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OF COVARIANCE SEQUENCES

By
TRYPHON THOMAS GEORGIOU
August 1983

Chairman: Dr. E. W. Kamen
Cochairman: Dr. P. P. Khargonekar
Major Department: Electrical Engineering

This work is concerned with rational covariance extensions of
partial sequences. Certain methods of the classical interpolation
theory are exploited and a novel topological approach is developed.
An associated polynomial, that we call the "dissipation polynomial”,
is found to be a free parameter for covariance extensions with
dimension bounded by the number of data. A similar result holds for

the case of matrix sequences as well.

The dissipation polynomial is found to impose an "almost
recurrence"” law on the SCHUR parameters of rational covariance
sequences. This is done via a new approach to spectral factorization.
These theoretical results, placed in the context of the applied
area of spectral estimation theory, suggest some recursive procedure

for pole-zero modeling.



CHAPTER I. INTRODUCTION

The elementary notion of positivity of real numbers has found
various generalizations to that of quadratic forms, operators etc.
These play a key role in, not only mathematics, but many areas of
applied science as well. The reason is that positivity is, in one
form or another, intimately related with the manifestations of

physical quantities and entities.

The motivation for this work arises from the area of stochastic

processes and identification theory. The covariance function

s
stationary stochastic process T # € Z, 1s characterized by the

e 1= EyT§T+S’ s=0,+1, ..., of a discrete-time, zero-mean,

nonnegative definiteness of the Toeplitz quadratic forms

v

u
sgo tgo ascs-tbt’

for u, v=20, 1, ..., and as bt

positivity which plays a central role in our work.

€ C. This is the notion of

A stochastic process is an abstraction. The real object is a
realization of the process: a time-series. The probabilistic
behavior is not available, TFor identification and prediction,
estimates of the means and covariances of the stochastic process
have to be computed from some observation record. 1In this, a large
number of issues are involved. Most of them are of a statistical
nature (confidence limits, etc.). Theoretically, most of these

issues are still terra incognita.

In this work we shall not be concerned about such questions but
we shall assume as the given data a partial sequence of covariances
CS = {ct :t=0,1, ..., s}. This is the standing assumption for
the thecoretical development of several modern spectral estimation
techniques (cf. HAYKIN [1979]). These techniques seek a certain

-

extension of CS to a covariance sequence C = {ct = k= 0 s wenila



The set of all covariance extensions of Cs can be described by
several alternative approaches that we shall recapitulate in Chapter
II. However, theoretical as well as practical interest lies with a

certain subclass, the rational ones.
A sequence C = {cs : 8=0, 1, ...} 1is called rational iff there

exists an integer v such that the rank of the behavior (Hankel) matrices

S
5 5 N8 ol nn

satisfies rank Bs <v for s=1, 2, «... The smallest such v will

be called the dimension of C.

Rationality is directly related to existence of finite dimensional
stochastic realizations of C. The dimension of C 1is then precisely
equal to the minimal dimension for the corresponding state-space
(see for example FAURRE, CLERGET and GERMAIN [1978]). Moreover, in
case C is a rational sequence there exists a finite positivity

test.

In the case of unconstrained rational extensions of a partial

sequence, called partial realizations, a minimal dimension can be

found by testing linear dependence. 1In case the minimal dimension
partial realization is not unique, this set is parametrized by a

linear space. These concepts have given rise to the elegant partial
realization theory of KALMAN [1979]. 1In the case where the extension
is also required to satisfy the covariance property the problem becomes

substantially more involved (see KALMAN [1981]).

The purpose of this dissertation is, in broad terms, to elucidate
the relation between rationality and positivity. The main goal is to
unveil same of the issues and the nonuniqueness involved in extending
the partial data Cs to a rational covariance sequence C, paying
special emphasis on the dimension of these extensions. We believe that
we are reasonably successful and that certain of our results can be

profitably considered in the applied area of identification.




We now give a brief description of the contents of each chapter.
More detailed introductory remarks are provided at the beginning of

each chapter.

Chapter IT is devoted to a review of certain classical techniques
and concepts that are directly related to the covariance extension

problem.

In Chapter III we use the algebraic machinery developed in Chapter
II, to study rational covariance extensions. It turns out that a
certain polynomial is intimately related with the extension and can
be chosen arbitrarily. This polynomial, that we call the dissipation
polynomial, represents the zeros of the power gpectrum. We found
that the dissipation polynomial determines in a precise way the
asymptotic behavior of some important sequence of parameters that is
associated to a covariance sequence. In order to obtain this result

we developed a new technique for spectral factorization.

In Chapter IV we develop a new approach that is most suited for
describing the covariance extensions of dimension bounded by the
number of data. 1In point of fact, in a large number of cases this
dimension coincides with the minimal dimension. The merit of this
approach lies also with the fact that it provides a novel topological
proof of a certain classical result: the positive definiteness of
the gquadratic form associated with CS is sufficient for the
existence of covariance extensions. The key result of this Chapter
further shows that an essential nonunigueness in this partial realiza-
tion problem is best described in terms of the associated dissipation

polynomials.

Chapter V extends some of the earlier development to the case
of matrix sequences. Finally, in Chapter VI we discuss the relevance

and potential of the above in modeling.

The initial motivation and part of this dissertation grew out of
a joint work with KHARGONEKAR (GEORGIOU and KHARGONEKAR [1982]). The

material of Chapters II and IIT is based upon this work.



We close this introduction with a few words on notation and
standing assumptions. Throughtout this dissertation, we shall work

with the field of complex numbers C. g[z] will denote the ring

of polynomials in 2z with coefficients in C. Enxn[z} will

denote the ring of n X n-matrix polynomials in z. " - "

denotes complex conjugation and if p(z) € C[z] then 5(2) denotes
complex conjugation on the coefficients of _b(z). We shall be dealing
with both infinite sequences C = {ct i f ey Ly weugy ¢, €C for
t>1 and B € 5} and finite sequences C_ := [ct 3 hiE O Ly ceeiny

S5 Cy € E for £t =1, 2, ..., 8 and c, €

said to be positive (resp. nonnegative) iff the Toeplitz matrices

[{=s e

}. A sequence C is

S
s [Ct-u]t,uzo’ 5=0, 1, .0y

where we define C'[tf 1= c|tl, are positive (resp. nonnegative)
definite for all s. A partial sequence CS is said to he positive

(resp. nonnegative) iff T is positive (resp. nonnegative) definite.
s

Thus, a sequence C 1s a sequence of covariances of a stochastic

process if and only if C is nonnegative. Finally this notion of

positivity (resp. nonnegativity) will be denoted by > O (resp. > 0).



CHAPTER II. CERTAIN CLASSICAL APPROACHES

The purpose of this Chapter is to introduce certain mathematical
concepts and techniques that are pertinent to the covariance extension

problem.

We shall begin with some algebraic aspects of the theory of
orthogonal polynomials relative to the unit circle. Toeplitz matrices,
of the same type as the ones associated with the covariance function
of a stationary stochastic process, were classically considered to
induce an inner product on the space of polynomials. The special
Toeplitz structure can be effectively exploited by considering a
particular orthogonal basis. This gave rise to the theory of or-
thogonal polynomials of S7ZEGO [1939]. Since that time the theory was
progressively developed by many researchers. AKHIEZER [1965},
GERONIMUS [1954], [1961] and GRENANDER and SZEGO [1958] have given
classical expositions on the subject. It was early recognized that
the theory of orthogonal polynomials had strong connections with a
prediction problem in the theory of stochastic processes (see
GRENANDER and SZEGO [1958, p. 173] or the survey paper by KAILATH [1974]).
This opened up areas of application of the theory, notably in
stochastic problems, spectral analysis and autoregressive modeling
(see the book by HAYKIN [1979] for various applied and theoretical
aspects on these). Motivated by autoregressive modeling for multi-
variate stochastic processes,WHITTLE[1965}, and WIGGINS and ROBINSON
[1965] laid the first pieces of a theory of orthogonal matrix
polynomials., A number of researchers have then pursued this line
of research. We mention only the most recent works of YOULA and
KAJANJIAN [1978], MORF, VIERA and KAILATH [1978] and especially
DELSARTE, GENIN,and KAMP [19784] that have given a rather elegant
account of the theory of orthogonal matrix polynomials on the unit

circle.

We restrict our attention to the scalar case and in Section Z we
give a concise exposition of those aspects of the theory that we con-

gider to be relevant to the covariance extension problem.



The theory of orthogonal polynomials is connected to certain
problems in analysis. Various aspects are discussed in AKHIEZER
[1965], AKHIEZER and KREIN [1962] and KREIN and NUDEL'MAN [1977].
In particular there is a connection with a certain interpolation
problem that is equivalent to the covariance extension problem.
Both solvability conditions and a parametrization of all solutions
can be obtained by the classical SCHUR's algorithm. The machinery
of orthogonal polynomials can be used to provide a compact
description of the solutions in terms of a linear fractional
transformation. This is the content of Section 3. We should
finally mention that a similar description of an isomorphic
problem was used by DEWILDE, VIEIRA and KAILATH [1978] and also
DELSARTE, GENIN and KAMP [1979].

1. Orthogonal Polynomials: An Algebraic Approach.

We consider an infinite sequence C = [cs P8 E Dy L ey
with cg in R and cg in C for s > 0}. We define on the

space C[z] of polynomials in 2z an inner product by

This inner product is definite if and only if C > O. Whenever
¢ > O (resp, > 0) then the above inner product defines a norm
!. We

(resp., semi-norm) on C[z] that we shall denote by I|-
begin by discussing separately the two cases of interest: first
the case C >0, and second the case C > O Dbut not > O.

We now consider C to be a positive seguence. The inner
product {*, +) is now definite. We apply the standard orthogonal-
ization procedure to the natural basis {zs P S E 0D ] BE
C[z] to obtain an orthogonal (but not necessarily orthonormal)
basis of monic polynomials {@S(z) : 8=0, 1, ...}, These poly-

nomials are known as the orthogonal polynomials (of the first kind)

associated to the sequence C, and are given by




éo( z) = 1,
e, C_y see Cg
{La1) ¢y e, e 8l ony
@S(z) = det |. : - /det T,_y» S = 1, B noos
Cs-l 05-2 L 3 c-l
l Z L ZS
- e

Since ”@S(Z)HE = (z°, @S(z)) it follows that

(1.2) H¢S(Z)H2 = det Ts/det T g =05 Ly wuwwy

lJ

where det ILl = il
The special inner product structure of C[z] induces upon the set of
orthogonal polynomials certain algebraic identities and an important

parametric description. We shall now discuss these.

Let Ps(z) € Clz] be of degree s. We define the reverse polynomial

Ps(z)* 1= zsﬁs(z“l).

€
From {z, @S(z)} =0 for t=0,1, ..., s -1 and the Toeplitz

structure of the inner product it follows that

(1.3) (zt, @s(z)*) =0 for t=1, 2, «¢., 5, and any s > 1.

Since ®S(z) is a monic polynomial of degree s we can write

s=1
¥ = e— ;
(1.4) @S(Z) 1-2z.2 bs,t¢t(z),

for some scalars bS i From (1.3) and the above we obtain
2



0= (lJ Z¢t(2)> - bs,t<®t(s)’ Qt(Z)D-

Hence, b . = {1, zit(z)}/H®t(z)H2 is independent of s. This fact
r

gives rise to the parameters

el b= {3 ZQt(Z))/”¢t(Z)”2; t=0,1, -..,

These parameters are known as the SCHUR parameters of the sequence

¢. TFrom (1l.4) we now obtain the (well known) recurrence identities

1

@S(Z) Z@S_l(Z) - §S$S—l(z)*’
(1.5)

o(z)* = o(z)* - rsz®s_l(z),

for s =1, 2, +++. From the first identity we obtain
T 2 2 - 5
”:5(2)“ = His-l(z)” = rs<¢s~1(z)*’ Z*S_l(z)>
and also
| 2
0= (2t (2), o ()% - rglleg 1 (2>
Combining the two we obtain
2.6) e (2P = @ - = Pl (IF, s=1,2, -
’ s s gy 4 0 4 i B .
This shows that the parameters R = {rs s 2= B; ses) seablefy
(3.7 Ir <1, s=1,2, ---.

These conditions (and Co > 0) are equivalent to C being positive.

In fact starting from the parameter sequence R with |rt| < 1. Tor

all t, and <, > 0, we may construct a corresponding positive

sequence. This correspondence is bijective. Furthermore, partial




positive sequences C_ = {ct :t =0, 1, «v., s, with T > 0]
correspond bijectively to pairs (co, RS) where c_ > 0 and
R, = (ry 1,2, ..., s with |rt| <1 for all t}. This we
show below.

The sequence of parameters of a positive sequence C are given by

r) = - ey/ey
[~ c cas € ==
(1.8) L = . /d £ T
LA B e -~
r = -7 (0 = (- 1)° aet | %o i Cgel s-1’
L c_s+5... ¢y N

for s =2, 3 ..., and they satisfy ]rsf <Ly 8= Ly By sev,

Conversely, starting from the seguence of parameters that satisfy
r | <1, s=1,2, ..., and c_ >0 we obtain the corresponding
s

sequence C by solving (1.8) for c_:

c
s=1
er

T
S=c

s=1 o )
(12.9) e =cr .0 (1- Irt| R

D ==

i

for s =1, 2, *++. The above is valid provided det T__, £ 0. Bt

this follows from |rt| <1l for t=1, 2, ..., @and the algebraic

identity
det Tt [ o det Tt 1
s =1 -t ") 7= t=1, 2, ...
det Tt-l t det Tt-2 r e ’

(which arises from (1.2) and (1.6)). Hence, (1.8) and (1.9) establish

the required bijective correspondence.

