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On the Covariance Completion Problem under a
Circulant Structure

Francesca P. Carli and Tryphon T. Georgiou

Abstract— Covariance matrices with a circulant structure arise

in the context of discrete-time periodic processes and their sig-

nificance stems also partly from the fact that they can be diag-

onalized via a Fourier transformation. This note deals with the

problem of completion of partially specified circulant covariance

matrices. The particular completion that has maximal deter-

minant (i.e., the so-called maximum entropy completion) was

considered in Carli etal. [2] where it was shown that if a single

band is unspecified and to be completed, the algebraic restriction

that enforces the circulant structure is automatically satisfied

and that the inverse of the maximizer has a band of zero values

that corresponds to the unspecified band in the data—i.e., it has

the Dempster property. The purpose of the present note is to

develop an independent proof of this result which in fact extends

naturally to any number of missing bands as well as arbitrary

missing elements. More specifically, we show that this general

fact is a direct consequence of the invariance of the determinant

under the group of transformations that leave circulant matri-

ces invariant. A description of the complete set of all positive

extensions of partially specified circulant matrices is also given

and certain connections between such sets and the factorization

of certain polynomials in many variables, facilitated by the cir-

culant structure, is highlighted.

I. Introduction

The present work has been motivated by a recent study by
Carli, Ferrante, Pavon and Picci [2] on discrete-time periodic
processes. In particular, they studied reciprocal random pro-
cesses on the cyclic group with n elements [11], [12]. Applica-
tions in the digital age abound, not least because of the com-
putational simplicity in working with such processes and their
representations ([10]).

The subject in [2] was the completion of partially specified co-
variances for such a process x` on the discrete finite “time-set”
{0, 1, . . . , n− 1}. The assumption of (second-order) stationar-
ity R` := E{x0x

∗
`} = E{xkx∗(k+`)modn

} for all k, ` ∈ Z/(nZ),
together with the periodicity R` = R`modn dictates that the
covariance matrix

R :=

266666664

R0 R1 R2 . . . R∗2 R∗1
R∗1 R0 R1 R∗3 R∗2
R∗2 R∗1 R0 R∗4 R∗3
...

. . .
...

R2 R3 R4 R0 R1

R1 R2 R3 . . . R∗1 R0

377777775
, (1)

has the block-circulant structure [3], [8]. In practice, lack of
data may result in missing values in estimating statistics, i.e.,
some of the R`’s above.

To this end, for the completion of general statistics it is com-
mon practice (e.g., see [4], [9], [5]) to select values that maxi-
mize the determinant of a covariance matrix. The reason can
be traced to the fact that, for Gaussian statistics, this gives
the maximum likelihood distribution. Specializing to the case
of circulant covariances, Carli etal. [2] showed that when there
is a single band of unspecified values, the constraint that en-
forces the circulant structure when maximizing the determinant
is automatically satisfied, and thereby, the maximizer shares the
property of maximizers for more general problems in having a
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banded inverse with zero values corresponding to the location
of unspecified elements, cf. [4].

The purpose of the present note is to develop a simple in-
dependent argument that explains this result and, at the same
time, shows that the algebraic constraint for the completion
to be circulant is automatically satisfied in all cases, i.e., for
any number of missing bands as well as for any number of ar-
bitrary missing elements in a block-circulant structure. More
specifically, the proof of the key result relies on the observation
that circulant and block-circulant matrices are stable points of
a certain group. The group action preserves the value of the de-
terminant. Hence, the maximizer of the determinant, which is
unique and has the Dempster property [4], will generate an or-
bit under the group-action that preserves the specified elements
in their original locations (since these are compatible with the
circulant structure). The values at the unspecified locations will
be varying and thus generating more than one maximizer unless
they are also compatible with the circulant structure. Since the
maximizer is unique, it follows that the maximizer is circulant.
We note that the importance of invariance in establishing an
alternative proof was already anticipated in a remark in [2].

