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Abstract— We consider the problem of completing partially
known sample statistics in a way that is consistent with
underlying stochastically driven linear dynamics. Neither the
statistics nor the dynamics are precisely known. Thus, our
objective is to reconcile the two in a parsimonious manner. To
this end, we formulate a convex optimization problem to match
available covariance data while minimizing the energy required
to adjust the dynamics by a suitable low-rank perturbation.
The solution to the optimization problem provides information
about critical directions that have maximal effect in bringing
model and statistics in agreement.

Index Terms— Convex optimization, low-rank perturbation,
semi-definite programing, sparsity-promoting optimal control,
state covariances, structured matrix completion problems.

I. INTRODUCTION

Our topic begins with a simplified model of a complex
dynamical process together with an incomplete set of co-
variance statistics. The observed partial statistical signature
of the process carries useful information about the under-
lying dynamics. Thus, our goal is to reconcile the available
covariance data with our model by an economical refinement
of both, the model and the estimated statistics.

The history and motivation for this subject root in the
modeling of fluid flows. In this, the stochastically-forced
linearized Navier-Stokes equations around the mean ve-
locity profile have been shown to qualitatively replicate
the structural features of shear flows [1]–[4]. The present
paper represents an extension of our recent work where
we introduced nontrivial (colored) stochastic forcing into
linear dynamics in order to account for a partially known
output covariance [5]–[8]. We were motivated by the fact
that white-in-time stochastic forcing is often insufficient to
explain observed correlations [9], [10]. However, insights
from that earlier work suggest that the effect of a colored-in-
time input process is precisely equivalent to a perturbation
of the system dynamics, without any need to increase the
state dimension [7], [8].

Any perturbations in state dynamics can be equivalently
represented by state-feedback interactions. Parsimony in our
methodology dictates that we penalize both the magnitude
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as well as the directionality of corresponding correction
terms. Thereby, we formulate the problem to match available
covariance data while minimizing the energy required to
adjust the dynamics by a suitable low-rank perturbation.
The solution to the convex optimization problem that we
formulate provides information about critical directions that
have maximal effect in bringing model and statistics in
agreement.

Starting from a pre-specified set of input channels our ob-
jective is to identify a small subset that can explain partially-
observed second-order statistics via suitable feedback in-
teractions. In general, this is a combinatorial optimization
problem. To cope with the combinatorial complexity, we
utilize convex characterization that was recently used in the
context of optimal sensor and actuator selection [11], [12].
This allows us to cast our problem as a semidefinite program.

Our problem can be viewed as having a dual interpretation.
It can be considered as a static state-feedback synthesis
approach to an inverse problem that identifies dynamical
feedback interactions which account for available statistical
signatures. On the other hand, it can also be considered as an
identification problem that aims to explain available statistics
via suitable low-rank perturbations of the linear dynamics.

Our presentation is organized as follows. In Section II,
we provide a brief summary of the covariance completion
problem and draw connections to covariance control prob-
lems. In Section III, we pose the problem as a state-feedback
synthesis and provide a convex formulation. In Section IV,
we offer an example to highlight the utility of our approach.
We conclude with remarks and future directions in Section V.

II. BACKGROUND

Consider a linear time-invariant (LTI) system with state-
space representation

ẋ = Ax + B f

y = Cx
(1)

where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output,
f(t) ∈ Cm is a stationary zero-mean stochastic process,
A ∈ Cn×n is the dynamic matrix, and B ∈ Cn×m is the
input matrix with m ≤ n. For Hurwitz A and controllable
(A,B), a positive definite matrix X qualifies as the steady-
state covariance matrix of the state vector

X := lim
t→∞

E (x(t)x∗(t)) ,

if and only if the linear equation

AX + XA∗ = − (BH∗ + HB∗) , (2)



is solvable for H ∈ Cn×m [13], [14]. Here, E is the ex-
pectation operator, H represents the cross-correlation of the
state x and the input f , and ∗ denotes the complex conjugate
transpose. For a white-in-time input f with covariance W ,
the covariance X satisfies the algebraic Lyapunov equation

AX + X A∗ = −BWB∗. (3)

The main difference between (2) and (3) is that the right-
hand-side in (2) is allowed to be sign-indefinite, thereby
allowing for colored-in-time stochastic inputs. Clearly, for
H = BW/2, (2) simplifies to the Lyapunov equation (3).