We now discuss the singular case of nonnegative sequences that are

not positive. Such a sequence is called singularly nonnegative.
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Assume that C # {0, O, ...} is a singularly nonnegative sequence

and let s be the smallest (positive) integer for which

det T = O.
s
The partial sequences {@t(z) P b= 0y Xy weny &) EEA R, are defined
as earlier and (1.1) - (1.6) hold for t =1, ..., s. However, we now
have ”QS(Z)“E =0 and RS satisfies

(l.lo) [I’tl < 1, t:l, 2, .y S = l, aﬂd Irs’ = lo

The interesting feature of this singular case i1s that any singu-

larly nonnegative sequence C as above, is raticnal and uniquely

determined by CS (or, equivalently, by s and Rs)' Also any

partial sequence C_ _with T >0 and det T =0 £ det Te_q

admits a uniquely defined singularly nonnegative extension C.

We now prove these facts.

Let C be singularly nonnegative and

be a monic polynomial of least degree that satisfies HX(Z)H2 = Q.
Evidently, s is the smallest (positive) integer such that det Ts = 0O,
Furthermore, X(z) = @S(z).

H2 =0 for &ll t > 0. By the fact that T >0

Clearly, ﬁztx(z} e

it follows that

(0...0 & ...a 1
t
is a zero-eigenvector of Tq+t and therefore
(Ll C g™ ™ 8C 4. -8Cy Tor t>0.

This shows that C 1s a rational sequence and is in fact uniquely

determined from the partial sequence CS.



We now let Ct be such that Tt >0 with det Tt = 0. We shall
snow that there exists & nonnegative extension C of Cs which by the

above discussion is unique.

The partial sequence Ct defines in the obvious way & semi-norm and
an inner product on the space of polynomials of degree less than or equal
to t. We denote these by H-Ht and (-, -%; respectively. Consider now
s to be the smallest integer for which det Ts = 0 and
x(z) = 2 + alzs-l + ... +a_  bea monic polynomial of least degree that

satisfies “X(z} :i = 0. Precisely as we dié before we now obtain that

(1.12) c-s-—u= - alc-s-u+l- cee maC for u.= 0, 1, weey L = 8.

wWe now extend the partial sequence Ct to an infinite one C using

(1.12) for u=t-5s+1, ..., We now show that C > O.

For any a(z) in C[z] denote by a mod X the remainder of
a(z) divided by X(z). Since (2%, X(z)) = O for all u >0 it
follows that

(a(z), a(z)) ={a mod X, a mod X)

=(a mod X, a mod X}, > O.

Therefore C > 0.

The above considerations readily solve the covariance extension

problem: Given a partial seguence Cs, there exists a nonnegative

extension C of CS if and only if Cs 2 0. 1In particular, the

following two cases are possible:

(a) Nondegenerate case: Cs - ¢
In this case the set of all nonnegative extensions of Cs

are in bijective correspondence with sequences of parameters
R that are either finite and of the form R = [rt: t=s +1,

ol =1

or infinite satisfying !rt| <1 for t=5s+1, eee,

eee, S +1u, with jrt]<l for t<s+u and lrs



(p) Degenerate case: CS‘Z 0 but Cs # 0.

In this case there exists a uniquely determined nonnegative

extension C.

We now proceed to consider certain related mathematical objects,
which will be useful in the next section in showing the connection of the

above with an interpolation problem.

Define the power series

5 t
P{2) = e, + Et;l .z -
The function theoretic properties of I(z) will be described in the next
section, Here we view TI(z) as an algebraic object. We shall now
recall the notion of partial realizations (see KALMAY [1979]) and then
introduce the so-called orthogonal polynomials of the second kind of C

by considering certain partial realizations of

i, Bl & -t
Hz ) = e, * 2t§l C 42 -

. . -1 . .
Consider a formal power series F(z ) (in negative powers of z).
A pair of coprime monic polynomials (m(z), X(z)) or, equivalently, the

rational function w(z)/X(z) is said to be a partial realization of

F(z_l) of order s iff

. -1 g-degi s=-degr
(F(z)x(2)z" o), = w2z o,

where [ ]+ denotes "the polynomial part of". Equivalently, the rational

. : s 2 . -1 .
function w(z)/X(z) is a partial realization of F(z ~) oforder s if
and only if the Laurent series w(z)/X(z) (with thedivision carried out
in the field of formal Laurent series in negative powers of z) matches

F(z’l) up to and including the coefficient of z .

. : =, -1 .
We now consider the power series I'(z ~) and define a seguence of

polynomials by
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v (2) = (N2 Ho ()],

o

where ¢ (z) 1is the s=-th orthogonal polynomial of the sequence C.
The inteZer s runs over either all nonnegative integers or, a
finite number of them depending on whether C 1is positive or non-
negative,as we discussed earlier. These polynomials are known as
the orthogonal polynomials of the second kind of the sequence C and

were introduced by GERONIMUS [1971, p. 10]. From the definition of
Ts(z) we have that COTS(Z)/¢S(2) (though not necessarily a coprime

representation) is a partial realization of T z-l) of order s. In the
case where C 1s singularly nonnegative and s is thesmallest integer
for which det T =0, it follows that T(z-l) is actually equal to
CD‘PS(Z) /@S( Z) .

We now show that the orthogonal polynomials of the second kind
satisfy the following recurrence identities (which, except for a sign
change are the same as (1.5)):

' - - I £
¥ (2) = z¢__,(2) +ry_, (2)%

(1.13)

/ ¥ = * 4+ /

‘fs(z) ‘fs_l( z) rSZ‘PE_l( z),
for s =1, 2, ... (or a finite index sequence in case C issingularly
nonnegative).

We define the transformation

o0

a g[Z] vig[Z]: Acz) paéL[A(z)(co " gtél C_tz—tﬂ 4"
o}

~
We also define a seguence C via the relation

oo {
-t. A~ o ot

(g +2¢2n e g Dleg + 2y c 2 ) = 1,

and the transformation
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re clz] - clz]: A(z) H'EL[H(Z)(EO + Etgl E-tz-t)].p
o]

1t is straightforward to check that £F = ’f\f is the identity transformation.

We now modify our earlier notation by adding a subscript to Toeplitz
inner products (and norms) that specify the defining sequence. Thus we
shall have (-, -)C, (-, '>E’ and if we define I := {1, O, O, ...)

then we shall also write (-, -)I.

We denote by g*¥ the adjoint of the transformation g. We nowhave

that
(o v) - <a _]:(f+f*)o>
L C 2 2 I,
and also

= (oy g0+ 09B) = (o, 2B+ Do = G,

A is certainly a semi-norm it follows that € is

i &1 = |-
Since Jf IC H
nonnegative.

Since the polynomials Ys(z), s=0, 1, ..., were defined by
Ys(z) 1= f¢5(z), s=0,1, ..., they are the orthogonal polynomials of

the first kind of the sequence C, Therefore they satisfy relations of
the type (1.5). Inorder toestablish the precise form (1.13) of these

relations we only need to show that
(1.14) ¢S(o) = - TS(O).

From the definition of Ys(z) we have

Ys(z) = éi[<2t§1 c_tz—t)ss(z)j+ - ¢ (2).

The constant term of
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ERLCh ez e (2)],

equals (2/c0)(l, @S(z)) - 0. Therefore (1.14) holds and hence (1.13)

follows.

We finally want to indicate another algebraic identity that is
satisfied by the two types of orthogonal polynomials that we shall

refer to later on:

S
(1.25) o ()Y (2)* + o (2)¥ (2)* = 22°n,,
where hS is a scalar given by

1. e
o l"S(Z) .

S 2
(1.16) h_ := TL(1 - ]rtf ) =
This identity follows from (1.5) and (1.13) using induction on s.

2. Interpolation: Function Theoretic Approach.

Consider the following interpolation problem: We are given two

regions Gz and Gw in the complex planes of the variables 2z and
- . . ; ~
w, and a set of pairs (za, wa) with z in G, and w_  in G
for all a in a certain index set I. Itis required tofinda function
F(z) holomorphic in G, with values in G that satisfies the
interpolation constraints
F(z ) =w_ forall & in 1.
a a

When certain of the points z, coincide, then the interpolation
constraints are modified so as to ascign at these points

values to the successive derivatives of F(z).

This problemis classical and a number of technigues have been applied
to it. The books by WALSH [1956] and AKHIEZER [1965] give comprehensive

expositions of the classical approaches to the problem. In recent years
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new functional theoretic techniques have been applied that also extend
to a more general class of interpolation problems that includes
interpolation with matrix-valued functions. These techniques have been

developed in the work of SZ.-NAGY and FOIAS [1970] and SARASON [1967].

In this section we sghall consider a particular case of the problem
which is directly related to the covariance extension problem. We
discuss the so-called SCHUR's algorithm that also provides a description

of the solutions, and we tie up this approach with the material of the
previous section.

The following classical theorem states that the notion of positivity
encountered earlier is expressed in terms of a function theoretic

property.

(2.1) THEOREM (see AKHIEZER [1965, p. 178]). The power series

(z) := ¢ + 2eqz + ...+ ecszS =

converges in |z| <1 and has Re I(z) >0 forall =z in J|z| <1

if and only if the sequence C = {cS i 2 =0; 1y seay wWith

c, i= (c + ¢)/2) 4is nonnegative.

The functions possessing the above property form the so-called
class (. (This same property is known in the engineering literature as

positive realness. See for example BELEVITCH [1968, p. 71].)

We shall consider the following interpolation problem: Givena partial

sequence Cs = {ct tt=0,1, ..., s} find the necessaryand sufficient

conditions for the existence of a function in ( whose power series
expansion in 2z Tbegins with <, + Eclz + ... + 20 z°, Also, it is
s el et LR e e M o

required to describe the set of all solutions.

This is known as the CARATHEODORY problem. In viewof Theorem(2.1)

it is seen to be equivalent to the covariance extension problem.
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Below we proceed to discuss the so-called SCHUR's algorithm as
applied to the CARATHEODORY problem. This technique provides a para-

metrization of the solutions in terms of functions in class (.

The main technical result needed is the following simple

(2.2) LEMMA. The function Ta(z) belongs to ¢ and has power
(a)

series expansion in =z that begins with 1 + 2cl z if and only if

one of the following two conditions holds:

(a) Icga)l <1 and

da(z)Fa(z) - ba(z)

L(2) = T TT.(D * 8 (2
is in ¢ where aa(z) := (1 + 2)(1 - Cga)),
b (2) = (1 - 2)(2 - cga)), c (2) := (1 -2)(1+ cga)):

and q,(2) = (1+ 21+ o),

Ll + c(a)z
(b) icga}l =1 and T (2) = s B
1. (a)
Cl Z

INDICATION OF THE PROOF. The set of functions $(z) that are
analytic in |z| <1 and satisfy |S(ZD)] <1 forall z  in b & i

forms the so-called class g. There exists a simple relation between

functions of class C and functions of class §: T(z) is in ( if

and only if

(2.3) 8(z) = .iét. %?ﬁ%%

is in S.

For functions of eclass § 1t is easier to show an analogous
statement (see AKHIEZER [1965, p. 101]): A function Sa(z) is in §

if and only if one of the following two conditions hold:
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(a') ]Sa (0)| <1 and

s.(2) - s,(0)

1l Saioisa(z)

Sb(z) £ %

is in C,

(v") S, is constant of modulus equal to one.

Applying now (2.3) to the above statement proves the lemma. O

In point of fact this lemma gives a description of all functions
in C in terms of certain parameters: Beginning with a function
I{z) == Tl(z) =1+ 2c§l)z + ..., We iterate the formula

d -b
T
* t+1 - cﬁ(i)?%(ﬁ) + at(z) 2

for t=1,2, ..., while ]cgt)] # 1. Then, T(z) belongs to
if and only if one of the following two cases holds:

2

(a) ]cgt)[ <1 for all t,
(v) lcl(t)l<l for =1y sssy 8 =1 and
(s)
l+e¢c VA
r(z) = -l-:-j%)—z with |c§s)| - 1.
1

(See also AKHIEZER [1965, p. 103].) The parameters Py = cgt),

t =1, 2, ... are called SCHUR parameters of T(z).

The above lemma readily solves the CARATHEODORY problem: Given

the partial Cs = f1; Cys wees cs} define c(l) = e, k=15 wues S

t t?
By the lemma a function in C exists having power series expansion that

begins with 1 + 2c(1) + oaes F 2cgl)zS if and only if either

-
ke
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(1) _ (N por t =2, ..., s

(1), _
|cl | =1 and cp N

or
ERIES!

and there exists a C-function with power series that begins with

5 EC(E)zs-l

(2)
1 +2Cl Z + aae S-l

where cie), t =1, «u., 8 = 1 are obtained via the formula

al(z)(l i ECgl)z * won ¥ 2c£1)zs) - bl(z) )

- cl(z)(l + ECgljz + wwe + Ecgl)zs) ¥ dl(z) .
=1+ 2c£2)z + aee F 2cgfizs_1 + O(ZS)

(where the division is carried out in the field of formal Laurent series
in positive powers of z). Inthis way the problemcanbe transformed to
an equivalent one with one interpolation constraint less. This

inductive procedure is known as the SCHUR's algorithm. Iterating the

above we obtain:

The CARATHEODORY problem is solvable in precisely the following two

cases:
(a) Nondegenerate case: |c§t)| <1 POE X = Ly wees Be
In this case the general solution is nonunigue and is obtained
from
a ()T ,(2) +v.(2),
(2.5) D (2) = ——y=tis :

ct(z)Ft+l(z) + dt(zf

for t =58, 8-1, «a., 1 and ré+ anarbitrary functionin (.

