq. (3.1), is designed to reproduce partially avail-
able second-order statistics of turbulent channel flow using stochastically forced linearized NS
equations (2.2).

large problems, which are typical in fluid mechanics, we have been developing customized
algorithms to solve (CC) and related variants of the covariance completion problem (Lin
et al. 2013; Zare et al. 2014, 2015).

3.2. Filter design

Matrices X(k) and Z(k) that solve completion problem (CC) can be used to design a
filter,

φ̇(k, t) = AF (k)φ(k, t) + BF (k)w(k, t),

f(k, t) = CF (k)φ(k, t) + DF (k)w(k, t),
(3.1)

that generates the colored-in-time forcing f(k, t) to the linearized NS equations (2.2).
This filter has the same number of degrees of freedom as the linearized equations given
by Eq. (2.2), and it is driven by white-in-time stochastic forcing w(k, t) with covariance
W (k). Here, W (k) is any positive-definite matrix and the power spectrum of f(k, t) is
determined by

Πff (k, ω) = F (k, ω)W (k)F ∗(k, ω),

where F (k, ω) is the transfer function of the filter,

F = CF (iωI − AF )
−1
BF + DF ,

and

AF = A + BF C
−1
F ,

CF = (−0.5W B∗F + H∗)X−1,

DF = I.

The input matrix BF and the matrix H are obtained by factorizing the matrix Z into
BFH

∗ +HB∗F ; see Chen et al. (2013) for details.
By augmenting the linearized NS equations (2.2) with the filter dynamics, given by

Eq. (3.1), we can recover partially available second-order turbulent flow statistics via a
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linear model. In Section 4, we use stochastic simulations of the interconnection shown in
Figure 4 to demonstrate the utility of our approach.

4. Results and discussion

We next use partially available second-order statistics resulting from DNS of a turbu-
lent channel flow with Reτ = 180 (Del Alamo & Jimenez 2003; Del Alamo et al. 2004) to
demonstrate the utility of our approach. As illustrated in Figure 3, the available statis-
tics for our optimization problem are given by one-point velocity correlations at various
wavenumber pairs. Differential operators in the wall-normal direction are approximated
using N = 51 collocation points. In the wall-parallel directions a Fourier transform with
80×81 grid points is applied, kx ∈ [0.01, 42.5] and kz ∈ [0.01, 84.5], with the largest values
of kx and kz being equal to those used in DNS (Del Alamo & Jimenez 2003; Del Alamo
et al. 2004). Building on the solution to the covariance completion problem (CC) at
k = (2.5, 7), we use stochastic simulations of the linear system (2.2)-(3.1), to show that
our approach can indeed reproduce available statistical signatures of the turbulent flow.
We also demonstrate that completed two-point velocity correlations compare favorably
with two-point correlations resulting from DNS.

4.1. Solution to the covariance completion problem

Figure 5 shows that the solution to the optimization problem (CC) exactly reproduces
available one-point velocity correlations of turbulent channel flow at various horizontal
wavenumbers. Figures 5(a) and 5(c) display perfect matching of all one-point velocity cor-
relations resulting from integration over horizontal wavenumbers. Because problem (CC)
is not feasible for Z � 0, perfect matching of turbulent flow statistics cannot be achieved
with white-in-time stochastic forcing. Figures 5(b) and 5(d) demonstrate perfect recovery
of the pre-multiplied, one dimensional energy spectrum of streamwise velocity fluctua-
tions. Results are given in terms of streamwise (Figure 5(b)) and spanwise (Figure 5(d))
wavelengths and the wall-normal coordinate, all in inner (viscous) units. Color plots
and contour lines show energy spectra resulting from DNS (Del Alamo & Jimenez 2003;
Del Alamo et al. 2004) and from our optimization framework, respectively. These are in
perfect agreement. Similar matching is observed for the wall-normal and spanwise ve-
locity spectra as well as for the Reynolds stress co-spectrum (not shown owing to page
limitations).

Figures 6(a) and 6(c) respectively display covariance matrices of the streamwise and
spanwise velocity components resulting from DNS (Del Alamo & Jimenez 2003; Del Alamo
et al. 2004). Although only diagonal elements of these matrices (denoted by black lines)
were used in optimization problem (CC), Figures 6(b) and 6(d) display good recovery
of unavailable two-point correlations. Thus, the stochastically driven linearized model in
conjunction with the proposed optimization framework can be used to complete unavail-
able statistical signatures of the fluctuating velocity field.

