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Abstract— Diffusion Tensor Tomography generates a 3-
dimensional 2-tensor field that encapsulates properties of
probed matter. We present two complementing ideas that may
be used to enhance and highlight geometric features that are
present. The first is based on Ricci flow and can be understood
as a nonlinear bandpass filtering technique that takes into
account directionality of the spectral content. More specifically,
we view the data as a Riemannian metric and, in manner
reminiscent to reversing the heat equation, we regularize the
Ricci flow so as to taper off the growth of the higher-frequency
speckle-type of irregularities. The second approach, in which
we again view data as defining a Riemannian structure, relies
on averaging nearby values of the tensor field by weighing the
summands in a manner which is inversely proportional to their
corresponding distances. The effect of this particular averaging
is to enhance consensus among neighboring cells, regarding
the principle directions and the values of the corresponding
eigenvalues of the tensor field. This consensus is amplified along
directions where distances in the Riemannian metric are short.

Index Terms— Ricci flow, Riemannian geometry, nonlinear
diffusion.

I. INTRODUCTION AND PROBLEM STATEMENT

Diffusion tensor imaging (DTI) is a magnetic resonance
technique that allows mapping the flow and diffusion of,
mainly, water molecules in tissue. Thereby, it provides
valuable information about fibers and other microstructures
that shape the flow, and has an even greater potential to
revolutionize our ability to study abnormalities in white
matter brain microstructure as well as provide models for
brain connectivity. The data produced encodes the intensity
and directionality of flow, e.g., in the form of an ellipsoid at
every unit volume element (voxel). The data can be viewed
as either a manifold of multivariable normal distributions or,
alternatively, as a Riemannian metric. The latter represen-
tation allows geometric techniques and insights on how to
process data and extract features. The present work is along
lines of a series of earlier studies with a similar point of
view, see e.g., [1], [2] and the references therein.

In the present work we consider the data as a position-
dependent positive-definite quadratic form, i.e., as a Rie-
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mannian metric. The line-up of principle directions of this
matrix, across voxels, may signify the presence of a fiber
whereas abrupt discrepancies across a front may signify a
membrane. Thus, information about tissue microstructures
is encoded in the spacial correlation between the values
of the metric. On the other hand, speckle fluctuations of
the parameters that specify principle directions and their
corresponding eigenvalues, are the inevitable consequence
of measurement noise. Naturally, at places, noise masks key
features and limits resolution. Thus, the problem we wish
to address is on how to suppress noise while maintaining
structural information in the tensorial field that is available
to us. We pursue and study to complementing approaches
that we outline next.

The first approach is based on the Ricci flow [3]. The Ricci
flow is a geometric (non-linear) evolution on a Riemannian
manifold that deforms the metric and, for manifolds with
positive Ricci curvature, smooths out irregularities. Thus,
formally, it is analogous to the heat equation that smooths out
irregularities of, e.g., a temperature distribution. In this sense,
it represents a low-pass filtering for the 3-dimensional 2-
tensorial field (in continuous or a discrete space). Depending
on the quality of the data, our aim may be to either smooth
out irregularities, or to amplify and highlight structural
features. Here, we focus on the latter. To this end, we
reverse time in the Ricci flow. In a way that echoes solving
backwards heat equation, the flow rapidly amplifies “high
frequency” spacial irregularities. The backwards heat equa-
tion, studied for inverse heat conduction problems, requires
some form of regularization [4]. Likewise, for the backwards
Ricci flow we introduce a suitable regularization that tapers
the fastest modes. The result appears to produce a higher
quality contrast and accentuate structures that are dominant
in the data.

The second approach is again based on interpreting the
data as a Riemannian metric. In this, we estimate distance
between neighboring voxels in the induced geometry (by
the data/metric itself). We then average local values of
the metric with a weighing coefficient which is inversely
proportional to the distance between voxels. The process
represents a geometric diffusion that allows nearby voxels
to reach some form of consensus more easily than ones that
are far away. As a result, dominant structures such as fibers,
where lines of voxels share similar values for the metric, and
where their corresponding dominant eigenvectors are lined
up with the fiber, are made consistent in that that small
irregularities quickly dissipate. Thus, again, the approach
represents a nonlinear averaging/filtering that is designed to



accentuate correlations between nearby voxels. The method
is exceptionally fast. The result will also be exemplified on
case studies on white brain matter, and appears to produce
consistently the desired effect.

