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Abstract— State statistics of linear systems satisfy certain
structural constraints that arise from the underlying dynamics
and the directionality of input disturbances. These statistics
are relevant in understanding the fundamental physics and
can be used to develop control-oriented models for large-scale
dynamical systems, e.g., stochastically forced linearized Navier-
Stokes equations. The problem of completing partially known
state statistics via stochastically driven linear time-invariant
systems gives rise to a class of structured covariance completion
problems. In this, nuclear norm minimization is used to
identify forcing models of low complexity. Herein, we develop a
customized alternating minimization algorithm (AMA) to solve
this optimization problem for large-scale systems. We interpret
AMA as a proximal gradient for the dual problem which allows
us to prove convergence for the algorithm with fixed step-size.

Index Terms— Alternating minimization algorithm, convex
optimization, nuclear norm regularization, state covariances,
structured matrix completion problems.

I. INTRODUCTION

Motivated by the necessity for control-oriented modeling
of systems with large number of degrees of freedom, e.g.,
fluid flows, we have developed a framework to account for
partially observed second-order statistics using stochastically
forced linear models [1]–[5]. These models have shown to
preserve the essential dynamics. For instance, linearization of
the Navier-Stokes equations around mean-velocity, driven by
white-in-time stochastic excitation has shown to qualitatively
replicate structural features of wall-bounded shear flows [6]–
[9]. However, it has also been recognized that white-in-
time stochastic forcing is too restrictive to reproduce all
statistical features of the fluctuating velocity field [5], [10],
[11]. Building on [12], [13], we depart from white-in-
time restriction and consider low-complexity models with
colored-in-time excitations that successfully account for all
observed second-order statistics that may be available from
experiments or numerical simulations.

In our setting, the complexity is quantified by the rank
of the correlation structure of excitation sources and we
utilize nuclear norm minimization as a surrogate for rank
minimization [14], [15]. The resulting convex optimization
problem can be cast as a semidefinite program (SDP) which
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is readily solvable by standard software for small-size prob-
lems. However, for larger problems, we have developed
customized optimization algorithms based on alternating
direction methods [4], [16]. In this presentation, we focus on
a customized alternating minimization algorithm (AMA) and
show that AMA can be interpreted as a proximal gradient for
the dual problem. This interpretation can be used to establish
sub-linear convergence of the algorithm [4].

II. PROBLEM FORMULATION

Consider a linear time-invariant (LTI) system

ẋ = Ax + B u, (1)

where x(t) ∈ Cn is the state vector, A ∈ Cn×n and
B ∈ Cn×m are dynamic and input matrices, and u(t) ∈ Cm
is a stationary zero-mean stochastic process. For a Hurwitz
matrix A and controllable pair (A,B), the positive definite
matrix X qualifies as being the steady-state covariance
matrix of the state in (1),

X := lim
t→∞

E (x(t)x∗(t)) ,

if and only if the linear equation,

AX + X A∗ = − (BH∗ + H B∗) , (2)

is solvable in terms of H ∈ Cn×m [12], [13]. Here, E is the
expectation operator and ∗ denotes the complex conjugate
transpose. When u is white noise with covariance W , X
satisfies the Lyapunov equation

AX + X A∗ = −BWB∗.

This results from (2) with H = BW/2 and yields a negative
semi-definite right-hand-side. In contrast, for the case of
colored-in-time stochastic excitation of the linear dynamics,
the right-hand-side of (2), which we denote as

Z := − (AX + X A∗) ,

may have both positive and negative eigenvalues.
The covariance completion problem is formulated as,

minimize
X,Z

− log det (X) + γ ‖Z‖∗
subject to A1(X) + Z = 0

A2(X) − G = 0.

(CC)

Here, A1 : Cn×n → Cn×n and A2 : Cn×n → Cp×p are
linear operators, with

A1(X) := AX + XA∗

A2(X) := (C X C∗) ◦ E.
(3)



Matrices A, C, E, and G denote problem data, and Hermitian
matrices X , Z ∈ Cn×n are optimization variables. Entries of
the Hermitian matrix G represent partially available second-
order statistics and C is a matrix that establishes the rela-
tionship between entries of the state covariance matrix X
and partially available statistics resulting from experiments
or simulations. While the logarithmic barrier function in the
objective is introduced to guarantee the positive definiteness
of X , the nuclear norm, i.e., the sum of singular values of
a matrix, ‖Z‖∗ :=

∑
i σi(Z), is used as a proxy for rank

minimization [14], [15] with the parameter γ indicating the
relative weight on the nuclear norm. The symbol ◦ denotes
elementwise matrix multiplication and E is the structural
identity matrix,

Eij =

{
1, if Gij is available
0, if Gij is unavailable.