The algebraic relation between second-order statistics of
the state and forcing can be used to explain partially known
sampled second-order statistics using stochastically-driven
LTI systems [5], [7]. While the dynamical generator A is
known, the origin and directionality of stochastic excitation
f is unknown. It is also important to restrict the complexity
of the forcing model. This complexity is quantified by the
number of degrees of freedom that are directly influenced
by stochastic forcing and translates into the number of input
channels or rank(B). It can be shown that the rank of B is
closely related to the signature of the matrix

Z := −(AX + XA∗)

= BH∗ + HB∗.

The signature of a matrix is determined by the number of
its positive, negative, and zero eigenvalues. In addition, the
rank of Z bounds the rank of B [5], [7].

Based on this, the problem of identifying low-complexity
structures for stochastic forcing can be formulated as the
following structured covariance completion problem [7]

minimize
X,Z

− log det (X) + γ ‖Z‖∗

subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0.

(4)

Here, γ is a positive regularization parameter, the matrices
A, C, E, and G are problem data, and the Hermitian
matrices X , Z ∈ Cn×n are optimization variables. Entries
of G represent partially available second-order statistics of
the output y, the symbol ◦ denotes elementwise matrix
multiplication, and E is the structural identity matrix,

Eij =

{
1, if Gij is available
0, if Gij is unavailable.

Convex optimization problem (4) combines the nuclear
norm with an entropy function in order to target low-
complexity structures for stochastic forcing and facilitate
construction of a particular class of low-pass filters that
generate colored-in-time forcing correlations. The nuclear
norm, i.e., the sum of singular values of a matrix, ‖Z‖∗ :=∑
i σi(Z), is used as a proxy for rank minimization [15],

[16]. On the other hand, the logarithmic barrier function
in the objective is introduced to guarantee the positive

definiteness of the state covariance matrix X .

The solution to (4) can be translated into a dynamical
representation for colored-in-time stochastic forcing by de-
signing linear filters that provide the suitable forcing into
system (1). The filter dynamics are given by the state-space
representation

ξ̇ = (A−BK) ξ + B d (5a)

f = −K ξ + d, (5b)

where d is a white stochastic process with covariance Ω � 0
and

K =
1

2
ΩB∗X−1 − H∗X−1. (5c)

Here, the matrices B and H correspond to the factorization
of the matrix Z (cf. (2)) which results from solving convex
optimization problem (4); see [5], [7] for details.

From an alternative viewpoint, the constructed class of
filters described by (10b) are related to the covariance control
problem studied in [17], [18]; see [7] for additional details.
In other words, the cascade interconnection of the filter and
linear dynamics can be equivalently represented by

ẋ = Ax + B u + B d, (6a)

where d is again white with covariance Ω, and u is given by

u = −K x. (6b)

Substitution of (6b) into (6a) yields the following state-space
representation

ẋ = (A − BK)x + B d. (6c)

In this case, a choice of non-zero K can be used to assign
different values to the covariance matrix X; see Fig. 1(b).
For A−BK Hurwitz, X satisfies

(A−BK)X + X (A−BK)∗ + B ΩB∗ = 0. (7)

Any X � 0 satisfying (7) also satisfies (2) with H =
−XK∗ + 1

2BΩ. Conversely, if X � 0 satisfies (2), then it
also satisfies (7) for K = 1

2ΩB∗X−1−H∗X−1 and A−BK
is Hurwitz. Thus, for a stationary state covariance X � 0,
the problem of identifying the stochastic input f in (1) is
equivalent to assigning the feedback gain matrix K in (6).

