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ABSTRACT

I. INTRODUCTION

In previous work [26], we demonstrated that a graph-
theoretic notion of curvature was positively correlated to
robustness defined in terms of a the rate function from
large deviations theory. More precisely, we have pro-
posed an integrative framework to identify genetic fea-
tures related to cancer networks and to distinguish them
from the normal tissue networks by geometrical analysis
of the networks provided by The Cancer Genome Atlas
(TCGA) data. This relationship was exploited to show
that curvature could be regarded as a cancer hallmark.

The underlying notion of curvature on weighted graph
is based on the Wasserstein 1-metric [21] from optimal
mass transport theory [31]. This called Ollivier-Ricci
curvature. As such, one needs all the correlations to be
positive giving well-defined positive measures in order
to define this notion of graph curvature. In the present
work, based upon the Hahn-Jordan decomposition of
a signed measure [18], we extend the definition of
Ollivier-Ricci curvature to the more realistic case in
which one allows both negative and positive weights
(correlations) in our cancer networks. This will also
allow one to formally consider directed graphs in which
one models inhibitions and activations.

Results will be shown for cancer interaction networks
derived from TCGA data.

II. CURVATURE OF NETWORKS

Since the object of interest for a cancer network will
be a weighted graph (see Section VI), we will consider
notions of curvature that best fit this mathematical
model, and can lead to interesting new quantitative
biological insights. Accordingly, we will first sketch
some material on curvature, before moving on to the
proposed notions for networks modelled as graphs.
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A. Background on Ricci curvature

In order to motivate generalized notions of Ricci
curvature suitable for complex networks, we will begin
with an elementary treatment of curvature following
[10], [32], [33]. For M an n-dimensional Riemannian
manifold, x ∈ M , let TxM denote the tangent space
at x, and u1, u2 ∈ TxM orthonormal vectors. Then for
geodesics γi(t) := exp(tui), i = 1, 2, the sectional cur-
vature K(u1, u2) measures the deviation of geodesics
relative to Euclidean geometry, i.e.,

d(γ1(t), γ2(t)) =
√

2t(1− K(u1, u2)

12
t2 +O(t4)). (1)

The Ricci curvature is the average sectional curvature.
Namely, given a (unit) vector u ∈ TxM , we complete it
to an orthonormal basis, u, u2, . . . , un. Then the Ricci
curvature is defined by Ric(u) := 1

n−1
∑n
i=2K(u, ui).

(There are several different scaling factors used in the
literature. We have followed [10].) It may be extended
to a quadratic form, giving the so-called Ricci curvature
tensor.

We want extend this notions to discrete graphs and
networks. For discrete spaces corresponding to networks
modeled as graphs, ordinary notions such as differ-
entiability needed to define Ricci curvature as in the
previous section do not make sense. There is however a
very nice argument due to Villani [33] that indicates a
possible way to getting around such difficulties via two
approaches to convexity. More precisely, let f : Rn →
R. Then if f is C2, convexity may be characterized as

∇2f(x) ≥ 0

for all x. Villani calls this an analytic definition of
convexity (as the usual definition of Ricci given above).
On the other hand, one can also define convexity in a
synthetic manner via the property that

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y),

for all x, y ∈ Rn, and t ∈ [0, 1]. In the latter case, no
differentiability is necessary.

Following [17], [20], one may define a synthetic
notion of Ricci curvature in terms of so-called displace-
ment convexity inherited from the Wasserstein geome-
try on probability measures. In [17], this is done for



measured length spaces, that is, metric measure spaces
in which the distance between two points equals the
infimum of the lengths of curves joining the points. For
discrete spaces (such as those arising in network theory),
there are several possibilities that we will compare, espe-
cially those from [6], [13], [21]. There have been several
other approaches as well to defining Ricci curvature; see
[7], [19] and the references therein.