1.
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(b) Degenerate case: fcgt)! <1 for t=1, ..., u=1, with
u < s, |c£u)| =1 and cgu) = (CEP))t tor &= 1y weay

s =u+ 1., In this case the solution is unique and is

obtained from (2.5) iterating for t=u -1, ..., 1 with

L + c(u)z
P(Z)"—‘ 1 -
u ()
l-c Z
The property that a function TI(z) belongs to C is described in
terms of the parameters Py = cgt), t=1, 2, ..., and alsointermsof
the parameters Tis t =1, 2, +4s, that occur in the recurrence rela-
tions of the orthogonal polynomials of a corresponding (by the Theorem

(2.1)) sequence. These two sets of parameters turn out to be

equivalent. In the rest of the section we shall show this which
gives the precise connection of the SCHUR's algorithm with the material

of the previous section.

We first prove the following

(2.6) LEMMA. Let RY := (r, : frsl 20

sequence of parameters and {Tg(z), ®:(z), s

ty T3 1y www) baa
0, 1, ...} denote

the associated orthogonal polynomials. Define

ac2) 1= ¥(2) + Y (2% Bg(2) = ¥((2) - ¥ ()%

et = 0%(2) - 0f(2)%, DX(2) := 05(2) + 0X(2)%, mma
) NO BY(2)
M (Z) =5 .
t t
c (2 D (2)

The following algebraic identity holds
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t t+s
v (2) vy (2)
(2.7) ( im = M:(Z) ( :+S ),
0 il z) o, (2)

PROOF. We apply induction on u. For u = 0, (2.7)
obviously holds. Assuming that it holds for u = v we obtain

t t+s t+s
*
Ts+v+l(z) t Yv (Z) O\ + Tv (z)
= zM’( z) +r M (z)* »
s t+v\0 -1/"s
oF, ..(2) o7*5(2) 2 S(2)
s+v+l v v

where applying * on M:(z) simply means to apply * on the entries
of Mz(z). But

(6 .2)u@x =5 3)-

We finally obtain

t s+t
?s+u+1(2) t Yu+1(z)
= u(2)
t s+t
¢s+u+l(z) ¢u+l(z)

which completes the proof. O

In the case where Rl is a finite sequence {rS i ot SR
with ]rsl <1 for s<v and [rvf = 1} then (2.7) still holds
for 1 <t<v, 0<s, 0<u, and s+t +ugv.

Let now Ft(z) be the functions in C with Pt(O) = 1 that
correspond through (1.9) and Theorem (2.1l) to the parameter sequences
Rt that we defined in the lemma. We shall show the following
(2.8) PROPOSITION. Provided |ru| <l for u=1, ..., 8 + t,
then the following two identities hold:
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i s+t t
A(z)*T" " “(z) + B (z)*
+ s s
5.9) Dz = ’
(e C:(z)*FS+t(z) + D:(z)*
37 t t
D(z)*1(z) - B(z)*
(2.10) T°"%(2) = i( t( = —,
- K2 T(2) + Ag(2)®

for all t>1, s >0,

PROOF. We first consider the case where - = {rs £ B 1y
Py we ey swith |rs| <1l for all s} is an infinite sequence. We
shall show that both sides of (2.9) have the same power series
expansion in z. (Both polynomials and power series are considered

as elements in the field of formal Laurent series in z.)

We first show that (CE(Z)*FS+t(z) + D:(z)*)_l exists.

Indeed, the coefficient of the zero-term is

t t t gv
¥ o _
@S(O) @S(Oj - ®S(O)* + @S(O) 2 £ 0.
From Lemma (2.6) we have that

t

(2.11) Ys+u(z)* _ A:(Z)*Ti+t(z)*/¢z+t(z)* - B:(Z)* .
¢:+u(z)* C:(Z)*Yz+t(z)*/®i+t(z)* + D:(z)*

Using the above it is straightforward to show that

t s+u t t
As(z)*r (z) + Bs(z)* Ws+u(z)* zs+u+l)
t s+t 7 A - = ’
Cs(z)*P (z) + Ds(z)* ¢s+u(z)*

for all u > 0. By the definition of the orthogonal polynomials

of the second kind we also have that

v o (z)*
t
r'(z) - 42— = o(z°"*
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for all u > 0. This establishes (2.9).

In the case where Rl is a finite sequence the above are
still valid for u <v for some maximal v such that |r | = 1.

But then

s+t+v

Ft(z) = W:+v(z)*/®:+v(z)*, and
P i o Yi(z)*/@i(z)*.

Therefore, by (2.11), it follows that (2.9) holds.

The identity (2.10) follows from (2.9) when solved for

z) provided the denominator in the right hand side of (2.10)

F5+t(

is not identically zero. This we show below.

From the definition of the orthogonal polynomials of the

second kind we have that

t t +1
(2.12) - 0%(2)*(2) + o (2)* = o(z""Y).
From the above and (1.15) we obtain

(2.13) o()T(2) + ¥i(2) =
0 (2)Ye(2)* + 0(2) X (2)) /ol(2)* + 0(2°*)

= hit) z% + 0 ZS+1),

S
where hgt) = u;[O(l - | 12). By adding (2.12) and (2.13) we obtain

r
t+u

s+1

c¥(2)xr%(z) + a%(2)* = B{¥2® + 02" £ o,

since hgt) £0, O
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We finally show

(2.14) PROPOSITION. If T(z) denotes a function in ¢ with

r(0) = 1 and Pt(z), Oy Ft(z), r, are defined as before for
t =1, 2, ... (finite or infinite), then Pt(z) = Pt(z) and

P = Ty for all t.

PROCF. We apply induction on t. By definition

Pl(z) =T(z) = T;(z) and therefore = r.. Suppose Pt(z) = Ft(z)

P1 1

t
for some t. Then p, =T, and hence, at(z) = Al(z)*,

t
t t T
bt(z) Bl(z) s ct(z) Cl(z)*, and dt(z) Dl(z) , as well, 1In

case Ipti = |rt[ = 1 +then both sequences have terminated and we

are done. If ‘pt| = !rt| < 1 then from (2.9) and (2.10) we
£+l

conclude that T£+l(z) =T (=z). O

(2.15) REMARK. As we mentioned earlier, interpolation ideas have a
strong connection with circuit theory. For example, the celebrated
DARLINGTON synthesis procedure is the analog of the SCHUR's
algorithm for solving the general Nevanlinna-Pick interpolation
problem. Several of these connections were pointed out and shown
explicitely by DEWIIDE, VIEIRA, and KATIATH [1978]. In point of
fact, in that paper they derived a compact description for the
solutions of a SCHUR interpolation problem that is similar to (2.9)
(see DEWILDE, VIEIRA, and KATLATH [1978, p. 668] and also DELSARIE,
GENIN and KAMP [1979, p. L40]). The various forms of interpolation
can be interpreted in a circuit theoretic framework as synthesis
with cascade connection of coupling networks. 1In the same framework
the linear fractional transformation (2.9) is seen to correspond to a
cascade connection terminated to a resistive network with impedance

rs+l(z) (compare also with BELEVITCH [1968, p. 110, (25)]).



CHAPTER III. RATIONAL COVARIANCE EXTENSIONS

In the first section we begin by applying the previously derived
interpolation results to the study of rational covariance extensions.
Certain bounds for the dimension of the wvarious extensions are

provided by this algebraic approach.

With any rational C-function or, equivalently with any rational
covariance sequence there is associated a certain polynomial in =z

and z_l. This polynomial we call the dissipation polynomial of

the sequence. It represents the zeros of the power spectrum or,
equivalently, the zeros of an associated stochastic realization.

This polynomial is completely determined up to a scalar factor by the
tail of the associated parameter sequence. In point of fact, the
dissipation polynomial up to a scalar factor , is an imvariant of the
action of "shifting and truncating" the corresponding parameter

seguence.

This rather interesting result is further exploited in Section 4
in connection with asymptotic properties of rational covariance
sequences. The most complete treatment up to date of the asymptotic
and analytic properties of positive sequences and of the associated
orthogonal polynomials has unquestionably been given by GERONIMUS [1961].
We shall apply some of his results to the case of ratiocnal sequences.

A certain new aspect that emerged does not seem to have an analogue

in the general case. The dissipation polynomial determines the asymp-
totic behavior of the parameter sequence. The sequence of parameters
of a rational covariance sequence is not necessarily rational, however
it is in a certain precise sense very close to being so. We shall

call this property "almost rationality”.

Another aspect of this development is a new algorithmic procedure
for spectral factorization. This is a key problem in system theory
and several approaches to it have been developed. In the discrete-
time scalar case, given a rational function w(z)/x(z), with w(z),
X(z) in (C[z], that has positive real part almost everywhere on

25
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]z[ =1, it is required to obtain a factorization
1 (m(z) , 7(z"H) (2) iz"h
z 3 e L =l
x(z)  R(z™) x(x) X(z™)

with n(z) € C[z], for the real part of w(z)/X(z) on |z| = 1. This

factorization amounts to factoring a nonnegative trigometric polynomial

a( z, z-l) =

N

3-:r< DXz + x(2)T(z D = a2,

7 = eja, as the square of the modulus of a polynomial n(z).

The existence of such a factorization is well known. The most common
approaches are a Riccati based approach (see FAURRE, CLERGE, and GERMAIN
[1978]) and an algorithm due to RISSANEN and KATIATH [1972]. For
different aspects of the factorization problem see ANDERSON, HITZ and
DIEM [1974], DELSARTE, GENIN and KAMP [ 1978b], FRIEDLANDER [1982], SAEKS
[1976], STRINTZIS [1972], and YOUIA [1961].

In our investigations we found a new technique. This is intimately
related with the above. However, it operates on both numerator and
denominator of a C-function m(z)/X(z) instead of simply the dissipation

polynomial.

The key idea is based on the invariance of the dissipation polynomial
a( z, z'l) under the action of "shifting and truncating" the corresponding
parameter sequence. Under this operation, certain associated rational
C-functions tend to 1, wuniformly on compact subsets of |z] < 1.
Consequently, both numerator and denominator polynomials tend to the same
polynomial, which turns out to be the "stable spectral factor" of

d( Zy Z*l)

3. Rational Covariance Extensions and the Dissipation Polynomial

A key result in partial realization theory, is that a sequence

S {ct: t=0, 1, ...} is rational if and only if the power series

M(z) =e¢ +2 P oot
0 t
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defines a rational function in z (see GANTMACHER [1959, Chapter V] and
also KALMAN, FALB, and ARBIB [1969, Chapter 10]). Moreover, if
(z) = m(z)/%x(z) with w(z), X(z) coprime polynomials in =z, then

dim C = max (deg m(z), deg X(z))

I

dim I(z).

The previously derived description for the solutions of the
CARATHEODORY problem will now be applied for the study of the rational

ones. Such a solution with data a partial sequence Cs will be called

a pr (positive rational) - extension of Cs.

In the degenerate case where Cs is nonnegative but not positive,
there exists (see page 10) a unique covariance extension which turns out
to be rational. In the nondegenerate case where CS is positive the

set of all pr-extensions is described in the following

(3.1) THEOREM. Let C, be a given partial positive sequence,

RS = {rt: t=1, ..., s}] be the associated partial parameter sequence,

and Mi(z) be the corresponding matrix polynomial defined in Lemma (2.6).

An irreducible rational function coﬁi(z)/xl(z), with nl(z), Xl(z) €
Clz] and Fl(O) = Xl(O) =1, is a pr-extension of Cg if and only if

there exists a unigue irreducible rationall C-function Fs+1(z)/xs+l(z)
0) = XS+1(O) = 1, such that

with Ws+l(z), Xs+l(z) € g[z} and Ws+l(

7. (2) T z)
(3.2) & = M(2)* SIEAY
% (2) Xe41(2)

s+l

Then, R = {r is the sequence of parameters associated

s+1’ Tgap? o)

. . " L -
with Wé+l(z)/xs+l(z) if and only if R = {rl, sess Tos Toyas «ee} is

the sequence of parameters associated with Wi(z)/xl(z). Moreover, the

following holds

T, (2) 7. (2) T 41 (2)

dim £ dim < dim + 8,
Xs+lizi Xlizi Xs+lizi
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Tt is clear that any continuation ({r [rt] < b= 8 oh Ly wae )

for the partial sequence Rs leads to a gositive extension of Cs' The
positivity is effectively characterized in terms of the associated sequence
of parameters. This is not the case with the rationality. Due to the
nonlinear transformation (2.9) between the c¢'s and the r's the para-
meter sequence of a rational sequence is almost never a rational one.
However, the interpolation approach shows that the rationality of a
covariance sequence is completely determined by the tail of the parameter

gequence.

PROCF. From (2.9) and (2.10) we readily obtain that a solution Pl(z)
to the interpolation problem is rational if and only if the (C-function
PS+l(z)

also rational.

associated with the continuation of the parameter sequence is

Let FS+l(z) = Ws+l(z)/xs+l(z). The normalization conditions
Fl(O) = Xl(O) =1 and Wé+l(0) = XS+1(0) = 1 are compatible due to the
fact that
. 1+ Ty 1- ro
Mo(0)* = 2 :
l-r I, o
s s

We now derive the last inequality that provides bounds on the
dimensions of various pr-extensions. We first define the matrix

polynomial

D.(2) - B(2)

o]

(3.3) N (z) :=
- ¢ (2) A(2)

B =T B pe B0 Ty wees  wiilh AE(Z), BZ(Z), CE(Z), D (z2)
defined as in Lemma (2.6). Using (2.15) it can be shown by direct

calculation that
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VR, ey v
Nu( z) Mu( z) % = zuhu .

where

v viu

2
by t= (1 - 'rt| Y

Applying this to our case we have

T l(z) Wi(z)
h]S_ZS o - NJS'( Z)* .

X (%) %, (2)

Since the elements of Ni(z)* are polynomials of degree s, the above

implies that
deg Xs+l(z) < deg Xl(z)

and also

deg vs+l(z) < deg Wi(z).