The present note goes on to highlight certain connections be-
tween the structure of all positive extensions for partially speci-
fied circulant matrices and factorizations of certain polynomials
in many variables. More specifically, since circulant m × m-
block matrices can be diagonalized by a Fourier transforma-
tion, they can be thought of as matrix-valued functions on the
cyclic group Z/(nZ). Therefore, positivity of a partially speci-
fied such matrix gives rise to n, m-order curves, that delineate
the admissible completion set. These curves represent factors
of the determinant viewed as a polynomial in the unspecified
coefficients—in case m = 1 they are lines and the solution set
a polytope. Thus, a Fourier transformation allows factoriza-
tion of polynomials which, without the knowledge that they can
be written as the determinant of a circulant matrix with vari-
able entries, would be challenging or impossible using rational
techniques and elimination theory (e.g., Galois theory, Gröbner
bases, symbolic manipulations).

The outline of the material is as follows. In Section II we in-
troduce certain facts about circulant matrices. In Section III we
discuss the Dempster property (Theorem 4), namely the prop-
erty of the inverse of the maximum entropy completion to have
zero entries in places where the covariance matrix is unspecified.
In the same section we present our main result (Theorem 5) for
maximum-determinant completions of matrices with a circulant
structure. Finally Section IV contains two examples which pro-
vide insight into the structure of the completion-set, and high-
light a connection with the factorization of certain polynomials
in many variables.

II. Technical preliminaries & notation

We work in the space Cm×m of (m×m) complex-valued ma-
trices. As usual, for any a ∈ Cm×m, the complex-conjugate-
transpose (adjoint) is denoted by a∗. At times the size of ma-
trices is (nm×nm), in which case these are typically of the form
b⊗ a with b ∈ Cn×n, a ∈ Cm×m and ⊗ denoting the Kronecker
product, i.e., these are “block-matrices.”

We define the circulant (up) (n× n)-shift

S :=

26664
0 1 . . . 0
...

...
. . .

0 0 1
1 0 . . . 0

37775 ,
and the notation In for the (n × n)-identity matrix. Clearly
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Sn = In, and as is well-known (and easy to check), Sk has the
(eigenvalue-eigenvector) decomposition

SkU = UW k,

where U is the Fourier-matrix with elements Up,q = wpq for

j :=
√
−1, w = e−j

2π
n and

W = diag{1, w, w2, . . . , wn−1}.

Note that diag{·} denotes a diagonal (or, possibly, block-
diagonal) matrix with its entries listed within the brackets. We
now consider the space of (n× n)-circulant matrices

Cn :=

(
a(S) :=

n−1X
k=0

Skak | ak ∈ C

)
,

and the space of (n× n)-circulant m-block matrices

Cn;m :=

(
a(S) :=

n−1X
k=0

Sk ⊗ ak | ak ∈ Cm×m
)
.

It can be seen that a (block-)circulant matrix is completely de-
fined by its first (block-)row, and also that a circulant matrix
a(S) is Hermitian if a0 = a∗0 as well as

ak = a∗n−k for k = 1, . . .
jn

2

k
.

Thus, when n is even, abn2 c needs to be Hermitian as well for

a(S) to be Hermitian. The cone of Hermitian non-negative el-
ements in these two spaces will be denoted by C+

n and C+
n;m,

respectively. E.g.,

C+
n := {a(S) ≥ 0 | a(S) = a(S)∗ ∈ Cn}

where ≥ 0 denotes non-negative definiteness while 0 denotes the
zero matrix of suitable size. Next, we provide certain basic facts
about circulant/block-circulant matrices.

Proposition 1: A given M ∈ Cnm×nm is in Cn;m if and only if

(S ⊗ Im)M(S∗ ⊗ Im) = M. (2)
Sketch of the proof: It suffices to expand (2) and note that

this constrains the (m×m)-block entries of M to have the cir-
culant symmetry. 2

Remark 1: Elements of the form (S ⊗ Im) generate a group
which acts on arbitrary matrices via

shift : M 7→ (S ⊗ Im)M(S∗ ⊗ Im).

This is clearly a finite group, and the above proposition simply
states that an orbit consists of a single matrix M if and only if
this matrix already belongs to Cn;m.

Proposition 2: The matrix a(S) ∈ Cn;m is invertible if and only
if the determinant of the polynomial-matrix

a(x) =

n−1X
k=0

xkak

does not vanish at the nth roots of unity {wk | k = 0, 1, . . . , n−1}.
In case a(S) ∈ Cn;m is invertible, its inverse matrix is also in Cn;m.