B. Curvature and robustness

As previously remarked, there have been a number of
approaches (see [6], [7], [19], [21] and the references
therein) to extending the notion of Ricci curvature to
more general metric measure spaces. At this point,
the exact relationship of one approach as compared to
another is unclear. Roughly, the techniques fall into two
categories: the first generalizing the weak k-convexity
of the entropy functional on the Wasserstein space of
probability measures as in [6], [17], [20], and the second
directly working with Markov chains to define the
generalization [7], [19], [21] on networks. Finally there
is a notion of “hyperbolicity” due to Gromov [13] based
on the “thinness” or “fatness” of triangles compared to
the Euclidean case, and more generally a certain four-
point criterion. Depending upon the application, each
approach seems to be useful, and so we will explicate
key aspects and their possible applications to various
network problems. In particular, we follow [6], [21]
because of connections to notions of metric entropy.

We begin with a characterization given in Lott and
Villani [17]. Let (X, d,m) denote a geodesic space, and
set

P(X) := {µ ≥ 0 :

∫
X

µdm = 1}, (2)

P∗(X) := {µ ∈ P(X, d,m) : lim
ε↘0

∫
µ≥ε

µ logµdm <∞}.(3)

We define

H(µ) := lim
ε↘0

∫
µ≥ε

µ logµdm, for µ ∈ P∗(X, d,m),

(4)
which is the negative of the Boltzmann entropy S(µ) :=
−H(µ); note that the concavity of S is equivalent to the
convexity of H . Then we say that X has Ricci curvature
bounded from below by k if for every µ0, µ1 ∈ P(X),
there exists a constant speed geodesic µt with respect
to the Wasserstein 2-metric connecting µ0 and µ1 such
that

S(µt) ≥ tS(µ0)+(1−t)S(µ1)+
kt(1− t)

2
W (µ0, µ1)2, 0 ≤ t ≤ 1.

(5)

This means that entropy and curvature are positively
correlated that we will express as

∆S ×∆Ric ≥ 0. (6)

We will describe notions of Ricci curvature and entropy
on graphs below. We just note here that changes in
robustness, i.e., the ability of a system to functionally
adapt to changes in the environment (denoted as ∆R) is
also positively correlated with entropy via the Fluctua-
tion Theorem [8], [11], and thus with network curvature:

∆R×∆Ric ≥ 0. (7)

See Section III below for a discussion of the Fluctuation
Theorem. Since the curvature is very easy to compute
for a network, this may be used as an alternative way
of expressing functional robustness.

III. FLUCTUATION THEOREM

We give now an intuitive discussion of the Fluctuation
Theorem [8], [11]. Recall that if pε(t) denotes the
probability that the mean deviates by more thanε from
the original (unperturbed) value at time t, then

R := lim
t→∞,ε→0

(−1

t
log pε(t)).

This is the rate function from large deviations theory
[30].

On the other hand, evolutionary entropy S may be
characterized in this setting as

S := lim
t→∞,ε→0

(
1

t
log qε(t)),

where qε(t) denotes the minimal number of genealogies
of length t whose total probability exceeds 1 − ε.
Thus the greater the qε(t), the smaller the pε(t) and
so the larger the decay rate. The Fluctuation Theorem
is an expression of this fact for networks, and can be
expressed as

∆S ×∆R ≥ 0, (8)

Considering (5), we conclude that changes in robust-
ness (∆R) is also positively correlated with the network
curvature, i.e.,

∆R×∆Ric ≥ 0. (9)

According to the work done in [?] and [36], it
seems that in many cases the normal protein interaction
networks possess a lower entropy than their cancerous
analogues; hence they are less robust. This could be
justified as the ability of oncoproteins to better respond
to the changes in the cellular environment due to their
disorganized arrangement which leads to possession

2



of higher degrees of freedom. Since the curvature is
positively correlated to the robustness of networks and
easier to compute, it can help in quantifying the ro-
bustness in terms of the adaptability of networks. In
the following section, we will apply BER curvature
to certain cancer networks to differentiate them from
normal tissue networks.