From (3.2) we also have that

deg X,(2) < deg Xs+l(2) + s

1(
and similarly

deg Fi(z) < deg T...{(2) + &

s+1
These prove the last inequality in (3.1). O

We now consider an irreducible rational C-function w(z)/X(z).
The real part of w(z)/X(z) is nonnegative for all z on |[z| =1 where

it is defined, Therefore,
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Tr(e‘je)x(eje) + Tr(ejg)x(eje) >0

for a1l 6 in [ - 7, m]. Following the terminology of an unpublished
report by KAIMAN we shall call

Az, 270) 1= 3 (M(DX(2™) + T{zTX(2))

the dissipation polynomial of m(z)/X(z). By slight abuse of terminology
-1
)

we shall also call a dissipation polynomial any polynomial p(z, z

in both 2z and z-l, which for z = expj9 and all 6 in [-m, 7] is

nonnegative, Finally, let us define the degree of d(;,z-l) as the

largest power of z.

The role of the dissipation polynomial in the context of stochastic
processes will be discussed in Remark (3.8). Herein, we shall see that
the dissipation polynomials associated to the various pr-realizations
of Cs are up to a scalar factor determined completely by the choice of

: s+1 .
the C-function I "(z) = Fs+l(z)/xs+l(z) of the previous theorenm.

Let T(z) = cowl(z)/xl(z) be a rational C-function and
Rl = {rgs : s=1, ...} denote the associated parameter sequence. Let
also Rlb = frs :8s=1%t, t+1, ...} denote the usual "shifted and

truncated" parameter sequence and Wf(z)/xt(z), dt(Z’ z_l) the associated
rational C-function and dissipation polynomial. We now present the

following

(3.4) THEOREM. In the degenerate case where

Rl = {rs t 8=1, 25 essy u, with ]rs| <1l for 1 =ssu
and |ruf = 1}
we have that
-1, _
dt(z, z ) =0 for t=1, 2, seells

In the nondegenerate case where
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1

R ={r :s=1,2, ..., with [rs| <1 for all s}

we have that

= % -1
dl(z, z ) = hldt+l(z, Z )y Tor B2l, 2, s
The behavior of the dimension of Wf(z) as t increases is
Xe(2)

described in

(3.5) PROPOSITION. In the degenerate case where u is as in Theorem
(3.4) we have that

oy (2)
diM'E;rET =1 -t + l, for t = l, RN

In the nondegenerate case we have that the following two cases are

possible

Wt+l(z) . (2)

dim = dim
el Xg+1(2) X (2) ?

Furthermore, case (a) is equivalent to each of the following two

conditions:

(a") dim (D - deg (Wt(z) + Xt(Z)).

We will now prove (3.4) and (3.5).
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PROOF OF (3.4). In the degenerate case we have
T
— *
TRE) = %y g (2%

and

(-
- *.

Xg(2) = O ge1(?)

From (1.15) we obtain d_(z z-l) & B Since |r_ | =1 it follows
C A u-t+1° u' ~
that
£ u 2
Byoger = ylg( = [z [ =0

In the nondegenerate case we obtain from (1.15) that

_1)

4z 27 = 5 (D) + 7y (zTx(2)

5 W@DF(Y + T (el r,, (D% (27 +

* Ty ()% ()

t

-1
1= 2 )

= h z . O

PROOF OF (3.5). In the degenerate case,

t

Xt(z) - Qu-t+1(z)*’
and
t
Trt( Z} - ‘fu-—t"‘l( Z)*}
for t =1, 2, ..., u. Also ’@t (0) | = hft (0)] = |r | =12
s 4 4 7 Pyat+l u-t+1 T W T

is different from zero. Therefore,
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deg Xt(z) = deg Wt(z) =u-t+1

In the nondegenerate case, using (2.4) we obtain

ar, ,,(z) = %fﬁt(z) - %,(2)) + z(m(2) + % (2)))/(L + x),
and

(x,(2) = () * 2% (2) + T ()L - x).

ol =

th+l(z)

This shows that both deg Wt+l(z) and deg Xt+l(z) are less
than or equal to max {deg Wt(z), deg Xt(z)}. Moreover, this difference
can be at most one. Therefore (a) and (b) are the only two possibilities.

In the case where max {(deg Xt(z), deg nt(z)} =
deg (Wt(z) + Xt(z)) then clearly deg Wt+l(2) = deg Xt+l(z) =
deg (Wt(Z) + Xt(z)) = dim Wt(z)/xt(z). In the case where the above does
not hold then both deg Wt+l(z) and deg Xt+l(z) are less than
dim Wt(z)/xt(z). This establishes the equivalence of (a) and (a").

Consider now the identity
1 =, =1 -, =1 -1
5 (m, (2) X (27) + 1 (2)x(2)] = a,(z, 2 7)

= dis)zs ¥ s oF dio) + ... + 4
where we assume that dis) = 0, It is easy to see that

deg (Wf(z) + Xt(z)) = deg dt(z, z-l). This establishes the equivalence
of (a') and (a"™). O

In view of the above, the dissipation polynomial of the various
pr-extensions of CS can be arbitrarily chosen by appropriate choice
of the C=-function Ws+l(z)/xs+l(z). The set of all rational
C-functions which have dissipation polynomial fixed up to a scalar

factor, is described in the following

(3.6) PROPOSITION. Let d(z, z T) be an arbitrary dissipation poly-

nomial of degree s. Then for any polynomial a(z) such that a(z)
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and zsd(z, z-l) are coprime polynomials there exists a unique rational

C-function TI(z) = m(z)/x(z) with TI'(0) = 1 and such that

(3.7 Az, 2 = (DY + HzHu(z)
and
m(z) - X(z) = za(z).

Conversely, for any rational C-function T(z) having TI(0) =1

and dissipation polynomial d4(z, z_l) there exists a corresponding

polynomial a(z) as above.

PROOF. Let a(z) be any polynomial such that z°d(z, z'l) and a(z)

are coprime. Then

Falz, z7h) +a(2)a(z"h

is a dissipation polynomial which is zero on |z| = 1. Therefore, this
polynomial factors into a product b(z)ﬁ(z_l) where b(z) is coprime

with a(z) and has no root in |z| < 1.

Consider the function S(z) := a(z)/b(z). Clearly we have that

alz, %
b(z)b(2"7)

> 0,

2 L
1-10s(2)" = 1 >
for 2z = expj® and @ in [- m, m]. Since b(z) has no root in
lz] <1 it follows from the maximum modulus principle that S(z) is
in S. Therefore by (2.3)

b(z) - z
N2 - R

is in S. It can be readily checked that TI(z) has dissipation
1).

Conversely, for any TI(z) = m(z)/X(z) in C where I(0) =1
and (3.7) hold a(z) = (m(z) - X(2))/2z is the required polynomial.
This is shown by reversing the previous argument. O

polynomial d(z, z
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The algebraic approach we followed in this section gives only rough
bounds on the dimension of the various pr-extensions of CS. For
example, given any dissipation polynomial of a certain degree u we
can always find a corresponding (C-function of the same degree. Then,
by Theorem (3.1) we can obtain a pr-extension with dimensions between

u and s + U.

In the next chapter, a different approach will be followed. It will
be shown that, with an appropriate choice of the extension, we can
always achieve dimension equal to s. Furthermore, it will be shown
that for a large number of cases, s 1is the smallest possible dimension

of any pr-extension.

(3.8) REMARK. The role of the dissipation polynomial in the context
of stochastic realization will be now discussed. At the same time,
certain quantities that will be used in the next section will now be

introduced.

Consider a covariance sequence C = {cs : 8=0, 1, .os}s The
nonnegativity of C or, equivalently, the covariance property is a
necessary and sufficient condition for the existence of a nondecreasing

function o(8), with 6 in [-m, 7] such that

m i
Ct:é%j e I%0(0), t =0, + 1, + 2, ...
=TT

(see AKHIEZER (1965, p. 180]). This function is called spectral

distribution (Eﬁ C, or of a corresponding stochastic process). The

derivative c¢'(8) of o(8) exists almost everywhere in [- 1, 7]

and is called spectral density.

The C-function TY(z) associated to C as in Theorem (2.1) admits
the following integral representation (see AKHIEZER [1965, p. 179]):

T

Jje
(3.9 N2 -z [ 22 ase)
= e’ - z
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Our interest rests in the case where C 1is also a rational sequence.

In this case U(Q) consists of two parts:
(3.10) o(8) = o, () + 0,(6),

where Ua(e) is an absolutely contimuous nondecreasing function and
cj(s) is a nondecreasing function with finitely many points where the
function increases. Furthermore, the derivative Ué(e) is a rational
function in €%, Tor more details see DOOB [1953, p. 542] and
GRENANDER and SZEGO [1958, p. 51.

The decomposition (3.10) induces via (3.9) the representation

_n_( Z) Tra( Z) TT(Z)

(311 N2 =523y = %, * %,

where ﬂa(z)/xa(z) is a C-function with the property that Xa(zo) =0
for all z_ in |z] <1 and Wj(z)/xj(z) is of the form

m.(z) deg Xj; exp(jg) + z
(3.12) o~ = -
' inzi u= Py exp(j@u) -z

where p, Bare positive scalars.

Let d(z, z-l), d,(z, z-l) and dj(z, zhl) denote the dissipation
polynomials of the above three functions (in the obvious notation).
From (3.12) it immediately follovs that d,(z, z™1) = 0. Relation (3.11)
now implies that

_l)

ik &
(3.13) d(z, = = da(z, Z )Xj(z)xj(z b

A stochastic realization of C 1is a dynamical system X that under

certain stochastic input and initial states generates an output process
Y. that realizes C +via the covariance function. Any stochastic
process yT can be decomposed into a superposition of two uncorrelated

stochastic processes
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where ya,r is the so-called purely nondeterministic part and yj,T
the deterministic part. (This is called the Wold decomposition. For
more information see GRENANDER and SZEGO [1958, Ch. 10] or functional
analysis literature where it has been widely used, e.g., HELSON

E196LU p. 10])]

In the case where C 1is a rational sequence then the above
decomposition 1s in correspondence with (3.10). The part yj,r can
be realized by superposition of sinusoidal signals with frequencies
determined from the roots of Xj(z) whereas Vg ¢ OO0 be realized by
a single input system having white noise input and transfer function
'qa( z) /Xa( z) where

-1 - -1
(3.4) a(z 20 = o (D7, (=Y.
The relations (3.13) and (3.14) indicate the role of the dissipation

polynomial in this context.

Returning to the covariance extension problem it is natural to
consider factorizations of the form (3.13) for the dissipation poly-
nomials of both vl(z)/xl(z) and Ws+l(z)/xs+l(z) in Theorem (3.1).
Whenever both parts in (3.10) are present it is not necessarily true
that (in the obvious notation) Xy J( gf = Xs+l J(z) Due to this fact
it appears that formula (3.2) in Theorem (3.1) is simply a computational

tool and does not seem to have a stochastic interpretation.

4. Asymptotic Properties of the Spectral Zeros

We begin by discussing a procedure for spectral factorization. This
result will be subsequently used to elucidate the role of the dissipation

polynomial on the asymptotic behavior of the sequence of parameters.
Let Tl(z) = wl(z)/Xl(z) be a rational (C-function with Pl(O]
and Rl = {rg: s=1, 2, ...} the associated parameter sequence. We

denote by R® the usual truncated sequences, Wt(z)/xt(z) the
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associated C-functions and dt(z, z'l) the dissipation polynomials,
where t =1, 2, .... We shall consider only the nondegenerate case
where dl(z, z_l) # 0. In this case by a well known factorization
theorem (see GRENANDER and SZEGO [1958, p. 20]) there exists a polynomial
ql(z), with nl(O) = 1, and a positive scalar 7, such that

(5.1)  a(z, 270 = ymy (DT (7).

If we require that nl(zo) = 0 for all z, in |z| <1 and also

nl(O) = 1, then both 7, and ql(z) are uniquely determined. This

polynomial nl(z) we call the stable spectral factor of dl(z, z_l).

We similarly define 7., nt(z). From Theorem (3.4) we clearly have
that

nl(z) = qt(z), Por B, 2y ey
and also
t 2
71 = s;lrl(l = Jrs’ )yt‘

We now set

t Tt 8
TTt(Z) =l+a:(L)z+... +ag )z,
and
= (t) (t) s
Xt(z) =1+ bz 4 .. + b 2
Clearly,

BBy m e

and by (2.4)

(5:3) T (2) = 1/2L(ry(2) - % (D)2 + (1(2) + X() /(1 + 1),
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(4ad) %y, (2) = 1/20(x,(2) - T (D)) /2 + (7,(2) + X (D)2 - r),

for t=1, 2, .... Iterating the above we obtalin the sequence of pairs
(Tf't(Z), Xt(Z)), t=1, 2, ....
The following theorem states that (4.2), (L.3), and (4.4) provide an

algorithmic procedure to obtain n(z).

(k.5) THEOREM. Let Rl, Trt(z), Xt(z), and n(z) be as above. Then

Hn (=) = gx(z) = nl=).
PROQF. First we need to recall certain function theoretic results:

Let T(z) be a (-function, and for simplicity assume TI(0) = 1.
Let U;(G) be the associated spectral density function that is given by

c1(6) = Re (e

a.2. 0On [- -”—j Tr]'

(4.6) STATEMENT. The following are equivalent:

(a) Encg (6) is integravle in [- m, 7],

() there exists a function m(z) in o (the usual Hardy
space; see RUDIN [1966, p. 328]) such that

o1(8) = |m(e’®) |7
(e) a.e. on [~ 1, ],

§ 2
(E) t:llrtr < i B
For a proof of the above statement see GERONIMUS [1961, pages 20 and 159].