III. COVARIANCE COMPLETION VIA MINIMUM ENERGY
CONTROL

We next utilize representation (6) to propose an alterna-
tive method for completing partially known second-order
statistics using state-feedback synthesis. In general, there
is more than one choice of K that provides consistency
with available steady-state statistics. We propose to select an
optimal feedback gain K that minimizes the control energy
in statistical steady-state

lim
t→∞

E (u∗(t)u(t)) .
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Fig. 1. (a) A cascade connection of an LTI system with a linear filter that
is designed to account for the sampled steady-state covariance matrix X;
(b) An equivalent feedback representation of the cascade connection in (a).

Such K can be equivalently obtained by minimizing
trace (KXK∗) subject to (7) and a linear constraint that
comes from the known output correlations,

(CXC∗) ◦ E − G = 0.

In addition, it is desired to limit the number of degrees
of freedom that are directly influenced by the state-feedback
u and stochastic forcing d in (6). This also translates into
minimizing the number of input channels or columns of the
input matrix B that perturb the dynamical generator A in (7);
see [7], [8] for details.

Herein, we introduce a covariance completion framework
which consists of two steps: identification and polishing.
In the identification step, we solve the minimum-energy
covariance completion problem augmented by a sparsity-
promoting regularizer. This allows us to identify a subset of
input channels that strike a balance between control energy
and the number of used input channels (and thereby the rank
of dynamical perturbation BK). In the polishing step, we
further reduce the control energy and improve the quality of
completion. This is accomplished by solving the minimum-
energy covariance completion problem using the identified
input channels.

A. Identification of essential input channels

As aforementioned, the covariance completion problem (4)
uses a nuclear norm regularization in order to provide a
bound on the least number of colored-in-time input channels
that are required to account for the known second-order
statistics. Herein, we consider the state-space representation

ẋ = (A − BK)x + B d

where d is a zero-mean white stochastic process with co-
variance Ω, B is the input matrix, A is Hurwitz, and the
pair (A,B) is controllable. Starting from a given matrix
B, we seek a subset of available input channels that are
sufficient for the purpose of accounting for the observed
second-order statistics. This is accomplished by formulating

an optimization problem in which the performance index
trace (KXK∗) is augmented with a term that promotes row-
sparsity of the feedback gain matrix K. When the ith row
of K is identically equal to zero, the ith input channel
in the matrix B is not used. Therefore, we can identify a
subset of critical input channels by promoting row-sparsity
of K. This approach not only reduces the number of colored-
in-time input channels, but it also uncovers the precise
dynamical feedback interactions that are required to reconcile
the available covariance data with the given linear dynamics.

The regularized minimum-control-energy covariance com-
pletion problem can be formulated as,

minimize
X,K,Ω

trace (K∗XK) + γ

n∑
i= 1

wi ‖e∗i Ki‖2

subject to (A−BK)X + X (A−BK)∗ + V (Ω) = 0

(CXC∗) ◦ E − G = 0

X � 0,
(8)

with V (Ω) := B ΩB∗. Here, matrices A, B, C, E, and G
are problem data, and matrices X ∈ Cn×n, K ∈ Cm×n, and
Ω ∈ Cm×m are optimization variables. The regularization
parameter γ > 0 specifies the relative importance of the
sparsity-promoting term, wi are nonzero weights, and ei is
the ith unit vector in Rm.

Since the hermitian matrix X is positive definite and
therefore invertible, the standard change of coordinates Y :=
KX brings problem (8) into the following form

minimize
X,Y,Ω

trace
(
Y X−1Y ∗

)
+ γ

n∑
i= 1

wi ‖e∗i Yi‖2

subject to AX + X A − B Y − Y ∗B∗ + V (Ω) = 0

(CXC∗) ◦ E − G = 0

X � 0.
(CC)

Here, we have utilized the equivalence between the row-
sparsity of K and the row-sparsity of Y [11]. The convexity
of (CC) follows from the convexity of its objective function
and the convexity of the constraint set [19]. Furthermore, this
optimization problem can be recast as an SDP by taking the
Schur complement of Y X−1Y ∗ [20]. Finally, the optimal
feedback gain matrix can be recovered as K = Y X−1.

The SDP characterization of problem (CC) can be solved
efficiently using general-purpose solvers for small-size prob-
lems. We are currently developing customized algorithms
that exploit the structure of (CC) in order to gain compu-
tational efficiency and improve scalability.