IV. OLLIVIER-RICCI CURVATURE: POSITIVE
WEIGHTS

We will employ a neat notion of Ricci curvature due
to [21], [22]. The approach was inspired from several
different directions from properties of Ricci curvature
in the continuous case. The idea is that for two very
close points x and y with tangent vectors w and w′, in
which w′ is obtained by a parallel transport of w, the
two geodesics will get closer if the curvature is positive.
This is reflected in the fact that the distance between two
small (geodesic balls) is less than the distance of their
centers. Ricci curvature along direction xy reflects this,
averaged on all directions w at x. Similar considerations
apply to negative and zero curvature [34].

More formally, we have for (X, d) a metric space
equipped with a family of probability measures {µx :
x ∈ X} we define the Olliver-Ricci curvature κ(x, y)
along the geodesic connecting x and y via

W1(µx, µy) = (1− κ(x, y))d(x, y), (10)

where W1 denotes the Earth Mover’s Distance (Wasser-
stein 1-metric), and d the geodesic distance on the graph.
For the case of weighted graphs of greatest interest in
networks, we put

dx =
∑
y

wxy

µx(y) :=
wxy
dx

,

the sum taken over all neighbors of x where wxy denotes
the weight of an edge connecting x and y (it is taken as
zero if there is no connecting edge between x and y).
The measure µx may be regarded as the distribution of
a one-step random walk starting from x. As is argued in
[21], this definition is more inspired from an approach
such as that given via equation (1). An advantage of this,
is that it is readily computable since the Earth Mover’s
Metric may be computed via linear programming [?],
[33].

Moreover, it is interesting to note that if we define
the Laplacian operator via

∆f(x) = f(x)−
∑
y

f(y)µx(y), f real-valued function,

this coincides with the usual normalized graph Laplacian
operator [15]. It is also interesting to note in this
connection that if k ≤ κ(x, y) is a lower bound for
the Ricci curvature, then the eigenvalues of ∆ may be
bounded as k ≤ λ2 ≤ . . . λN ≤ 2 − k; see [15]
for the exact statement. Note that the first eigenvalue
λ1 = 0. This relationship is very important since 2−λN
measures the deviation of the graph from being bipartite,
that is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a
vertex in U to one in V . Such ideas appear in resource
allocation in certain networks.

V. OLLIVIER-RICCI CURVATURE: POSITIVE AND
NEGATIVE WEIGHTS

The correlation networks we will be considering have
both positive and negative weights, and so one needs
a notion of curvature for this case as well, i.e. for
weighted undirected graphs with weights wxy that may
be either positive and negative. Accordingly, we need
an extension of the Wasserstein distance for signed
measures. Following [18], employing the Hahn-Jordan
decomposition, one can get a notion of Olliver-Ricci
curvature as follows.

Let dx =
∑
y∼x wxy. We assume that dx 6= 0. Let W

be the set of all weights. Set

W+ := {wxz > 0}, W− := {wxz < 0}.

Case 1: dx > 0.

µ+
x (z) =

wxz
dx

, wxz ∈W+,

= 0, otherwise;

µ−x (z) =
−wxz
dx

, wxz ∈W−;

= 0, otherwise.

Case 2: dx < 0.

µ+
x (z) =

wxz
dx

, wxz ∈W−,

= 0, otherwise;

µ−x (z) =
−wxz
dx

, wxz ∈W+;

= 0, otherwise.

Then clearly,

µx = µ+
x − µ−x ,

µy = µ+
y − µ−y .
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We define

W1(µx, µy) := W1(µ+
x + µ−y , µ

+
y + µ−x ).

This is under the hypothesis that dx 6= 0 and dy 6= 0. If
either is 0, we set W1(µx, µy) = 0.

We define the Ollivier-Ricci curvature as

W1(µx, µy) = (1− κ(x, y))d(x, y).

This will be applied to cancer networks in the next
section.

VI. RESULTS

Rome: Can we do an example here?
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