Proof: For the invertibility condition it suffices to note that

(U∗ ⊗ Im)(

n−1X
k=0

Sk ⊗ ak)(U ⊗ Im) =

n−1X
k=0

W k ⊗ ak

=

n−1X
k=0

diag{w0ak, w
kak, w

2kak, . . . , w
(n−1)kak}

= diag{a(w0), a(w1), a(w2), . . . , a(wn−1)}. (3)

In case the inverse exists, then it is

a(S)−1 = (U ⊗ Im)
`
diag{a(w0)−1, a(w1)−1, a(w2)−1,

. . . , a(wn−1)−1}
´
(U∗ ⊗ Im).

Define the notation

Ek = diag{0, . . . , 0, 1, 0, . . . , 0}

with a 1 at the kth diagonal entry. Since (S ⊗ Im)(U ⊗ Im) =
(U ⊗ Im)(W ⊗ Im) while W−1 = W ∗, we have that

(S ⊗ Im)
`
a(S)−1´ (S∗ ⊗ Im) = (U ⊗ Im)(W ⊗ Im)

×

 
n−1X
k=0

Ek ⊗ a(wk)−1

!
(W−1 ⊗ Im)(U∗ ⊗ Im)

= (U ⊗ Im)

 
n−1X
k=0

Ek ⊗ a(wk)−1

!
(U∗ ⊗ Im)

= a(S)−1.

Therefore, the inverse is also circulant/block-circulant by
Proposition 1. 2

Corollary 3: A Hermitian matrix a(S) ∈ Cn;m is non-negative
definite if and only if the following m×m matrices are non-negative,

a(e−j2π`/n) =

n−1X
k=0

e−j2π`k/nak ≥ 0, for ` = 0, . . . , n− 1.

Proof: Follows readily from equation (3). 2

Of course, in the above, if m = 1 then a(x) is a polynomial
and det(a(S)) =

Qn
`=1 a(e−j2π`/n). However, in general,

det(a(S)) =

nY
`=1

det(a(e−j2π`/n))

where a(e−j2π`/n), ` = 0, 1, . . . , n− 1, are m×m matrices.
Remark 2: It is conceptually advantageous to think of conju-

gation, conj : M 7→M∗, as an element of the binary group that
leaves Hermitian matrices unchanged. Thus, Hermitian circu-
lant matrices can be seen as those matrices that stay invariant
under the action of the group generated by {conj, shift}. Since,
(S⊗ Im)M∗(S⊗ Im)∗ = ((S⊗ Im)M(S⊗ Im)∗)∗, this is a com-
mutative finitely generated group that, for ease of reference, we
denote by G = 〈{conj, shift}〉.

III. The covariance completion problem

Denote by Hn the set of n× n Hermitian matrices, by H+
n ⊂

Hn the cone of positive definite n × n matrices, and consider
a partially specified matrix M ∈ Hn. As long as a positive
definite completion for M exists, and as long as the set of such
positive completions is bounded, a completion with maximal
determinant is uniquely defined because the determinant is a
strictly log-concave function of its argument. In such a case we
denote

Mme := argmax{det(M) |M ∈ H+
n satisfies (5)}, (4)

where for a specified symmetric selection S of pairs of indices
(i.e., if (k, `) ∈ S, then (`, k) ∈ S) it is required that the cor-
responding entries of M have the specified value mk,`; more
explicitely,

ekMe∗` = mk,`, for (k, `) ∈ S (5)
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where

ek := [

kz }| {
0, . . . 0, 1, 0, . . . 0]

is the row vector with a 1 at the kth entry. Naturally, the data

M := {mk,` | (k, `) ∈ S}

must be consistent with the hypothesis thatM is Hermitian, i.e.,
mk,` = m∗`,k for all entries in M. For notational convenience,
we also define the subspace

Ln := {M ∈ Hn | (5) holds}

that contains matrices with the specified elements.
Theorem 4: Consider an index set S and a corresponding data

set M consistent with the hypothesis that M ∈ Hn and assume
that the set H+

n ∩ Ln 6= ∅ and bounded. The following holds:

ekM
−1
me e

∗
` = 0 for (k, `) 6∈ S.