In case the above equivalent conditions hold we may find a

function m(z) that also has inverse that is analytic in |z]| < 1.
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Then m(z) is

-
je
B 1 e'” + z .
m(z) = exp T f e, fma(e)de g 2l €@
=T
and also
2
7 := [m(0) |
T
= L '
(4.7) =-exp - = Enca(e)de
=T
-1

Il

% 2
t-[__rl(l = Irtl )

(See GERONIMUS [1961, pages 20, 21, and 158].) Furthermore, if
a :=det T /det T, s=1,2, ..., and a_ :=1, then
$S(Z)* = as¢s(z)*, s = O, l, e

converges to m(z)—l as s — o, This convergence is satisfying the
following inequality (GERONIMUS [1961, Theorem 4.10]):

755 1

(4.8)  lo(z)*m(z) - 1] < 75 %l ¥y T J1- T2

for |z| <1 and where

& 5 1/2
0 S (s Ine® )

(Note that 8, < += because of (4.6).)

In case TI(z) = m(z)/X(z) is a rational C-function with
dissipation polynomial d(z, z_l) # 0, the Bncé(e) is integrable and

in fact

n(z) = 7/2n(2)/x(2),
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where n(2), 7 satisfy (4.1) and n(z) is the stable spectral factor
of d(z, z-l).

We now apply (4.8) to the C-functions vt(z)/xt(z) for
t=1, 2, «o., and for s =0:

A7 Ky -l

7,8

t°s,t 1
< s} { i + }
=70t \ Ty, J - 2§

]mt(z) - 1]

% 5 1/2
where 5 . < (u=S§;t_l[ru[ ) . Since 7, >0 and B ) <+,
it follows that limyt =1 and %;g 50 g = 0. Consequently,
e 2

[720(2) fr(2) = 1] =0

as t — e, uniformly on compact subsets of [z| < 1l. Hence,
tin X(z) = n(z)

Similarly we can show that %Eﬂkwf(z) = n(z). O

Using the above we now want to study the asymptotic behavior of
the sequence of parameters of rational covariance sequences. We begin

by a motivating
(4.10) EXAMPLE. Consider the rational function

m(z) 1+ (ax+1)z

X(z) 1+ (¢ =-r1)z

of degree one. Necessary and sufficient conditions for w(z)/X(z)
to be in C is that

=] < 1,
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and

o] <1 - |r

The sequence of parameters (provided |r| = 1) is determined by

H
Il

r,
(4.11)

ar
1-|r

r, = - [2,

and the nonlinear recurrence law

2

i
()‘I‘OJ-E) Ir = Bl fOI‘ s = l, 2, e

s+2 2.7

Rewriting the above in the following form

Ts+2  Ts+1 1
r T r ’ 2
s+1 s 1- ’rs+ll
we obtain
2
s T Iz, |

(4.13)

r T or. " os+l 2
1 -
st1 "1 (-

By considering the factorization of the dissipation polynomial of
m(z)/%(z) we have

1 1

I

Az, z az + (1 - |z|? + |a|?) +a&z"

)

m(2)i(z"T)

y(gz + (1 + |B]%) + Bzt

l).

where 1(z) = 1 + Bz is the stable spectral factor of d(z, z
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Therefore, O = yB. Also by the result of GERONIMUS [1961, Thecrem 8.2]
o 2
¥ = tgl(l - frt! ) .
Combining the above two facts with (4.10) and using (4.13) we obtain

2
r (1 - |rl! )

1lim s+ = -Z-8
5= T 4 TyY Y
Equivalently,
r . = Br
(il 3w St 2 =
S— rS+l

This shows that as & —» the sequence of parameters satisfies more
accurately a linear recurrence law., Since in general Ty, S = Y5 2y el
might take also zero values we consider the equivalent statement:

for all e > 0 there exists an So such that for all s > SD

Irs_!_g - Brs+l’ S € max {rrs+l!’ ’TS+2’}'

This motivates the following

—_———

(4.15) DEFINITION. A sequence R = {rs : 8=1,2, ...} is said to

be almost rational iff there exists a polynomial p(z) = 1 + Bz + ...

+ 6uzu such that for all ¢ > 0 there exists an integer Sy with

the property that for all s > 56

fr ...+Burslfe

- max
s+u Blrs+u--l L s§t§s+u{'rt[}'

for all s > SO.

A polynomial p(z) with the above properties is said to be an almost

recurrence polynomial for R.

(4.16) THEOREM. Let C be a rational positive sequence, R be the

associated parameter secuence and 7(z) be the stable spectral factor
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of the associated dissipation polynomial. Then R is almost rational

and mn(z) is an almost recurrence polynomial for R.

PROOF. Denote by Wﬁ(z)/xt(z) the rational C-function associated
with the usual truncated parameter sequences Rt, and let these

functions have power series expansions

=1+2 SZ ey 'z, t=1,2, ....

The relation between {cgt), E=1; 2y s ] and Rt is given by the

following formulas

O
Cét) = Tyl - ]rtlg) d Cgt)cgt}’
e = Tpus (L = [ )
(®)
S
O R TE I e
(8
Let
n(z) =1 + piz+ ... +B 2z,
and

xf)=1_+bgﬂz+...+tﬁwiﬁ

By the previous theorem Jlin Xt(z) = 1(2z). Therefore

+ b(t)

(4e18)  rppy * ByTypipg *oeee BuTel < lrppy * 01 T

+ yav £b

* etggg%+ujrs”
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for all s > so(e) and € > 0. The polynomial X, (z) satisfies

c(t) + b(t)c(t) + ... b(t)c(t) = 0,
1 u u

ut+l 1

From the above and (4.17) we now have

(t) (t) MAaX
t By B e ¥ R rtf = +§sét+u’rs| 5

(k.19) |r .

. . N () (t), -1
where ft is a polynomial function in Tyioo1? bs , (det Ts-l) »
for s =1, ..., u, that when viewed as a function of the rs's has

has zero constant term. We shall now show that

(4.20) tim f 0
—p O

% t -

In the case of rational positive sequences Bndé(e) is
integrable and therefore by the result of GERONIMUS [1961, Theorem 8.2]

the parameter sequence R 1is squarely summable. Hence

(k.21) Fim r. =0

In view of (4.16) it follows that

lim c(t) = O
T—oo 5
s fixed
(Note that lim c(t) is not necessarily zero.) Then

s—» ,t:fixed S
: (t) _
(k.22) limdet T 7 =1
for all s. Also by Theorem (k4.15)

(L.23) %iﬁgbgt) - B

for s =1, ..., u. From (4.21), (4.22), and (4.23) we conclude (4.20).
Finally (4.18), (4.19) and (4.20) imply that for all e > O there
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exists an sD(e) so that

th+u * ?lrt+u-l e Burtl-S €t§g§%+ufrs|’
for all t > so(e). O

(4.21) REMARK. TIn the applied literature on time-series analysis it
has been noted (see for example BOX and JENKINS [1970, p. 179]) that
the asymptotic behavior of the partial autocorrelation coefficients of
rational power spectra, that are precisely the SCHUR parameters of our
setting, is "dominated by damped exponentials". However, no precise
statement of this seems to have been proven. Moreover, in case the
almost recurrence polynomial has roots on |z| = 1, the above state-
ment is not absolutely correct. For example take T(z) = 1 - =z.

Then the sequence of parameters is given by

r 1:—%13

£t % + 1

The asymptotic behavior of this sequence is not dominated by exponentials.




CHAPTER IV. A TOPOLOGICAL APPROACH

In this chapter we develop an alternative approach to the study of
pr-extensions of C,. We focus our attention to pr-extensions of
dimension less than or equal to s. Our key result will be an

implicit description of this set.

In Section 5 we show that for a nonempty open subset of the
data-set of partial positive sequences CS there exist no
pr-extensions of dimension strictly less than =. This result justifies

our interest in pr-extensions of dimension s.

After a brief exposition in Section 6 of some basic facts about
the topological degree, we derive in Section 7 our key result: TFor

almost any dissipation polynomial of degree less than or equal to s

there exists a corresponding pr-extension of CS of dimension

at most s. We should note that according to the results of the

previous chapter this dimension could be as large as 2s.

This result further provides a novel proof of the classically
known fact that the positivity of CS is a sufficient condition for
the existence of solutions to the CARATHEODORY problem.

Also, most important, this topological approach provides an
implicit description of a nonuniqueness inherent in this partial

realization problem.

5. Covariance Extensions of Dimension s.

The following well known proposition gives conditions for a

rational function to belong to C.

(5.1) PROPOSITION. An irreducible rational function confz)/x(z),
with m(z), X(z) in C[z] and cOW(O)/X(O) =c €R, isin ¢ if

and oan if

_1)

(a)  d(z, 27 = 2 WMDY + Tz Hx(2))

is a disegipation polynomial, and

L7 %
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() él- (m(z) + x(z)} has no root in |z| < 1.

We let C_={c, : t=0,1, ..., s} be a positive sequence and
s it
we consider a rational function COV(Z)/X(Z) with power series

expansion in =z that begins with

A rational function with this property will be called a partial

realization of C_. Thus, a partial realization coﬁ(z)/x(z) of

C, 1is a pr-extension of C, if and only if (&) and (b) of
Proposition (5.1) hold.

1f cdr(z)ﬁx(z) is a partial realization of C_ and m(z), X(z)
have degree less than or equal to s then w(z), X(z) and
b(z) := {m(z) + x(z)}/2 are related via the following nonsingular

linear transformations

(5.2) eow(z) [(cO ¥ QCLE F wow F ECSZS)X(Z)]E,

1

and

(5:5) cob(z) [(cD t ey ... 4—cszs)x(z)]z,

1l

where [ ]2 denotes truncating the powers of z outside [0, s].
We want to consider when Cs admits pr-extensions of dimension

strictly less than s. This is given in the following

[ 5ett) LEMMA. There exists a pr-extension of C, of dimension

strictly less than s if and only if there exists a polynomial b(z)

of degree less than or equal to s such that for the polynomials

X(z) and w(z) obtained through (5.2) and (5.3) the following hold
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-1

(@) &z 2N = R 2 + W2 Hx(2)

is a dissipation polynomial,

(b') b(z) = % {m(z) + X(z)) has no root in |z| <1, and

(e') w(z), %(z) have a nontrivial cammon factor.

The essential point is that (b') is a closed condition as

compared with (b) in Proposition (5.1).

PROOF. Suppose b(z), m(z) and X(z) satisfy the conditions

of the lemma and let Wb(z), Xo(z) be coprime polynomials such that

m(z) _ Tolz)
X(z) © X(z) °

Then deg Wb(z) and deg Xo(z) are less than s. Also

do(z, z—l) = {nb(z}io(z_l) + ﬁo(z_l)xo(z)}/e is a dissipation
polynomial and Wo(z) + Xo(z) has no zero in |z[ < 1l. 1In order for
Wo(z)/xo(z) to be a pr-extension of C_ we only need to show that

Wo(z) + Xo(z) has no root on |z| = 1.

Suppose Wb(zo) + Xo(zo) = 0 for some z with ]zof o
Then

ro(z) + % (2) F = a (2, 220 + Im(2) 1P+ I @2)P = o.

. = . , . ) .
Since do(zo, 2, ) >0 it follows that WO(ZO) = Xo(zo) = 0, which
contradicts the hypothesis that wo(z) and Xo(z) were coprime.
Therefore WD(Z) + Xo(z) has no root in |z| <1 and Wb(z)/xo(z)

is a pr-extension of CS with dimension strictly less than s.

The converse is trivial. O

Consider now Y +to be the set of nonnegative sequences

¢ = {e

’ £ ¢ t=0,1, ..., s} that for simplicity we assume c¢_ = 1,

e}
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The interior YO of Y 1is the set of positive sequences Cs'
We shall show that

(5.5) PROPOSITION. The set of partial nonnegative sequences CS

that admit no pr-extension of dimension strictly less than s is

an open subset of Y.

Clearly, this would also imply

(5.6) PROPOSITION. The set of partial positive sequences Cg

that admit no pr-extension of dimension strictly less than s is an

open subset of v°.

PROOF of Proposition (5.5). Denote by X the space of poly-
nomials b(z) of degree less than or equal to s with b(0) = 1.
The subset of X where (b') of Lemma (5.4) holds can be shown to be
compact. Since Y is also a compact space it follows that the

subset of pairs

{(v(z2), CS) EXxX¥X

where (a') to (c¢') of Lemma (5.4) hold is also compact. The projection
onto Y Dbeing a continuous map, implies that the subset of nonnegative
sequences C_ (which by Lemma (5.L4) admits a pr-extension of dimension
strictly less than s) is compact. The complement of this set is

therefore open.

The fact that this set is nonempty follows by considering the
partial sequence C, = {1, O, ..., 0, 1/2}. Clearly, C, 1is
positive and moreover there is not even partial realization of CS
of dimension less than s. Hence, there is no pr-extension of CS

with dimension less than s either. |

Given CS, whether there exists a pr-extension of dimension
strictly less than s is a decidable question. It can be answered
by applying the decision methods developed by TARSKI [1951] and
SEIDENBERG [195L4] (see also JACOBSON [1974, Chapter V ]) to the
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conditions of Lemma (5.4). However, these are very involved and a
simpler criterion is lacking. In fact, in the Appendix we shall
indicate the set of conditions that needs to be tested for the first

nontrivial case.

But, the set of pr-extensions of dimension less than or equal to
s 1is known to be always nonempty. We focus our study on this set.
We shall use concepts of homotopy and degree theory for this. So
we now make a brief digression and introduce the essentials of

degree theory.

6. Basic Degree Theory.

The "degree" of this section refers to a notion of topological
degree soon to be defined. The object of study of degree theory is
the solution set of an equation d = f(b) where f is a mapping
between two topological spaces. The main question concerns the

existence and the number of solutions for a given d.