Iterative reweighting: In optimization problem (CC) the
weighted `2 norm is used to promote row sparsity of the ma-
trix Y . This choice is inspired by the exact correspondence
between the weighted `1 norm, i.e.,

∑
i wi|xi| with wi =

1/|xi| for xi 6= 0, and the cardinality function card (x).
Since this choice of weights cannot be implemented, the



Fig. 2. Geometry of a three-dimensional pressure-driven channel flow.

iterative reweighting scheme was proposed instead in [21].
We follow similar approach and update weights using

wj+1
i =

1

‖e∗i Y j‖2 + ε
, (9)

where Y j denotes the solution to problem (CC) in the jth
reweighting step. The small positive parameter ε ensures that
the weights are well-defined.

B. Polishing step

In the polishing step, we consider the system

ẋ = (A − B2K)x + B d.

The matrix B2 ∈ Cn×q is obtained by eliminating the
columns of B which correspond to the identified row sparsity
structure of Y , where q denotes the number of retained
input channels. For this system, we solve optimization prob-
lem (CC) with γ = 0. This step allows us to identify the
optimal matrix Y ∈ Cq×n and subsequently the optimal
feedback gain K ∈ Cq×n for a system with a lower
number of input control channels. As we demonstrate in
our computational experiments, polishing not only reduces
the energy of the control input but it can also improve the
quality of completion of the covariance matrix X .

IV. AN EXAMPLE

In an incompressible channel-flow, with geometry shown
in Fig. 2, we study the dynamics of infinitesimal fluctu-
ations around the parabolic mean velocity profile, ū =
[U(x2) 0 0 ]T with U(x2) = 1−x2

2. Here, x1, x2, and x3 de-
note the streamwise, wall-normal and spanwise coordinates,
respectively; see Fig. 2. Finite dimensional approximation
of the linearized Navier-Stokes equations around ū results
in the following state-space representation

ẋ(k, t) = A(k)x(k, t) + ξ(k, t),

y(k, t) = C(k)x(k, t).
(10a)

Here, x = [ v2 η ]T ∈ C2N is the state of the linearized
model, v2 and η = ∂x3

v1 − ∂x1
v3 are the wall-normal

velocity and vorticity, the output y = [ vT1 vT2 vT3 ]T ∈ C3N

denotes the fluctuating velocity vector, ξ is a stochastic
forcing disturbance, k = [ kx kz ]T denotes the vector of
horizontal wavenumbers, and the input matrix is the identity

I2N×2N . A detailed description of the dynamical matrix A
and output matrix C can be found in [3].

We assume that the stochastic disturbance ξ is generated
by a low-pass filter with state-space representation

ξ̇(k, t) = −ξ(k, t) + d(t). (10b)

Here, d denotes a zero mean unit variance white process.

The steady-state covariance of system (10) can be found
as the solution to the Lyapunov equation

ÃΣ + Σ Ã∗ + B̃ B̃∗ = 0

where
Ã =

[
A I
O −I

]
, B̃ =

[
0
I

]
and

Σ =

[
Σxx Σxξ
Σξx Σξξ

]
.

Here, the sub-covariance Σxx denotes the state covariance
of system (10a). At any horizontal wavenumber pair k, the
steady-state covariance matrices of the output y and the state
x are related by

Φ(k) = C(k) Σxx(k)C∗(k),

Figure 3 shows the structure of the output covariance matrix
Φ.

For the horizontal wavenumber pair (kx, kz) = (0, 1),
Fig. 4(a, c, e, g) shows the color-plots of the streamwise Φ11,
wall-normal Φ22, spanwise Φ33, and the streamwise/wall-
normal Φ12 two-point correlation matrices. In this example,
we assume that the one-point velocity correlations, or diago-
nal entries of these covariance matrices are available. We set
the covariance of white noise disturbances to the identity
(Ω = I) and do not treat it as an optimization variable
in (CC). For this example, we use N = 11 collocation points
to discretize the differential operators in the wall-normal
direction x2.