Convexity of (CC) follows from the convexity of its objective
function Jp(X,Z) and convexity of the constraint set [17].

The Lagrange dual of (CC) is given by

maximize
Y1, Y2

log det
(
A†

1(Y1) + A†
2(Y2)

)
− 〈G, Y2〉+ n

subject to ‖Y1‖2 ≤ γ
(D)

where Hermitian matrices Y1, Y2 are dual variables associ-
ated with equality constraints in (CC) and A†

1 and A†
2 are

the adjoints of the operators defined in (3) [4]. We denote
the objective of (D) as Jd(Y1, Y2).

III. ALTERNATING MINIMIZATION ALGORITHM

The logarithmic barrier function in (CC) is strongly convex
over any compact subset of the positive definite cone [18].
As a result, problem (CC) is well-suited for the application
of AMA, which requires strong convexity of the smooth part
of the objective function [19].

The augmented Lagrangian associated with (CC) is

Lρ(X,Z;Y1, Y2) = − log detX + γ ‖Z‖∗ +

〈Y1, A1(X) + Z〉 + 〈Y2, A2(X)−G〉 +
ρ

2
‖A1(X) + Z‖2F +

ρ

2
‖A2(X) − G‖2F

where ρ is a positive scalar and ‖·‖F is the Frobenius norm.
AMA follows a sequence of iterations,

Xk+1 := argmin
X

L0 (X, Zk; Y k1 , Y
k
2 ) (4a)

Zk+1 := argmin
Z

Lρ (Xk+1, Z; Y k1 , Y
k
2 ) (4b)

Y k+1
1 := Y k1 + ρ

(
A1(Xk+1) + Zk+1

)
(4c)

Y k+1
2 := Y k2 + ρ

(
A2(Xk+1) − G

)
(4d)

which terminate when the duality gap

∆gap := − log detXk+1 + γ ‖Zk+1‖∗ − Jd
(
Y k+1
1 , Y k+1

2

)
and the primal residual ∆p are sufficiently small. In the
X-minimization step (4a), AMA leads to a closed-form
expression for Xk+1. This is followed by the Z-minimization

step (4b) which amounts to the soft-thresholding operator
acting on the singular values of a matrix. Finally, the
Lagrange multipliers, Y1 and Y2, are updated based on
the primal residuals with the step-size ρ. The step-size is
obtained by adjusting an initial BB step-size [20] through
a backtracking procedure to guarantee positive definiteness
of the subsequent iterate of (4a) and sufficient dual ascent;
see [16], [21] for additional details.

Our customized AMA is summarized as Algorithm 1. Here
A† denotes the adjoint of the operator pair A := (A1,A2).

Algorithm 1 Customized AMA

input: A, G, γ > 0, tolerances ε1, ε2, and backtracking
constant β ∈ (0, 1).
initialize: k = 0, ρ0,0 = 1, ∆gap = ∆p = 2ε1,
Y 0
2 = On×n, and choose Y 0

1 such that A†
1(Y 0

1 ) =
(γ/‖Y 0

1 ‖2)In×n.

while: |∆gap| > ε1 and ∆p > ε2,

Xk+1 = (A†(Y k1 , Y
k
2 ))−1

compute ρk: {βjρk,0}j=0,1,... such that Xk+2 � 0

and Y k+1
1 and Y k+1

2 achieve sufficient dual ascent

Zk+1 = Sγ/ρ
(
−A1(Xk+1) − (1/ρ)Y k1

)
Y k+1
1 = Y k1 + ρ

(
A1(Xk+1) + Zk+1

)
Y k+1
2 = Y k2 + ρ

(
A2(Xk+1) − G

)
k = k + 1

ρk,0 =
∑2
i=1 ‖Y

k+1
i − Y ki ‖2F /∑2

i=1

〈
Y k+1
i − Y ki , ∇Jd(Y ki )−∇Jd(Y k+1

i )
〉

endwhile
output: ε-optimal solutions, Xk+1 and Zk+1.