4.2. Verification in linear stochastic simulations

We next conduct stochastic simulations of the linearized flow equations and compare
them with DNS results. A filter that generates colored-in-time forcing f to the linearized
NS Eqs. (2.2) is designed using the solution to (CC) at Rτ = 180 and k = (2.5, 7). This
filter is driven by the white-in-time Gaussian process w with zero mean and unit variance.
Our simulations not only confirm that our optimization framework can recover available
turbulent flow statistics by identifying forcing models for the stochastically driven lin-
earized NS equations, but also illustrate how our results should be interpreted when
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Figure 5. Turbulent channel flow with Reτ = 180. (a) Correlation profiles of normal and (c)
shear stresses resulting from DNS (Del Alamo & Jimenez 2003; Del Alamo et al. 2004) (–) and
from the solution to (CC); uu (◦), vv (2), ww (4), −uv (3). Pre-multiplied, one-dimensional
energy spectrum of streamwise velocity fluctuations in terms of streamwise (b) and spanwise
(d) wavelengths. Color plots: spectra resulting from DNS. Contour lines: spectra resulting from
the solution to (CC).

compared with DNS or experiments. Proper comparison requires ensemble-averaging,
rather than comparison at the level of individual stochastic simulations. We have thus
conducted ten different stochastic simulations of the linear system Eqs. (2.2)-(3.1).

Figure 7(a) shows the time evolution of the energy (variance) of velocity fluctuations,
for ten realizations of stochastic forcing to Eq. (3.1). The variance averaged over all
simulations is given by the thick black line. Even though the responses of individual sim-
ulations differ from each other, the average of ten sample sets asymptotically approaches
the correct value of turbulent kinetic energy in the statistical steady-state, trace (Φ).
Figures 7(b) and 7(c) respectively display the normal stress profiles in the streamwise
direction and the shear stress profiles resulting from DNS and from linear stochastic
simulations. We see that the averaged output of ten stochastic simulations agrees well
with DNS results. This close agreement can be further improved by running additional
linear simulations and by increasing the total simulation times.

5. Concluding remarks

We have developed a convex optimization framework to account for partially available
second-order statistics of turbulent flows by linear stochastic models of low complexity.
Available statistics originate from experiments or direct numerical simulations and consist
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Figure 6. Covariance matrices resulting from (a, c) DNS (Del Alamo & Jimenez 2003;
Del Alamo et al. 2004), and (b, d) linear stochastic simulations. (a, b) Streamwise and (c,
d) spanwise velocity correlations in wall-normal coordinates at k = (2.5, 7). Available one-point
correlation profiles represent diagonal entries of these matrices and are shown by diagonal black
lines.
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Figure 7. (a) Time evolution of fluctuation’s kinetic energy for ten realizations of forcing to
the linearized model, given by Eqs. (2.2)-(3.1), with k = (2.5, 7); the energy averaged over all
simulations is shown by thick black line. (b) Normal stress profiles in the streamwise direction
and (c) shear stress profiles resulting from DNS (–) and stochastic linear simulations (◦).

of partially known velocity correlations. We utilize nuclear norm minimization as a basis
for completing unavailable statistical signatures and to identify forcing models that drive
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the linearized flow equations. The complexity of the model is quantified by the rank of
the correlation structure of excitation sources, which provides a bound on the number of
input channels to the linearized NS equations.

We have solved the covariance completion problem for turbulent channel flow with
Reτ = 180 at all horizontal wavenumbers. Using the solution to the convex optimization
problem (CC), we have designed a spatio-temporal filter that generates the colored-in-
time forcing to the linearized NS equations. This filter has the same number of degrees
of freedom as the finite-dimensional approximation of the linearized model given by
Eq. (2.2). The power spectrum of the forcing has been obtained to match available
one-point correlations and approximate unavailable two-point correlations. In addition,
we have verified our modeling and optimization developments in stochastic simulations.
These time-dependent simulations have confirmed that DNS-based second-order statistics
can indeed be reproduced by low-complexity linear dynamical models with colored-in-
time stochastic forcing.

During the summer program, we also used spanwise wall-oscillations to demonstrate
the utility of our approach in model-based control design. For a turbulent channel flow
with Reτ = 180, we have identified the period of oscillations that yields largest drag
reduction via input-output analysis of our stochastically driven linear models.
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Jovanović, M. R. & Bamieh, B. 2001 Modelling flow statistics using the linearized
Navier-Stokes equations. In Proceedings of the 40th IEEE Conference on Decision
and Control .
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