Figure 5 shows the γ-dependence of the relative Frobenius
norm error in recovering the true covariance Σxx before and
after polishing. As shown in Fig. 5, the polishing step can
indeed improve the quality of completion in the covariance
matrix X . The best completion is achieved for high values
of γ (96% recovery). Fig. 4(b, d, f, h) shows the streamwise,
wall-normal, spanwise, and the streamwise/wall-normal two-
point correlation matrices resulting from solving (CC) with
γ = 104 followed by polishing.

Figure 6 shows the configuration of input channels that are
retained as γ is increased. It is evident that as γ increases
more control input channels are eliminated. In this example,
the initial input matrix is the identity I2N×2N . Since the
state is formed as x = [ v η ]T , the first and last N input
channels can be considered as entering into the dynamics of



Fig. 3. Structure of the output covariance matrix Φ. Available one-point
velocity correlations in the wall-normal direction represent diagonal entries
of the blocks in the velocity covariance matrix Φ.
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Fig. 4. True covariance matrices of the output velocity field (a, c, e, g), and
covariance matrices resulting from solving optimization problem (CC) with
γ = 104 followed by a polishing step (b, d, f, h). (a, b) Streamwise Φ11,
(c, d) wall-normal Φ22, (e, f) spanwise Φ33, and (g,h) the streamwise/wall-
normal Φ12 two-point correlation matrices at (kx, kz) = (0, 1). The one-
point correlation profiles that are used as problem data in (CC) are marked
by black lines along the main diagonals.
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Fig. 5. The γ-dependence of the relative Frobenius norm error between
the true state covariance Σxx and the solution X to (CC) before (#) and
after (4) polishing, for the channel flow with N = 11 collocation points
in channel height.

input channel

Fig. 6. Retained columns of the input matrix B as γ increases. A black
dot indicates the presence of the corresponding input channel. The top row
(γ = 0) shows the use of all channels, and the bottom row (γ = 104)
shows the least number of channels required for accounting the observed
statistics.

wall-normal velocity and wall-normal vorticity, respectively.
Notably, input channels that enter the dynamics of wall-
normal velocity are more important with more emphasis
placed on excitations that are located in the vicinity of
channel walls.

When the reweighting scheme is employed, for each value
of γ, the optimization problem (CC) is solved 10 times,
updating the weights using (9) and retaining them as we
increase γ. Figure 7 illustrates the utility of the iterative
reweighting scheme. When constant and uniform sparsity-
promoting weights are used, large values of γ are required
to eliminate input channels, and even with the highest values
of the sparsity-promoting parameter (γ = 104) only 5 input
channels were eliminated from the second half of columns of
B. For the same value of γ, problem (CC) with the iterative
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Fig. 7. The γ-dependence of the number of retained input channels after
solving problem (CC) in the case of iterative reweighting (#) and in the
case of constant weights (4).

reweighting scheme eliminates 11 input channels.

V. CONCLUDING REMARKS

We have examined the problem of explaining partially
known second-order statistics using stochastically-forced lin-
ear models. While the linearized model and an incomplete set
of covariance statistics is known, the nature and directionality
of disturbances that can explain these statistics are unknown.
This inverse problem can be formulated as a convex co-
variance completion problem, which utilizes nuclear norm
minimization to identify forcing correlation structures of
low-rank. The low-rank objective bounds the number of input
channels which directly influence the state dynamics. We
show that this problem can be alternatively formulated as a
covariance control problem in which we identify the suitable
feedback interactions that explain the available statistics.
We employ a convenient change of variables through which
the problem of minimizing the number of input channels
translates into promoting sparsity on the rows of the feedback
gain matrix. This allows for the exact identification of critical
input directions that have most profound effect in bringing
model and statistics in agreement.

Our ongoing effort is directed toward the development of
customized optimization algorithms which efficiently solve
the minimum energy covariance completion problem for
problems with large number of state variables.
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[3] M. R. Jovanović and B. Bamieh, “Componentwise energy amplifica-
tion in channel flows,” J. Fluid Mech., vol. 534, pp. 145–183, July
2005.
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