Computational complexity: The X- and Z-minimization
steps respectively involve a matrix inversion and a singular
value decomposition, which require O(n3) operations each.
However, the Z-minimization steps is embedded within an
iterative backtracking procedure for selecting the step-size
ρk. Thus, if this step-size selection takes q inner iterations,
the total computational cost for a single iteration of AMA is
O(qn3). In contrast, the worst-case complexity of standard
SDP solvers is O(n6).

IV. AMA AS A PROXIMAL GRADIENT ON THE DUAL

We next show that (4c) and (4d) are equivalent to those
obtained by applying the proximal gradient algorithm to (D).

The dual problem (D) takes the following form

minimize
Y1,Y2

f(Y1, Y2) + g(Y1, Y2) (5)

where f(Y1, Y2) = − log detA†(Y1, Y2) − 〈G, Y2〉 and
g(Y1, Y2) denotes the indicator function

I(Y1) =

{
0, ‖Y1‖2 ≤ γ

+∞, otherwise.



Both f : (Cn×n,Cp×p) → R and g: (Cn×n,Cp×p) →
R ∪ {+∞} are closed proper convex functions and f is
continuously differentiable. For Y1 ∈ Cn×n and Y2 ∈
Cp×p, the proximal operator of g, proxg: (Cn×n,Cp×p)→
(Cn×n,Cp×p) is given by

proxg(V1, V2) = argmin
Y1,Y2

g(Y1, Y2) +
1

2

2∑
i=1

‖Yi − Vi‖2F

where V1 and V2 are fixed matrices. For (5), the proximal
gradient method [22] determines the updates as

(Y k+1
1 , Y k+1

2 ) := proxρg(Y
k
1 − ρ∇Y1f(Y k1 , Y

k
2 ),

Y k2 − ρ∇Y2
f(Y k1 , Y

k
2 ))

where ρ > 0 is the step-size. For ρ ∈ (0, 1/L] this method
converges with rate O(1/k) [23]. Here, L represents a bound
on the Lipschitz constant.

Application of the proximal gradient method to the dual
problem (5) yields

Y k+1
1 := argmin

Y1

〈
∇Y1

(− log detA†(Y k1 , Y
k
2 )), Y1

〉
+

I (Y1) +
L

2
‖Y1 − Y k1 ‖2F (6a)

Y k+1
2 := argmin

Y2

〈
∇Y2

(− log detA†(Y k1 , Y
k
2 )), Y2

〉
+

〈G, Y2〉 +
L

2
‖Y2 − Y k2 ‖2F (6b)

The gradient in (6a) is determined by

∇Y1
(− log detA†(Y k1 , Y

k
2 )) = −A1(A†(Y k1 , Y

k
2 )−1)

and we thus have

Y k+1
1 := argmin

Y1

I(Y1) +

L

2
‖Y1 − (Y k1 +

1

L
A1(A†(Y k1 , Y

k
2 )−1))‖2F .

(7)
Since Xk+1 = A†(Y k1 , Y

k
2 )−1, it follows that the dual update

Y k+1
1 given by (4c) solves (7) with ρ = 1/L. This is because

the saturation operator Tγ represents the proximal mapping
for the indicator function I (Y1) [22]. Finally, from the first
order optimality conditions for (6b), the dual update

Y k+1
2 = Y k2 +

1

L
(A2(A†(Y k1 , Y

k
2 )−1)−G)

is equivalent to (4d) with ρ = 1/L.

The equivalence between AMA and the proximal gradient
algorithm can be used to prove convergence of customized
AMA [4]. For this, we establish Lipschitz continuity of
the gradient of the logarithmic barrier in the dual objective
function over a convex domain. In addition, we show that
the dual iterates are bounded within this domain. Therefore,
a bound on the step-size ρ can be sought that guarantees con-
vergence at a sub-linear rate that is no worse than O(1/k).
While AMA with a constant step-size cannot achieve a linear
convergence rate, in practice we observe that a heuristic
step-size selection (BB step-size initialization followed by
backtracking) can improve its convergence properties [4].
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