Either of the methods we present, can be seen as
an anisotropic diffusion of the tensorial field itself. The
anisotropy is intended to preserve the key features of the
(already anisotropic) tensorial field. Thus, the flow (in the
first method) and averaging (in the second) are intended to
respect the underlying anisotropy of the field.

The paper is structured as follows. In Section II we
describe notations and preliminaries. Section III gives the-
oretical details of techniques for feature enhancement and
smoothing in the tensor fields. Section IV gives algorithmic
form of the techniques discussed in Section III. While in
Section V, we show examples by implementing the suggested
methods to synthetically generated tensor fields as well as on
MRI data.

II. NOTATIONS & PRELIMINARIES

Our methods are based on the concept of Riemannian
Geometry. We shall follow standard notations in [5], [10]
and give an overview on the concepts we need.

A Riemannian metric on a smooth manifold is an inner
product g on the tangent space at each point, varying
smoothly from point to point. Riemannian manifolds are
smooth manifolds equipped with a Riemannian metric. Lo-
cally, in a neighborhood of any point, a Riemannian manifold
can be viewed as a weighted Euclidean space with weight
given by the Riemannian metric g.

To define derivatives of vector fields on a Riemannian
manifold, the concept of connection is introduced. Intuitively,
it provides a way to “connect” nearby tangent spaces. The
Levi-Civita [6] connection ∇ is a special connection that
is symmetric and compatible with g. It is specified by the
Christoffel symbols Γ.

Another key ingredient of Riemannian geometry is curva-
ture. There are several different notions of curvature like
Sectional curvature, Ricci curvature and Scalar curvature.
The one we need in this paper is Ricci curvature [7], which
we denote by R. It is a 2-tensor field on the manifold
uniquely defined by the Riemannian metric g.

For our purpose, we are interested in a 3 dimensional
Riemannian manifold. More specifically, we view the DTI
as a 3 dimensional manifold where the diffusion tensor

g = [gij ]
3
i,j=1 ∈ S3

++

at each point x = (x1, x2, x3) (or its inverse) is treated as
the Riemannian metric at that point. Here S3

++ denotes the
space of 3 by 3 positive definite matrices.

In DTI, one important quantity is Fractional Anisotropy
(FA). For a positive definite 3 × 3 symmetric matrix, with
λ1, λ2, λ3 as its eigenvalues arranged in descending order,
FA is defined by√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√
λ21 + λ22 + λ23

. (1)

FA captures the structure information of a diffusion tensor.
A larger FA means that the corresponding diffusion tensor
is more likely to be a useful structure.

III. SMOOTHING AND FEATURE ENHANCEMENT
TECHNIQUES

We view the DTI as a 3 dimensional Riemannian manifold
with metric specified by the diffusion tensors. From this
point of view, smoothing the diffusion tensors is equivalent
to smoothing the metric of the underlying manifold. Two
related smoothing techniques are presented here, first based
on the idea of Ricci flow and second based on anisotropic
smoothing of the tensor field.

A. Ricci Flow for Tensor Fields

Given the Riemannian manifold with metric tensor g =
[gij ] specified by the diffusion tensors, we can compute the
Ricci curvature

R = [Rij ]
3
i,j=1.

Both the Riemannian metric g and the Ricci curvature R are
2-tensor fields on the manifold. The idea of Ricci flow [7] is
to adjust the metric g using the Ricci curvature R to smooth
out irregularities in the metric. Formally, the Ricci flow is
defined by the nonlinear evolution equation [7], [8]:

∂tgij = −2Rij . (2)

Now we outline the steps to compute R from g. First we
compute the inverse of the metric g, this is given by

[gij ] = [gij ]
−1. (3)

With [gij ] and [gij ] we can the calculate the Christoffel
symbols [9] as:

Γkij =

3∑
`=1

1

2
gkl(∂igj` + ∂jgi` − ∂`gij) (4)

for all i, j, k = 1, 2, 3. Here ∂i denotes the directional
derivative in xi direction. In matrix form, (4) can be written
as: Γ1

ij

Γ2
ij

Γ3
ij

=

g11 g12 g13

g21 g22 g23

g31 g32 g33

 ∂igj1 + ∂jgi1 − ∂1gij
∂igj2 + ∂jgi2 − ∂2gij
∂igj3 + ∂jgi3 − ∂3gij

 (5)

for all i, j = 1, 2, 3. After obtaining the Christoffel symbols,
we can readily compute the Ricci Curvature Tensor R as

Rαβ =

3∑
ρ,λ=1

∂ρΓ
ρ
βα − ∂βΓρρα + ΓρρλΓλβα − ΓρβλΓλρα (6)

for all α, β = 1, 2, 3.