Let S Dbe an open subset of some topological space X, f a
continuous map from S5 into a topological space D, and d be a
point in D. The aim of degree theory is to define an integer valued
function deg(f, S, d), called the degree of f at d relative to
S, with the properties that

(a) deg (f, S, d) is an estimate of the number of solutions
of & =%(Bh) T 5
(v) deg (., ., .) Dbe continuous in the arguments, and

(e) deg (., ., +) be additive in the domain S, 1i.e.,
whenever Sl(ﬁlse = ¢ then deg (T, SlLuJSQ, d) =

= deg (T, 81 d) + deg (f, Sy @y

As usual, when S is a subset of topological space X we denote

by S, 3S, and s° the closure, the boundary, and the interior of
S respectively. The exposition below is following NAGUMO [1951],
SCHWARZ [1965, Ch. III], and LLOYD [1978, Ch. I] where we refer for

additional information and detailed proofs.
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Iet X and W both denote the Euclidean space R with the

usual topology. (The reason for this redundant notation will become
clear below.) The set § is assumed to be open and bounded

subset of X. The maps that we consider are continuously
differentiable in an open subset containing S. The set of such

mappings is denoted by Cl(ﬁ) and topologized by the norm

Of

srs(b), :

I£ll, == sup £ (b)] + sup
b
1262y 185k

Given f € Cl(é), Zf(é) denotes the set of points d in W such
that there exists a point b in f_l(d) where the Jacobian Jf(b)

is zero.

Suppose now that f € Cl(é) and d € W but 4 ¢ f(és)kajzf(é).
The degree of f at d reliative to S 1is defined by

deg (f, s, d) := . sign J_(b).
eg (ber-1(a)Ms) e

The definition is extended to points d_ that belong to Zf(g), but
do not belong to f£(38), by letting

deg (f, s, do) = deg (f, S, d)

for any d ¢ f(BS)L_JZf(E) and d '"sufficiently close" to d_-
The fact that this is well-defined and the precise meaning of the
term "sufficiently close" are described by the following

(6.1) THEOREM. Let f be as above and d., d. belong to the same

17 =2
component of W \ f(0S). Suppose also that neither of them belongs

to zf(é). Then

deg (f: S, dl) = deg (f3 S, dg)-
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A simple consequence of the definition of degree is

(6.2) PROPOSITION. Let d ¢ f(3S). Then, deg (f, S, d) # O implies
that d € £(S). ‘

A notion that is crucial for the development of the next section
is that of homotopy: A Cl-homotopy between two elements fo and

£, in Cl(§) is a function

H:8x[0, 1] >R

such that if Hy denotes the map b ~ H(b, x), then H, =T,

H) = f), H € cl(é) for all x in [0, 1] and also

iz
X

continuous function in the parameter x.

- Hy”l -0 as X —y. This last condition says that H is a

The following is a very powerful result that we shall use in the

next section.

; bein Cl(é), and H be a Cl-homotopy
If a4 ¢ H(3S, x) for all x in [0, 1] then

(6.3) THEOREM. Let f, T

between fo and T

1°

deg (fo, S, d) = deg (fl, g, 8)s

T. Dissipation Polynomials and Covariance Extensions of Dimension g,

In this section we prove the following key result.

(7.1)  THEOREM. Let ¢, =f{c,:t=0,1, ..., s} bea partial

positive sequence and

+=d 2z + ... +dz+1+d.z + ...+4dcz

l) s L - =5
s 5 [ i s

i(z, z

be a dissipation polynomial (of degree < s). Then there exists a pair

of polynomials (m(z), X(z)) with deg m(z), deg X(z) less than or

equal to s, and a positive scalar k such that the following two

conditions hold




5L

(a) cdw(z)/x(z) is a pr-extension of C_,

(0)  xa(z, 27 = FMDUT + 7z Hx(2)).

We now elaborate on the implications of the above theorem with

two immediate corollaries.

(Te2) COROLLARY. Consider a partial positive sequence Cs' There

exists always a pr-extension of CS with dimension at most equal to

In this way we have circumvented the need for the algebraic
machinery of orthogonal polynomials or of interpolation theory in
order to establish that the positivity of CS is 8 sufficient
condition for the existence of solutions to the CARATHEODORY
problem. This is essentially a problem in analysis and an approach
like ours seems to be absent. Furthermore, with this new approach
we obtain some additional information about the set of pr-extensions

of dimension s.

(7.3)  COROLLARY. Consider the partial positive sequence

tr—"l, sesy S
-1
)

Cs = {ct :t=0,1, ..., s} where not all of Cys

are zero., Then, for almost any dissipation polynomial d(z, z

of degree less than or equal to s there exists an associated

pr-extension of Cs with precisely dimension s,

We now proceed to the

PROOF of Theorem (7.1). We again denote by X the space of
polynomials with constant term 1 and with degree less than or egual

to s.

Any b(z) € X defines through (5.2) and (5.3) a unigue pair

of polynomials (m(z), X(z)) € ¥° such that cov(z)/x(z) is a partial

realization of Cs’ i.e., has power series expansion that begins with

s
¢ #+2¢c.2 + ... +2c =z,
o} 1 s
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The correspondence b(z) — (m(z), X(z)) is certainly
bijective, whereas the correspondence b(z) —m(z)/x(z) is

clearly not.
To any pair (m(z), X(z)) as above we associate the

polynomial in 2z and =z

a( z, z-l) : 3 = 3zt

2D + F(2x(2)).

The constant term d0 equals

T 8 gy =1lvq0 | Lrrs =ly=, =1, -0 0
4, = 32 T(2) 15 K="D)12 + Sz T2 IS x(2)12
= Xz H(e 275 + ..+ e 25x(2)1°
-8 B s o}
- e
= ”X(Z)!’S:
where || Hq denotes the norm that CS induces on the space of

polynomial of degree less than or equal to s (see page 15).
Since X(0) = 1 and C, >0 then

4, = IX(2)[E £ 0

Let W be the space of "symmetric" polynomials

-l)=dzs+...+glz+l+§z”l+...+éz

g(z; z i

with constant term equal to 1. With d(z, z—l) as above we define

the map
. e =]
q:cS.X—>w. (l+blz+... +bsz);—>
d d d a
H(iz“+...+aiz+l+aiz'l+..+d—sz's).
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Both X and W are Euclidean spaces of the same dimension, and

¢c. 1is continuously differentiable in X.
s

We now consider two open subsets S C X and P C W, where

S 1is the subset of polynomials b(z) that satisfy

b(zo} = 0 implies |zof 2 )

-1
and P is the subset that consists of all d(z, z ~) € W that

satisfy
-1
d(z , z ) >0 forall z on |z | =1.
=T’ g = ) 0
Therefore S is the set of ("stable") polynomials b(z) such that

b(zo) = O implies |zD| >1,

and P is the set of dissipation polynomials with constant term

equal to the identity.

The statement of the Theorem can be easily seen to be equivalent

to: for any d € P there exists a b € § such that

d = 9, (v).
s

Therefore we need to show that $CS(§) g 4=

Since the rocts of a polynomial depend continuously on the
coefficients (see MARDEN [1966]) it follows that S 1is open. Also
because the roots of every b(z) in S 1lie in |z| > 1 it follows

that S is bounded. We shall first show that

(7.4) o, (s) DP.

For the particular seguence Cz = {1, 0, ..., 0) the map

©® takes the simple form




P b(z) = 1 + biz + ...+ bsz5 Fab(z)ﬁ(z_l)/ﬁgo lbt|2.

It is straightforward to show that
(7.5) deg (wcg: S, d) =1 forany d in P.

In fact the computations can easily be done for d4d(z, z“l) =1,

and since ¢ ,(38) = OP we use Theorem (6.1) to establish (7.5).
cg

The set of positive partial sequences is connected (this is
obvious especially when we consider the SCHUR parametrization;
see page 11). Therefore we can follow a path within the set of
positive sequences from Cz to any other positive sequence

CS. In this way we construct a continuous homotopy H(b, x) between
d « 5
Yog 84 9g,

We now show that
(7.6) P (38) MP = ¢ for any ¢, > 0.
s

Suppose b(z) € dS. Then b(zo} = 0 for some z, with IzD[ = 1.
Therefore, if d(z, z %) = ocgb(2)€ B, then |b(z ) [ = 0 implies

-1

d(zo, ZO ) = 0.

Consequently, d(z, z_l) € 0P and (7.6) is proven,
If H(b, x) 4is a homotopy as above, then
H(3s, x) MNP £ 4,

for all x in [O, 1]. By Theorem (6.3) we conclude that
deg ($cs; 5, d) = 1,

for any C_ >0 and any d in P. Hence, by Proposition (6.2) it
follows that
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9, (8) 2P
s
for all CS > 0. By the compactness of 5 we also have that
Pg (5) oB. O
]

We want to close this chapter with the following

(7.?) CONJECTURE. The correspondence between dissipation

polynomials d(z, z"l) and pairs of polynomials (mw(z), %X(z))
with w(0) = X(0) = 1, in Theorem (7.l) is bijective.

The conjecture is certainly true for the trivial sequence
CS = {1, O, +.., O}. We were also able by direct computation of the
Jacobian to show that it holds in a neighborhood of d(z, z-l) = il
But a proof is still lacking. We should mention that the map

wcs is not analytic, therefore
deg (Pcg, S, @) =1

for all d in P does not imply that the cardinality of @Ei(d)fﬁﬁs

is one.



CHAPTER V. THE MATRIX CASE

8. The Matrix Covariance Extension Problem

Given an n-variate, zero-mean, stationary stochastic process

¥k € Z we denote by

c = Eys; :O, l, LCCN )

S 7 T+8°
the covariance n X n-matrix-function of Ve In this chapter we shall
use "~" to denote the "complex conjugate transpose of ".

The covariance sequence C = {CS :8=0, 1, ...} is characterized

by the nonnegative definiteness of the block Toeplitz matrices
5
T =1 ] 8 =0, A, wwiy

where now c'[t| 1= Eltl. (See for example GIHMANN and SKORCHOD
[197h, p. 196].)

Thus, we define a matrix-sequence

Q= {cs P B Uy e ssowy WOEE e, Hermitian}

to be positive (resp. nonnegative) iff the associated block Toeplitz
matrices T, are positive (resp. nonnegative) definite for all s.
We similarly define the partial matrix sequence

g, = {ct : t=0,1, ..., s} to be positive (resp. nonnegative) iff

T, 1s a positive (resp. nonnegative) definite matrix.

This notion of matricial positivity is again related to an

analytic property of the matrix-valued power series

s
nN(z) :=c + Esgicsz ;

(8.1) THEOREM (see KOVALISHINA and POTAPOV [1982]). The power series

I'(z) converges in |z| <1, and

N(z) + T(2)

9
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is a nonnegative definite matrix for all =z in |z] <1 if and only

if the sequence

C=4e : 8=0, L vy with c, = (e + 2)/2)

is nonnegative.

Matrix-valued functions that satisfy the above conditions will

again be said to belong to class C.

The following is now the matrix CARATHECODORY problem: Given a

partial sequence CS, find necessary and sufficient conditions for

the existence of a matrix-valued C-function with power series that
begin with
S

t

cD + Eﬁélctz .

The matrix CARATHEODORY problem seems to have been considered only
recently by IL'MUSKIN [1974], and KOVALISHINA [1974]. See also AROV
and KREIN [1981], DELSARTE, GENIN and KAMP [1979] and KOVALISHINA and

POTAPOV [1982]. As an interpolation problem it can also be approached

through the functional analytic techniques of SZ.-NACY and FOIAS
[1970]. See e.g., HELTON [1980].

In the next two sections we will consider the subclass of rational

solutions and carry out some of the program followed in the scalar case.

The matrix seguence C 1s said to be rational iff there exists an
integer v such that for all s > v the block-behavior (Hankel)

matrices

s
By = Loy ale mey
have the same rank. This integer v will again be called the dimension

D_f C.

The rationality of C is equivalent to T(z) defining a rational
function in z. In this case TI(z) can be represented as a matrix l

fraction P(Z)Q(z)_l (right) or Q(z)_lP(z) (left).
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Suppose that C is rational and that P(z)Q(z)‘l is a right
matrix fractional representation of I(z) where P(z) and Q(z)
are right coprime polynomial matrices, i.e. there exist A(z),
B(z) € ¢™"[z] such that A(z)P(z) + B(z)Q(z) = I. Then it can
be show; that the dimension of C is equal to the maximum of the
degrees of P(z) and Q(z). (In this chapter, ™"I" will denote
the n X n identity matrix.)

In Section 9 we present a generalization of our topological
approach for the matrix CARATHEODORY problem., We shall draw similar
conclusions as in the scalar case: (a) the positivity of the partial
sequence CS is sufficient for the existence of solutions, and (b) for
almost any matrix-dissipation polynomial of degree less than or equal to s
there exists a corresponding rational solution of dimension less than or equal

to s.

In Section 10 we shall give a brief account of the basic results
that come out of the algebraic approach and SCHUR's algorithm when

applied to this matrix-interpolation problem.

9. The Topological Approach,

We begin by establishing the matrix version of Proposition (5.1).

(9.1) PROPOSITION. A rational function P(z)Q(z)'l with Q(z),
& xn -
P(z) in € [z] ana P(0)Q(0) = Hermitian positive definite,

—

is in C if and only if

—

+ P 1 = i i
det [Q(zo) ,(zo)i O implies !zol -

and
-1 1 5 Al e, =l
Dz, z7) =5 (Az)2(2) + B(z7)a(2))
has nonnegative definite values for all z such that |z| = 1.

As in the scalar case we call D(z, z_l) the dissipation (matrix-

-1
polynomial of P(z)Q(z) ~. By a slight abuse of our terminology we
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shall also call any matrix polynomial in =z and B satisfying

the above property a dissipation polynomial,

PROOF. An n X n matrix-function S(z) is said to be in
class § iff it is analytic in [z| <1 and

T - 8(2)8(2) >0

for all z in |z| < 1. These functions are considered in operator
theory (see SZ.-NAGY and FOIAS [1970]) where they are called
"eontractive” and in circuit theory (see BELEVITCH [1968]) where
they are called "bounded". The relation between C-functions

n(z) with 1(0) Hermitian positive definite, and §-functions

S(z) is given by (see for example [DELSARTE, GENIN, and KAMP

(1979, p. 39])

(9.2)  5(2) = H1(0) - N(=))(N(0) + T(=N7,
and
(9.3) T(z) = (I - z8(2))(T + 25(2)) " (0).