Proof: Clearly Mme exists, it is uniquely defined, and it
is also a maximal point of log det(M) on Ln. Hence, it is a
stationary point of the Lagrangian

L(M,λk,`) := log det(M) +
X

(k,`)∈S

λk,`(mk,` − ekMe∗` ). (6)

When we set the derivative of L with respect to the entries of
M equal to zero, we readily obtain that

M−1 =
X

(k,`)∈S

λk,`e
∗
ke` (7)

which completes the proof.
The above establishes a key result in [4], see also [9], [6] for

other manifestations and applications of this property.
When additional restrictions are placed on M then, in gen-

eral, this property of Mme no longer holds. For instance, if M
is required to have a Toeplitz structure, then elements not in S
that are on the same diagonal are constrained to have the same
value. In this case, an additional set of Lagrange multipliers
(k, `) 6∈ S is needed to enforce the Toeplitz structure via terms
of the form λk,`(e

∗
kMe` − e∗k+1Me`+1). As a consequence, the

statement of Theorem 4 fails in such cases.
Because of the above, it is interesting and surprising at first,

that the statement of the proposition is valid when M is re-
quired to have a circulant structure. This is the main result of
Carli etal. [2] that was shown by a direct algebraic verification
when a single band is unspecified. Proposition 5 below gives an
independent proof which at the same time shows this to be a
general fact for arbitrary sets of interpolation conditions on the
circulant structure.

For the remaining of this section we consider a partially spec-
ified block-matrix M ∈ Cn;m, and assume that the linear con-
straints are consistent with the block-circulant Hermitian struc-
ture and that a positive completion exists. We show that the
property of Theorem 4 holds true in general. To this end, we
define S to be a set of index-pairs (k, `) consistent with the
Cn;m-circulant Hermitian structure if

(k, `) ∈ S ⇒ (`, k) ∈ S (8a)

(k, `) ∈ S ⇒ ((`+m)modnm, (k +m)modnm) ∈ S. (8b)

Throughout, kmodnm represents the remainder when k is di-
vided by nm. Similarly, we define a data-set

M := {mk,` | (k, `) ∈ S}

of mk,`-values to be consistent with the Cn;m-circulant Hermi-
tian structure if the corresponding set of indices S is consistent
and the values of its entries satisfy (8) and the mk,` values in
M satisfy

mk,` = m∗`,k (9a)

mk,` = m∗(`+m)modnm,(k+m)modnm
(9b)

for all pairs of indices. Thus, strictly speaking, the entries of
M are triples (mk,`, k, `) but we refrain from such overburdened
notation as superfluous.

Theorem 5: Let S,M be sets of indices and corresponding val-
ues consistent with the Cn;m-circulant structure and assume that
there exists a positive completion (not necessarily circulant), and
that this set is bounded. Then

i) there is a positive circulant completion,

ii) the completion Mme in (4) is in fact circulant,

iii) ekM
−1
me e

∗
` = 0 for (k, `) 6∈ S.

Clearly ii) implies i) as well as iii), by Theorem 4. Thus, the
essence is to show that Mme is indeed circulant. One rather
direct proof can be based on the significance of the Lagrange
multipliers as representing the sensitivity of the functional to
be maximized, in this case the determinant, on the correspond-
ing constraints. Because the circulant structure dictates that
all values linked via (8a) and (8b) impact the determinant in
the same way (since det((S ⊗ Im)M∗(S∗ ⊗ Im)) = det(M) and
hence the value of the determinant is not affected by action of
any G-element), the sensitivity to each value mk,` is the same,
and therefore the corresponding values for the Lagrange multi-
pliers λk,` at the stationary point (see equation (6)) are equal.
Thus, M−1

me in (7) has a circulant structure and so does Mme by
Proposition 2. An alternative and almost immediate proof of
ii) is given below.