B. Anisotropic Smoothing for Tensor Fields
In this approach, unlike the previous case, we treat the

DTI as a 3 dimensional Riemannian manifold with metric
given by the inverse of the diffusion tensor, instead of the
diffusion tensor itself. And we smooth the tensor field by
averaging nearby values with weights inversely proportional
to their distances. The intuition behind this approach is that
the useful structures of the DTI are usually captured by
the principle directions of the diffusion tensors. By taking
weights inversely proportional to distances, the effect in
the principle direction is emphasized. To implement this
framework, we first compute the distance between any point
x = (x1, x2, x3) and its m neighbors as:

dk =
1

vTkD
−1
x vk

, 1 ≤ k ≤ m, (7)

where vk is the coordinate vector between x and its kth
neighbor, and Dx is the diffusion tensor at x. More specif-
ically, at any point x, vk gives the direction vector for the
respective neighboring Dk

x. After obtaining these distances,
we can then update the diffusion tensor at any point based
on the weighted average of its neighbors as follows:

Dx = αDx + (1− α)Σmk=1

dk
Σml=1dl

Dk
x. (8)

Here Dk
x is the value of diffusion tensor of the kth neighbor

of x and α ∈ [ 12 , 1] is an adjustable parameter specifying
weight of the average (weighted) of the neighboring tensors.

IV. NUMERICAL IMPLEMENTATION

Techniques discussed in the previous section need to
be discretized for computer implementation. Algorithm 1
and 2 show detailed implementation of the Ricci flow and
the anisotropic smoothing method respectively. Both the
algorithms were implemented in MATLAB to solve example
problems presented in the next section.

Algorithm 1 Ricci Flow Smoothing for Tensor Fields

Require: gij (the Riemannian curvature tensor).
n (number of iterations).

1: for l:=1 to n do
2: Compute inverse Riemannian curvature tensor gij by

taking inverse of gij .
3: Compute three Christoffel symbol matrices by Eq. (4).
4: Calculate Ricci tensor matrix elements by Eq. (6).
5: Choose step size ∆.
6: Compute gij using Eq. (9) for backward Ricci flow or

by Eq. (10) for forward Ricci flow.

gij(t+ ∆t) = gij(t) + 2∆Rij(t) (9)

gij(t+ ∆t) = gij(t)− 2∆Rij(t) (10)

7: update g = gn
8: end for
9: Noise Suppression

g(
n

2
) = g(

n

2
)− λmax(g(n))g(n) (11)

Algorithm 2 Anisotropic Smoothing for Tensor Fields

Require: D (Tensor).
n (number of iterations).
α ∈ [0.5, 1]
v (unique distance vectors from D to each neighboring
tensor).

1: for l:=1 to n do
2: Compute inverse tensor matrix D−1.
3: Compute d by Eq. (7).
4: Update D using Eq. (8).
5: end for

V. EXAMPLES

1) Synthetic Data Experiments: Two substrates of syn-
thetic tensor fields were generated to experiment smoothing
and feature enhancement in two dimensions. Fig. 1(a) and
Fig. 2(a) show the generated synthetic tensor fields. Both the
plots were generated using MATLAB function plotDTI [11].

a) Backward Ricci Flow - Feature Enhancement:
Performing as a non-linear inverse ’heat like’ operation using
Eq. (9), under-line geometric features were enhanced in the
field. Fig. 1(b) and Fig. 2(b) show the enhanced features as
compared to original tensor fields in Fig. 1(a) and Fig. 2(a)
respectively.