So we let I(z) = P(Z)Q(z)_l. Without loss of generality we

can assume that I(0) = I. Then we obtain

S(z) = 3 (a(2) - (D)) (a(z) + ()™

S(z) is in § if and only if

det ((z,) + F(z))) = O implies Jzor > 1

and
I - S(z)s(z) >0,

for all z in |z] < 1. By the maximum modulus principle it is

sufficient to test this on the boundary of the region of analyticity:
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I-5(2)8zh = 2(8(z7h + Bz ) (2, Y (alz) + () >0

for all z on |z| = 1. Clearly this holds if and only if

D(z, z'l) >0, O

(9.4) THEOREM. Let C_ = {ct : t=0, 1, ..., s} be any partial

positive n X n-matrix sequence and

-1 s v ] d
(9.3) D(z; 2 7) &= 4z + eee v dyz F I F djz "+ ... v Az,
be an n X n-matrix dissipation polynomial. Then there exists a
pair (P(z), Q(z)) € (EFXH[ZJ)Q with deg P(z), deg Q(z) less

than or equal to s, and a positive definite matrix K such that

the following two conditions hold

(a) P(Z)Q(Z)-l is a pr-extension of C,

@ &, 7H? 2L @(eHe) + K Haa))

(with ( )1/2 we denote the "Hermitean square root of".)

This theorem establishes that when the partial sequence CS is
positive, the matrix CARATHEODORY problem is solvable. Our technique
does not seem to be possible to extend to the singular case when
Cs is only nonnegative. However, it provides information about the
solutions of dimension s, precisely as it did in the scalar case:

For a generic set of dissipation polynomials of degree less than or

equal to s, we can associate pr-extensions of CS of precisely

dimension &, For the complement of this set we can associate

pr-extensions of dimension less than s.

The idea of our proof is similar to the one we gave for the scalar
case. However, certain new features require the use of a more
sophisticated technique. The main new aspect is that, 1in contrast to

the scalar case, matrix polynomials with no determinental zeros in



|z] <1 and with constant term the identity matrix, do not form
a bounded subset of the space of the coefficients. For example,

the polynomial

(1 o) . 1/2 a
o 1 0 1/2
has nonvanishing determinant for all |[z| <1 and all values of

a as well. We circumvent this by considering our stability set

on a certain compact manifold.

PROOF. Let P(z)Q(z)-l, with P(2)Q(z) in g?xn[z}, be a
partial realization of CS of dimension less than or equal to s.
Then P(z) and Q(z) are related by

(9.6) P(z) = [(co +20,7 + ...t 2CSZS)Q(Z)]§.

Clearly, Q(O) is nonsingular. We now define the polynomial B(z) by
s s

(9.7) B(z) = [(c0 tegzt ... ez )Q(z)]o,

and the polynomial

=] s ~ =1 ~ -3
(9.8) D.(Z; z ) = QSZ E iRER le * P‘o + P.lz il L7 B Qsz

= 2(@="H2(2) + Bz Ha(2))

in z and z T By Proposition (9.1), P(z)Q(z)-l is in ¢ if and
only if det B(z) has no roots in |z| <1 and D(z, z l) is
nonnegative definite for all z on |z| = 1. We notice that the
pair (Q(z), P(z)) is defined up to a right unimodular factor.
Therefore, so is 3B(z). Moreover, det B(O) # O.

Thus, we consider the space X of polynomials
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" z])

{(B(z) = B, + Byz + .u. + BSZS, B(z) € QFX

1
of degree less than or equal to s. In this space we consider the
subset M defined by

S

tgoBtB =4

(9.10)
BO >0, and Bo upper triangular.

M 1is a smooth compact manifold of real dimension ESHE. That M 1is
a smooth manifold follows from the open condition det Bo = 0.
Compactness follows from the fact that by the first condition any entry

of B,, t =0, «eu, s has modulus less than or equal to 1. (It is

t!
also easy to show that M is orientable, but we will not need this

fact here.)

The correspondence between B(z) in M and partial realiza-
tions P(Z}Q(z)_l of C_ with dimension less than or equal to =
is clearly surfective. IT

Qz) = Q *+ Qz + .on + Q2

then the polynomial D(z, z—l) obtained by (9.8) satisfies

= L ) E‘ ) g A

Do (Qb Ql Qs) Co 1 s Qb
Cl CD - cS—l Iﬁl .
Cs Sgon, oA S g

Since det QD = 0 and Cs > 0, it follows that Eo > 0. Therefore

the following map is well-defined

CPC: M - W
s

I O -
)i g

8(2) D20z, 2 hE
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-1
where W is the space of the polynomials D(z, z ~) as in (9.5),
i.e., such that D(z, z'l) - ﬁ(z_l, z) and with constant term equal
to the identity matrix.

Consider the submanifold S of M of polynomials with
determinant nonvanishing in |[z| <1, and the submanifold P of W
of polynomials D(z, z-l) that have nonnegative definite values for
all z on |z| = 1. To complete the proof of the theorem we need to

show that for all CS > 0 we have that
Pgwcgs).

Precisely as in the scalar case it can be shown that
o.(ds) MNP = 4.
Cs

Also the set of positive partial matrix sequences CS is pathwise
connected. By using the homotopy invariance property of the degree

the proof that was given for the scalar case works in this case also.
More precisely mcs is certainly a continuous map between manifolds.
($CS is only continuous because we require taking the Hermitian square
root.) Now MILNOR [1965] defines the degree for Cl-mappings between
manifolds. However, as remarked by LIOYD [1978, p. 32] the definition
immediately extends to the continuocus case simply by taking cl
approximations. (An explicit argument can be found in SCHWARTZ [ 1965,
Chapter V] and LLOYD [1978, Chapter I].) Finally, we note that as
before the degree deg (@CS, S, D) can be seen to be 1 by considering
the point

Y

D(z, z ) =1

and the trivial sequence

cs = {I, O, ey O]‘O

The proof now proceeds precisely as in the scalar case. O
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10. The Algebraic Approach

The description of all solutions to the matrix CARATHEODORY
problem can be found in AROV and KREIN [1981] and KOVALISHINA and
POTAPOV [1982]. It is given in the so-called "completely nondegen-
erate case', when CS is a positive sequence. In the general case
when CS is nonnegative but not positive there exists no closed
form expression for the solutions. However, some standard techniques
in operator theory can be used to deal with this case (ecf.

SZ.-NAGY and FOIAS [1970, p. 188]).

In this section, having presented our topological approach, we
wish to give a brief account of the basic results and ideas of the
algebraic approach, which essentially relies again on Schur's

algorithm. We shall apply this to the case of rational C-functions.

We begin by describing the SCHUR's algorithm for the case of
matrix C-functions. The main technical fact is given in the

following

(10.1) LEMMA., Let Pt(z) be a matrix-valued function which has a

power series expansion around the origin that begins with I + 2rtz,

where T - rt;t > 0. Then Pt(z) is in C if and only if there

exists a C-function T£+l(z)

such that

(10.2) T,(2) = [a, (2T, (2) + b (2) e (DT, (2) + a (=),

where
at(z) = (1 - rt;t)-l/E(I - rt) + 2z(I - ;trt l/2(1 - t),
b.(z) = (I - rt;t)-l/g(l + ) - 2(I - ?tr.t)'l/g(z + ift),
e() = (1 - 2,50 Y2 - x) - 21 - Fr) V21 - 5,
a.(2) = (T - rt;t)-l/g(l +7%y) % 2T 7 ;trt)_l/z(I + §t).
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PROOF. The SCHUR's recurrence relation for the matrix case
is given by (see for example DELSARTE, GENIN, and KAMP [1979, (36)])

St(z)==(I'-;trtrl/2(;t4_Z%&1(Z”(I'+zrt5t+fzn_lt[-lfg)-1/2.

Assuming that I - r

S¢41(2)
obtain the corresponding recurrence relations for the class

t;t > 0, then St(z) is in § if and only if

is in 8. Applying the bilinear transformation (9.2) we

C-functions. O

Formula (10.2) can be solved for r%+l(z)

provides an inductive procedure for solving the CARATHEODORY

in terms of T%(z) and

problem in the completely nondegenerate case.

In the completely nondegenerate case a matrix-version of (2.9)

can also be obtained (see for example AROV and KREIN [1981]).

Here we shall apply the lemma to rational (C-functions

Pt(z)Qt(z)-l and consider the behavior of the dimension and the

"

dissipation polynomial under the action of "truncating" the sequence

of SCHUR parameters r, or, equivalently, as 1t increases. We
now have the following

(10.3) THEOREM. Let T%(z) and Ft+l(z) be in ¢ and related
as in Lemma (10.1). Then TI.(z) is rational if and only if T

t+1(?)

is rational. In this case, there exist right coprime representations
B -1 B -1 ;

ry(z) = P(2)Q(2)™ and 1, .(2) =P ,(2)Q ,(2)"" with P.(2),

Qt(z), Pt+l(z)’ Qt+1(z) in g?xn[z] such that

o Pt(z) at(z) bt(z) Pt+l(z)
10. =

Q,.(2) e .(2) a.(z) /\q.,(2)

o -

Also, if D, (z, z-l)(resp. Dt+l(z’ z-l)) denotes the associated

dissipation polynomial
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1

(10.5) D,(z, 27) =D )

-

g1(%

Moreover, the following are equivalent

(&) dim Pt(z) = dim Pt+1(z),

(a') dim T, (2) = deg D (2, Y,

(a") dim Pt(z)

deg (Pt(z) + Qt(z)).

For the proof we need the following

(10.6) LEMMA. The following identity holds

3 (z7h Et(z'l) a(z)  b(z)

) 2N/ \e(2)  d(z)

ct(z at(

PROOF. By direct computation. O

We now proceed to the

PROCF of Theorem (10.3). Suppose F£+l(z) is a rational

5 y -1
C-function and is equal to Pt+l(z)Qt+l(z) , where Pt+l(z)’
Qt+l(z) are right coprime matrix polynomials. Define Pt(z), Qt(z)
via (10.4). It can be checked that ct(Z)Pt+l(Z) + dt(Z)Qt+l(z)
is invertible as a power series in z. By Lemma (10.1l) it follows
that Ft(z) = Pt(z)Qt(z)_l. Furthermore, it holds that Pt(z),
Qt(z) are right coprime.

Indeed, since (z), Qt+l(z) are right coprime there exist

Per1
polynomial matrices A(z) and B(z) such that

A(Z)P£+1(Z) + B(Z)Qt+l(z) = I. Hence, from Lemma (10.6) and (10.L)
we obtain that there exist polynomial matrices Al(z) and Bl(z)

such that
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A,(2)P,(2) + B (2)Q(2) = £ 1.

But both det Pt(O) and det Qt(O) can be checked to be
different from zero. Therefore Pt(z) and Qt(z) are in fact

right coprime.

The converse follows similarly by considering the identity

W Peaa(2) d.(z)  by(2) P, (2)

Q1 (2) c(2)  a(2)/ \ @2

that follows from Lemma (10.6).

Relation (10.5) follows by considering

NS X €
D (2, z7) = HE(HELN( * ),

a,(2)

and applying Lemma (10.6).

Finally, the equivalence of (a), (a'), and (a") can be shown

as in the scalar case (see Proposition (3.5)). O

Thus, the precise analogues of certain facts that were seen
to hold in the scalar case, apply to the matrix case as well., We
expect that the results of Section 5 extend to the matrix case
also, and that the matrix dissipation polynomial determines the

asymptotic behavior of the matrical SCHUR parameters.



CHAPTER VI. APPLIED ASPECTS OF THE COVARIANCE EXTENSION PROBLEM

In this final chapter we want to discuss the relevance of the
covariance extension problem to the applied area of time-series
modeling., This area involves a large number of issues that we shall
not touch upon (e.g., issues of statistical nature, see BOX and
JENKINS [1970], or of the essential difference between prediction for
time-series and prediction for stochastic processes, see
FURSTENBERG [1960]). Instead we shall consider as our point of
departure, the knowledge of a partial (sampled) covariance sequence
CS.

Based on these data, certain schemes have been proposed that
vield a unique rational covariance extension for CS. These schemes
form the base of modern nonlinear methods for spectral estimation
(ef., HAYKIN [1979, pages 36 and 103]). We begin Section 11 by
considering the so-called "maximum entropy" (ME) method in the context

of our previous development.

The ME method proposes the use of a particular pr-extension of
CS that has constant dissipation polynomial. The constancy of the
dissipation polynomial makes the construction of a corresponding
stochastic realization trivial (since the problem of spectral fac-
torization is avoided altogether). Moreover, this construction
turns out to be recursively updated as the data set increases. This
latest property is precisely the recurrence relation satisfied by
the orthogonal polynomials and was established in this context by
LEVINSON [1947]. Recursiveness is very important in practical appli-
cations as it provides an efficient approximation procedure. 1In
point of fact, this is the underlying philosophy in the ladder

structure constructions in modern digital filter design.

However, the absence of zeros in the power spectrum obtained
by the ME method in certain cases gives rise to undesirable
phenomena (see HERRING [1980] and the references therein). Motivated

by the need for more general pole-zeroc approximating techniques, for

T
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the covariance function of stochastic processes DEWILDE, VIERA,

and KATIATH [1978], and DEWILDE and DYM [1981la and 1981b] (see

also RUCKEBUSH [1978] and ROSENCHER and CLERGET [1979]) have placed

the problem in a more general context of Nevanlinna-Pick interpolation °
theory. However, these investigations do not seem to illuminate

the basic partial realization problem where the data is simply

CS. Pole-zero modeling in the context of partial realization setting
remains "a nonlinear and implicit problem, and there is no possibility
for recursively updated realizations of increasing order" (see

BENVENISTE and CHAURRE [1981]).