Proof: Once again, observe that for any M ∈ Hnm it
holds that det(shiftM) = det(conjM) = det(M) as neither the
circulant block-shift nor the conjugation of Hermitian matrices
changes the value of the determinant. Furthermore, observe
that if M satisfies

ekMe∗` = mk,`, for (k, `) ∈ S and mk,` ∈M, (10)

then the same is true for shiftM as well as conjM . This is
due to the fact that the constraints are consistent with the
block-circulant-Hermitian structure as well. Now since det(·)
is a strictly log-concave on H+

nm, it has a unique maximum sub-
ject to (10) (disregarding for the moment any restriction for
the maximizer to belong to Cn;m). But, this unique maximizing
point Mme must be invariant under the group G generated by
{conj and shift}, for otherwise, there would be multiple maxima.
This proves directly that Mme is in Cn;m.

Remark 3: The above argument applies to maximizers that
may be restricted further by bounding individual elements, or
in combination, to lie in a convex set in a way that is con-
sistent with the circulant structure. More specifically and in
a very general setting, if a maximizer exists over H+

nm and if
the constraints, of whatever nature, are consistent with the
Cn;m-structure, then the maximizer necessarily belongs to Cn;m.
Thus, the essence of this result is a rather general invariance
principle that the maximizer of a concave functional when re-
stricted to points that individually remain invariant under the
action of a certain group, it is identical to the unconstrained
one —assuming that the domain of the functional is convex
and invariant under the group.
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IV. Structure of solutions and factorization of
polynomials in several variables

We now provide some insight on the structure of positive
block-circulant completions of partially specified covariance ma-
trices. The set is in general semi-algebraic, delineated by m-
order curves. Thus, in case m = 1 the solution set is a convex
polyhedron whereas, in case m = 2, it is the intersection of
conic sections, etc. This can be seen from Corollary 3 where,
in case m = 2, the solution set is the intersection of the m-
order surfaces specified via the conditions a(e−j2π`/n) ≥ 0, for
` = 0, 1, . . . , n− 1, where each matrix is linear in the unknown
parameters. We illustrate the above with two examples.

Example 1: Consider a(S) ∈ Cn;m, with n = 4, m = 2, where

a0 =

»
2 1

2
1
2

2

–
, a1 = a>3 =

»
1 1
0 1

–
, while a2 =

»
x y∗

y z

–
(11)

is left unspecified. The parameters in a2 are indicated by x, y, z
and, for ease of displaying the solution set, we further restrict
our attention to the case where y = y∗ is real and, hence, a2

and a(S) are in fact symmetric. The maximum entropy solution
can be computed using any general semi-definite programming
solver (e.g., yalmip, SDPT, SeDuMi). In particular, in our work,
we have used the interface in cvx [7] and we obtained x = z =
0.4853, y = 0.4789. The inverse of a(S) is λ(S) with

λ0 =

»
1.1707 −0.0163
−0.0163 1.1707

–
, λ1 =

»
−0.4469 −0.4394
0.3335 −0.4469

–
,

λ2 =

»
0 0
0 0

–
, λ3 = λ>1 ,

where λ2 is the 2× 2 zero matrix, as claimed.
We now describe the complete solution set. We evaluate

a(w0) =

»
4 + x 3

2
+ y

3
2

+ y 4 + z

–
,

a(w1) =

»
2− x

`
1
2
− i
´
− y`

1
2

+ i
´
− y 2− z

–
= a(w3)>,

a(w2) =

»
x − 1

2
+ y

− 1
2

+ y z

–
. (12)

The respective eigenvalues are

eig
˘
a(w0)

¯
= 4 +

x

2
+
z

2
±
r

9 + (x− z)2 + 4y(3 + y)

4

eig
˘
a(w1)

¯
= 2− x

2
− z

2
±
r

5 + (x− z)2 − 4y(1− y)

4

eig
˘
a(w2)

¯
=
x

2
+
z

2
±
r

1 + (x− z)2 − 4y(1− y)

4
.

and the set where they are all positive is shown in Figure 1.
Next, we demonstrate the claimed zero-pattern for the inverse

of the maximum entropy completion when blocks are partially
specified. Set z = 1 and leave the entries x and y in a2 unspec-
ified. The completion with maximal determinant corresponds
to x = 0.3548 and y = 0.4813 while its inverse is λ(S) with

λ0 =

»
1.5507 −0.0291
−0.0291 1.5869

–
, λ1 =

»
−0.6353 −0.8163
0.7344 −0.1893

–
,

λ2 =

»
0 0
0 −0.9644

–
, λ3 = λ>1 .