(a) Original Tensor Field

(b) Backward Ricci Flow (c) Forward Ricci Flow

Fig. 1: Experiment with synthetic data set 1, (a) Original
tensor field (b) Feature extraction after backward Ricci flow
(c) Smoothing after forward Ricci flow.

b) Forward Ricci Flow - Tensor Smoothing: Forward
Ricci flow as given in Eq. 10 performs tensor field evolution
resulting in overall smoothing of the field. Fig. 1(c) and Fig.
2(c) were obtained after smoothing Fig. 1(b) and Fig. 2(b)



respectively. Both forward and backward Ricci flow opera-
tions are reversible in this setting under suitable constraints
on the Ricci tensor.

(a) Original Tensor Field

(b) Backward Ricci Flow (c) Forward Ricci Flow

Fig. 2: Experiment with synthetic data set 2, (a) Original
tensor field (b) Feature extraction after backward Ricci flow
(c) Smoothing after forward Ricci flow.

c) Anisotropic Smoothing of the Tensor Field:
Anisotropic smoothing method suggested as Algorithm 2
requires very less number of iterations to smooth given tensor
field. Fig. 3 shows smoothing results after four iterations.

2) MRI Data Experiments:

a) Ricci Flow: A healthy volunteer was scanned at
Center for Magnetic Resonance Research (CMRR), Univer-
sity of Minnesota, to get MRI data. Fig. 4(a) shows FA
map of the coronal view of the brain. Region of interest has
been highlighted in red. Fig. 4(b) shows gn which enhances
features but overall image is noisy (given by Eq. 11). Fig.
4(c) shows g(n/2) and Fig. 4(d) shows g(3n/4). It can be
seen that both Fig. 4(c) and Fig. 4(d) show higher FA in
the white matter while FA remains almost unchanged in the
other areas. Thus establishing noise suppression and feature
enhancement, as expected. For this example, forty number
of iterations (n) were used.

(a) Original Tensor Field (b) After Smoothing

(c) Original Tensor Field (d) After Smoothing

Fig. 3: Smoothing experiment with synthetic data set 1 and
2, (a) and (c) show original tensor field, while (b) and (d)
show tensor fields after smoothing.

(a) Coronal plane slice show-
ing region of interest (in red)

(b) Feature enhancement after n
iterations gn

(c) g(
n

2
) (d) g(

3n

4
)

Fig. 4: Feature enhancement experiment (with backward
Ricci flow) using MRI data. Number of iterations n = 40.

b) Anisotropic Smoothing: Using the same MRI data
as in the previous experiment, anisotropic smoothing was
performed. Fig. 4(a) shows original tensor field on a coronal



slice, while Fig. 4(b) shows smooth tensor field after only
four iterations of the algorithm.

(a) Original tensor field

(b) Tensor Field after smoothing

Fig. 5: Tensor field smoothing experiment (with anisotropic
diffusion) using MRI data, (a) Original tensor field (b)
Smooth tensor filed.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

The intend of our study has been to develop tools for de-
noising as well as for feature enhancement of tensorial fields,
as these arise in DTI. As noted, DTI is based on modeling
diffusion of water molecules by a Gaussian process inside

voxels. The covariance matrix for the anisotropic diffusion
of water molecules is represented by the diffusion tensor
(symmetric positive-definite 3×3 matrix). These tensor fields
are often pre-processed to reduce the amount of noise arising
in the acquisition process. With our presented schemes, de-
noising of tensor fields can be done quite efficiently, without
the need for any delicate tuning. Thus, it holds the potential
of providing a useful tool in DTI imaging methodologies.

B. Future Work

In analogy to the stochastic framework of Schrödinger
bridges [12]–[15] where a path ρt is constructed to interpo-
late two end-point in time density functions–a stochastic con-
trol problem of steering the Fokker-Planck equation, it will
be interesting to control the flow of the Ricci curvature so
as to interpolate, in a similar manner, tensorial distributions.
That is, given two DTI tensor fields, construct a suitable
homotopy/deformation linking the two. Such a problem
represents a far reaching generalization of the analogous
problems of controllability involving the heat equation. The
value of such interpolation schemes would be to integrate
DTI records across time in a way that reflects changes in the
underlying tissue structure. Likewise, it will be interesting
to consider the geometry of Ricci flow for the purpose
of extrapolating DTI data. In this direction, it would be
important to investigate possible regularization terms that
may preserve and capture structural features as these evolve
(e.g., in the spirit of [16]). This extension may help in
learning tensor field evolution (tissue structural development)
in time, which can be of significance in clinical applications.
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