In Section 12 we shall indicate that this might not be precisely
so. Certainly, as it appears from our results of Chapter IIT, an
essential part in obtaining pr-extensions of Cs with nontrivial
dissipation polynomial is in obtaining information about the
dissipation polynomial or, equivalently, the zeros of the
corresponding power spectrum. (Our results of Chapter III, in
particular Theorem (4.15) suggests that the parameter sequence might
be used for that. This is a point that requires further investigation.)
We should note that this information is already assumed in the
approximation theories of DEWILDE an DYM [198la and 1981b]. Now,
provided such information is available we shall indicate a way that
this can be incorporated in the modeling process in an efficient
way. Theorem (12.4) will describe a recursive construction for

pr-extensions that have approximately fixed zero-structure.

11. The ME-Method and Some General Discussion.

Let C_ be a partial positive (scalar) covariance sequence. The
simplest possible choice for an admissible extension of the partial
parameter sequence R 1is certainly the trivial extension
st 5 P = O for t =1, ...}. This extension amounts to choosing
Ps+l(z) = 1 in Theorem ( 3.1). The associated pr-extension of Cq

{r

is simply
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m(z) Ys(z)*
X(z) ¢S(2)* )

This particular extension has a certain uniqueness property,

namely, it maximizes
2
i Wi x|
e, 1= i loy(2*I%,
i.e., the distance in the ” ”-norm of 1 from the closure of

the manifold spanned by positive powers of 2z. It is immediate
from (1.6) that in this case

lo (%P = llo_(2)*I%,

for all t > s, and hence

(1]
1]

: 2 2
o= lim oy (2%l = e ()%,

We now would like to explain the importance of this quantity in
the prediction theory of stochastic processes. The inner product {-,-)

that was defined in Section 1 relative to a nonnegative sequence C,
can be extended from the space of polynomials in 2z +to a more general
space of functions on |z| = 1. This is done by realizing this inner

product via a Stieljes integral
1 :
(a(z), v(2)) = 2= I1 a(2)o(z)ao(e), z = exp Je,

with a(eje), b(eje) € Le[da(s)] the Hilbert space of squarely
integrable functions on |z| = 1 with respect to the measure do(6),
(c(8) Dbeing the spectral distribution function of C, cf., Remark
(3.8)). Let now vy TE€EZ bea (zero-mean, stationary) stochastic
process having C as covariance sequence. Let also Lz(y) denote

the Hilbert space generated by Y. with the inner product defined by



™

(f: g) :=E fé;

f, g € Ig(y), and E denoting the expectation operator. Then,
the mapping

extends to an isometry between Lg[dcr(@)] and Lg(y) (ef., GRENANDER
and SZEGO [1958, p. 175]). Via this mapping any linear problem in

LE(Y) can be translated into one in L_[do(8)] and conversely. Let

2
now gs(z) be any polynomial in 2z with gS(O) = 1 and degree less

than or equal to s. Clearly, due to the orthogonality properties
(1.3),

log(2)4I" = J1pty llg(2) I.

Therefore,
e = lim ”(b(z)*H2~ im inf E | i |2
S = t B 'g-—)m jé,?l Io u=1 & -u
l=u<t
is the square of the variance of the prediction error of Y. at
an instant 1 = O based on observations in the past 1 < 0, And
this is maximized by the choice Fs+l(z) = 1 over all pr-extensions
of the partial data Cs'

The quantity e, is an essential characteristic of a stochastic
process and describes the "predictability" of the process. One can
show that (see GERONIMUS [1961, p. 158])

o0

2
¢ = ¢y (1 - 2]

1 T
exp {ﬁ j_TT 1n o’é(e)de}.
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The stochastic process is called deterministic iff e =0, and

nondeterministic otherwise. e is also directly related to a notion

of entropy rate of a stochastic process in the sense of Shannon
(see HAYKIN [1979, p. 80]) and this gives the name to the method.

On the basis of the above it has been argued that the so-obtained
pr-extension of CS is maximally noncommital to the unavailable
data (see JAYNES [1968]). This is indeed so as far as the prediction
problem is concerned. However, the prediction should be more of an
"excuse" than a "reason" (see FURSTENBERG [ 1960, p. 71).
In point of fact, KALMAN [1981] argues that the
partial sequence of parameters contains certainly more information
than merely the fact that these parameters are all of modulus less
than 1. TIn KAIMAN [1981] it is also suggested that some minimal
dimension pr-extension is perhaps the right object to consider.
Unfortunately, the description of the minimal dimension pr-extensions
seems to face intractable difficulties. 1In point of fact, an equi-
valent question was considered by YOULA and SAITO [1967] in a circuit
theoretic context. Currently, this problem is unsolved. In Appendix
A we shall indicate some computational difficulties that arise in

the simplest nontrivial case.

12, On Pole-Zero Modeling.

We begin by assuming knowledge of a number of "influential
zeros" in the power spectrum of a stochastic process. This rather
loose term appears to have a rather definite meaning in the more
application-oriented literature, See for example MAKHOUL [ 1976,
p. 115]. It is also stated that pole-zero modeling is not simple
and not well-understood. We shall present a simple recursive way

to incorporate the "zero" information in the modeling process.

Let C_ be a partial positive sequence and a( z, z-l) be a
given dissipation polynomial of degree less than or equal to s.
From the results of Section 7 we know that there exists an associated

pr-extension of CS of degree iess than or equal to s.
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In principal +this pr-extension can be found as a

preimage of d(z, z-lj under Do Certain techniques have been
recently developed to provide constructive algorithmic procedures
for obtaining a solution of homotopy-based existence results (see
KELLOG, LI, and YORKE [1976], and also MEYER [1968]). However, this
is very cumbersome and objectionable for almost all practical
purposes. Thus, we shall not pursue it here but instead, we shall

develop an approximate but efficient solution.

Our first tool is a new representation for partial realizations
of CS of dimension less than or equal to s. Let Cs be a positive
sequence, and Tt(z), @t(z), t=0,1, ..., 5 be the orthogonal
polynomials of Cs'

(12.1) LEMMA. Any rational function cow(z)/x(z), m(z), x(z) € c[z],
with 7(0) = X(0) = 1 and power series expansion that begins with

S
(12.2) e, * 2c;z + ... + 202

is of the form

s
* * 3
sl Ys(z) + alzws_l(z) e v Qz Yo(z) .
c —%—% = ¢
o X(z

° ¢S(z)* + Z)% + ... + aszs¢(z)*

12051
This result was independently of ours utilized by KIMURA [1983]

who also argues that it provides a canonical form for partial realization

of covariances. In our work a precise use of this lemma is given in

Theorem (12.4). We should also mention that this lemma is really a

fact about partial realizations and has essentially nothing to do with

positivity. Positivity is assumed for the sake of some other properties

of this representation that we shall soon discuss.

PROOF of Lemma (12.1). The polynomials 7(z) and X(z) are
related through
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cov(z) = [X(z)(c0 + 2C.Z + 4.0 + 20525)]2.

1
This represents a nonsingular transformation betweenpolynomialsofdegrqe
less thanor equal to s. The two sets of polynomials {Zs-t\_[it(z)*, £ = 0

Ty vy B REE {zs—tat(z)*, t=0, 1, voe, 8} form bases for this
space and they are related by

s-t s-t s, 48
* = *
c 2 Yt(z) [z @t(z) (co +2c.z + ... + 202 )]D,
for t=0,1, ..., s, as it follows from the definition

of Yt(z), t=0, 1, .... The proof of the lemma is now immediate. O

This lemma places a system of coordinates, in the linear space whose
points represent partial realizations of (12.2), so that the ME
solution lies at the origin. Another aspect of this representation

is shown in

(12.3) LEMMA. Let

m(2)

s
»*
Ts(z) - alz?s_l(z)* teee taz To(z)*,

and

x(z)

s
@s(z)* + alz®s_l(z)* teee T2 QO(Z)*.

The polynomial (in =z and z'l)

alz, 27) = (DK + x(2)(z)

has degree t < s if and only if Gy = eee = athl = Q.
PROOF. This follows from the fact that the degree of
= -1 -, -1
v (2)e,(277) + o (2)¥,(27)

is equal to |s - t|. This can be shown using Lemma (2.6). O
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We now proceed to our final

(12.4) THEOREM. Let C = {ct : t=0,1, ...} be the covariance

sequence of a nondeterministic stochastic process, and let

n(z) =1+ 812 + oe0 ¥ auzu

be any polynomial with roots in {|z| > 1}). Then for s sufficiently
large

* * *
Ys(z) + a zws_l(z) ¥ e & auzuws_u(z)

1

2 = C

s ) u
XY (z) @S(z)* + a z@s_l(z)* + ... taz ¢S_u(z)*

1

is a pr-extension of CS, and if n(s)(z) denotes the stable

spectral factor of the associated dissipation polynomial, then

1m, 1% (2) = n(2).

PROOF. Let Mt(z) be as in Theorem ( 3.1). Then

$8) () e ()% + a2y (2)* + el + 8 22
S=1
X(s)(z) ¢Eﬁu(z)* + alz®i:§(z)* + eee + auzuszd{z)*

where Yi'u(z), @i-u(z) are the orthogonal polynomials of the

s=u
parameter sequence Ru = {rs-u+l’ Rp— rs].
8ince C corresponds to a deterministic process it follows
from the result of GERONIMUS [1961, p. 159] (see (L4.6)) that the
parameters of (C are sguarely summable. Hence, as s —», both
s-u

*
‘i‘t (Z) e X

and



19

@i'u( Z)% -1
for t=0, 1, ..., u. Consequently, as s — =

S=Ur _\y
u GEI il

S=1
LN (

s=u s-u
¥ zwu_l(z)* ¥ aas auzuTO (z)*

u

*
zZ)* + & 1

S= u_s-u
120, (2)* + oo + a2 o (z)*

tends to 1 uniformly on |[z] < 1, and the associated dissipation
polynomial tends to n(z)ﬁ(z_l). Applying now Theorem (3.1), the

proof is complete, ]



APPENDIX. THE MINIMAL DIMENSION PROBLEM

Here we shall consider the following problem: Given a partial
covariance sequence CS find (simple) necessary and sufficient con-
ditions on CS so that it admits a pr-extension of dimension strictly

less than s.

This question is certainly the first one in attempting to obtain
an explicit answer to the minimal dimension problem of KALMAN [1981],
and YOULA and SAITO [1967]. We shall discuss the first two simple
cases: s =2, and s = 3., The case s =2 1s trivial as it requires
conditions for the positivity of a degree 1 polynomial in z and
z-l. The case s = 3, that requires conditions for the positivity
of a degree 2 polynomial in z and z-l, presents already
difficulties due to the implicit nature of the conditions that seem
to be possible to approach only with the techniques of decision
methods (see JACOBSON [197hk, VI). Although this appears to be
quite elementary, it should be noted that conditions for the

first case only is what exists in the current literature (see

KALMAN [1981], and also KRISHNAPRASAD [1980] in an equivalent setting).

We begin by considering the case s = 2, Unless cl = 0, the

minimal dimension partial realization of

2
1+ 2clz + 202z

is of dimension 1 and given by

m(z) 1+ (a+ cl)z
X(z) 1+ (- c )z

where ¢, = cl(c1 - ) (Here and in the sequel we use the represen-
tation introduced in Lemma (12.1).) Applying Proposition (5.2) it is
straightforward to check that m(z)/X(z) is in (¢ if and only if

c <1 and
I ,

<

el €1 - gl

(A.1)

80
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We now congider the case & = 3. 1In case cl = c2 = 0 and c5 ;é 0,
then the minimal pr-extension is of dimension 3, In case c5 = clcz,
then the minimal pr-extension is either of dimension 1 or 3% depending
on whether the minimal partial realization which is of dimension
1l isin ( or not. In the generic case we consider a general
rational function m(z)/X(z) with m(z), X(z) polynomials of degree
2, with m(0) = X(0) = 1 and power series that begin with

> 5]
i 2clz + 2c22 + 2052 :
We shall restrict our attention to the case where all the scalars
take real values, and use in the various expressions the associated
parameters {rl, Ty r3} instead of {cl, Cos ca}. The function
m(z)/X(z) is of the form

?2(3)* + azYl(z)* + BZETO(Z)*

2

0,(2)* + 0o (2)* + Bz"o_(2)*
where @ and B satisfy
2 2 2
(A.2) (1 - (1 - rz)r3 + (1l - rl)r2 + pry = 0.

The conditions
m(z) + X(z) # 0 for all z in |z| <1,

and
-, =1 -, =1
m(z)X(z 7)) + m(z )%x(z) >0 forall z on |[z]| =1,
give rise to the following:
(A.3) ol + rl) & B* (L= rl}(l- re)

(AL) -a(1 - rl)lf B+ (1 - rl)(l - r2)
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(A5) ~ofl+ry) B+ (1+1r)(1+1y)
(A.6) a1 - rl) <p+(1-r)(1+ r2)
(A.7) B<1

and either

(a.8) k< lo(1 - 2D) + o8+ prym|
or
2 2 222 2
(A'gj a (l = rl ™ 5)2 + B rlr2 + 2(161‘11‘2(1 b I‘l * B) =

- uplg® - 28+ (1 - 1) - )] <0

In general, neither of the above conditions is redundant. In the

(o, B)-space, these conditions cut out a set that corresponds to

pr-extencsions of C2 of dimension 2. This set is illustrated below

as a shaded area for the two typical cases.




83

Whether 05 admits a pr-extension of dimension 2 depends on
whether the line £ given by (A.2) intersects the shaded region.
Due to (A.9) which is implicit in @ and B and is of degree L,
these conditions when expressed in terms of the original parameters
of the problem, e.g. Ty Yoo and r5, are alsc implicit and

extremely involved.
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