Once again, the zero-pattern is in agreement with Theorem 5.

Fig. 1. Feasible set {(x, y, z) | a(S) ≥ 0}.

Example 2: For our next example we take m = 1 to highlight
how polynomials in several variables, which happen to coincide
with the determinant of a partially specified circulant matrix,
can be readily factored via a Fourier transformation—an oth-
erwise difficult task due to the irrationality of the factors in
the absence of a suitable field extension. Thus, we consider a
partially specified matrix a(S) =

P6
k=0 akS

k ∈ C7 with real co-
efficients a0 = 2, a1 = a6 = 1, and a2 = a5 = x, a3 = a4 = y
left unspecified. The eigenvalues of a(S) (see Corollary 3) are

a(w0) = 2(2 + x+ y) (13a)

a(w1) = 2− 2yCos
hπ

7

i
− 2xSin

h π
14

i
+ 2Sin

»
3π

14

–
(13b)

a(w2) = −2

„
−1 + xCos

hπ
7

i
+ Sin

h π
14

i
− ySin

»
3π

14

–«
(13c)

a(w3) = −2

„
−1 + Cos

hπ
7

i
+ ySin

h π
14

i
− xSin

»
3π

14

–«
(13d)

a(w4) = a(w4), a(w5) = a(w2), a(w6) = a(w1), (13e)

and the feasible set is the interior of a polyhedron. The deter-
minant of a(S) is a polynomial of degree 7,

det(a(S)) = 4 + 42x+ 56x2 − 294x3 + 140x4 + 84x5 − 28x6

+ 2x7 − 14y − 28xy + 350x2y − 196x3y − 112x4y − 84x5y

+ 14x6y − 168xy2 + 56x2y2 + 238x3y2 + 112x4y2 + 14x5y2

+ 28y3 − 238x2y3 − 28x3y3 − 42x4y3 + 98xy4 − 14y5

+ 28x2y5 − 14xy6 + 2y7 (14)

in x and y. Over the ring of polynomials with rational coeffi-
cients it factors as (e.g., using Matlab or Mathematica)

det(a(S)) = 2(2 + x+ y)
`
1 + 5x− 8x2 + x3 − 2y + 5xy

+3x2y − y2 − 4xy2 + y3´2 .
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However, using (13a-13e), we already know that

det(a(S)) = 2(2 + x+ y)×»
2− 2y cos

“π
7

”
− 2x sin

“ π
14

”
+ 2 sin

„
3π

14

«–2

»
−2

„
−1 + x cos

“π
7

”
+ sin

“ π
14

”
− y sin

„
3π

14

««–2

»
−2

„
−1 + cos

“π
7

”
+ y sin

“ π
14

”
− x sin

„
3π

14

««–2

. (15)

Provided we know a suitable field extension of Q which contains
the coefficients of the factors, i.e., Q[cos

`
π
7

´
, sin

`
π
14

´
, etc.], the

factorization can be carried out with standard methods [1].
Finding such an extension, in general, is a challenging prob-
lem. Of course, expressing a given rational polynomial as the
determinant of a circulant matrix with rational coefficients may
an equally challenging one, in general. Yet, we hope that the
above observations may provide alternative ways to factor poly-
nomials in certain suitable cases.

V. Concluding remarks

The main contribution in this work is the proof and insight
that has been gained by Theorem 5 and Remark 3 into the
problem of completion of partially specified circulant covari-
ance matrices. While such matrices have been widely used in
the signal processing literature [3], [8], the case for completion
problems has only been brought forth in [2]. The present work
builds on [2] and exposes the finer structure of the feasible set of
such completions, namely, that maximizers of the determinant
have the Dempster property in general. This fact is expected to
prove advantageous in tailoring max-det algorithms to the case
of circulant matrices. In particular, for algorithms that trace
determinantal-maximizers through intermediate steps, as would
be the case when adapting the homotopy-based techniques in
[6], the convenient representation of a sparse inverse together
with a possible equalization of numerical errors to retain such a
sparse structure, is expected to prove beneficial from a numeri-
cal standpoint.
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