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Abstract—We introduce a differential-geometric structure for
spectral density functions of discrete-time random processes. This
is quite analogous to the Riemannian structure of information ge-
ometry, which is used to study perturbations of probability density
functions, and which is based on the Fisher information metric.
Herein, we introduce an analogous Riemannian metric, which we
motivate with a problem in prediction theory. It turns out that
this problem also provides a prediction theoretic interpretation
to the Itakura distortion measure, which relates to our metric.
Geodesics and geodesic distances are characterized in closed form
and, hence, the geodesic distance between two spectral density
functions provides an explicit, intrinsic (pseudo)metric on the
cone of density functions. Certain other distortion measures that
involve generalized means of spectral density functions are shown
to lead to the same Riemannian metric. Finally, an alternative Rie-
mannian metric is introduced, which is motivated by an analogous
problem involving smoothing instead of prediction.

Index Terms—Differential structure, distortion measures, infor-
mation geometry, metrics, spectral density functions.

I. INTRODUCTION

DUE to the centrality of spectral analysis in a wide range
of scientific disciplines, there has been a variety of view-

points regarding how to quantify distances between spectral
density functions. Besides the obvious ones, which are based
on norms, inherited by ambient function-spaces , , etc.,
there has been a plethora of alternatives that attempt to ac-
knowledge the structure of power spectral density functions as
a positive cone. The most well known are the Kullback–Leibler
divergence, which originates in hypothesis testing, Bayes’ esti-
mation and coding, the Itakura–Saito distance, which originates
in speech analysis—both belonging to the Bregman class [6],
[15], the Hellinger [14] and Bhattacharyya distances [4], and
the Ali–Silvey class of divergences [3]. Their origin can be
traced either to a probabilistic rationale (as in the case of the
Kullback–Leibler divergence) or to some ad hoc mathematical
construct designed to seek distance measures with desirable
properties (as in the case of Bregman and Ali–Silvey classes).
Often, symmetry and the triangular inequality are dispensed
of, in which case the term “distortion measure” is used [15].
Our intent in this paper is not to compare the vast number
of possible distortion measures, but instead, to motivate and
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develop a natural metric and a geometry for the cone of spectral
densities.

A model for our approach is that of information geometry.
In it, one may begin with the Kullback–Leibler divergence
as quantifying degradation of coding efficiency in terms of
average word length, when a code is designed based on one
probability distribution and then applied to another. The degra-
dation of efficiency quantifies distance between two probability
distributions. Differential geometry is then introduced when
one considers varying the probability distribution directly
or, possibly, in a suitable parameter space. The natural Rie-
mannian metric, which follows from the Kullback–Leibler
divergence is the Fisher information metric [1], [2].
The Kullback–Leibler divergence is one of several possible
“divergences” that give rise to the same differential structure.
Interestingly, geodesics and geodesic distances are computable
in closed form. We follow a similar path with remarkably
analogous, but different, results. These similarities are further
highlighted in Section VI.

Our starting point is a prediction problem for random process.
We select an optimal predictive filter for an underlying random
process based on the assumption that the process has as
its spectral density. We then evaluate the performance of such
a filter against a second random process with spectral density

. Naturally, the degradation of predictive error variance
can be considered as quantifying the mismatch between the two
spectral density functions. The degradation (actual error vari-
ance divided by minimal error variance) turns out to equal to
the ratio of the arithmetic over the geometric mean of the frac-
tion of the two power spectra. Interestingly, the logarithm of the
degradation coincides with the Itakura distortion measure [15,
p. 371] between the two spectral densities. Herein, the degrada-
tion of predictive error variance and the Itakura distance play a
role similar to the one played by the Kullback–Leibler distance
in information geometry.

The degradation of predictive error variance between in-
finitesimal perturbations of power spectra gives rise to a
Riemannian metric on the manifold of spectral density func-
tions. This is analogous to the Fisher information metric.
Using variational calculus, we characterize geodesics. The
geodesic connecting two spectral density functions turns out
to constitute an exponential family. Alternatively, geodesics
are more clearly understood if we use the logarithm to map
spectral density functions into a linear space. In this linear
space, essentially, geodesics are straight lines. The geodesic
distance can be readily computed in closed form and, thus, it
represents an intrinsic (pseudo)metric. The metric is expressed
as the variance of the logarithm of the ratio of the two spectral
density functions. It is a pseudometric because it does not detect
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scaling by multiplicative constants. Other than that, being a
geodesic distance, it is an intrinsic metric and satisfies all other
metric properties.

An alternative concept of distance can be built based on
the degradation of the variance of smoothing filters. As in
the case of our prediction problem, a smoothing filter is now
designed based on one density function and then applied to
another. The degradation of smoothing error variance quantifies
the mismatch between the two spectral density functions. A
Riemannian metric can be defined from this as well in a similar
manner.

The paper is structured as follows. Section II presents no-
tation and needed background material on linear prediction
and smoothing. In Section III, we compute the degradation of
predictive error variance. Its logarithm turns out to coincide
with the Itakura distance measure. Section IV introduces the
relevant Riemannian structure, characterizes geodesics, and
computes geodesic distances. Section V outlines an analogous
Riemannian metric, which is based on the degradation of
smoothing-error variance. In Section VI, we overview certain
key concepts from information geometry and draw parallels
with our development regarding power spectra. Section VII
contains some final remarks.

II. PRELIMINARIES ON LEAST-VARIANCE

PREDICTION AND SMOOTHING

Consider a scalar zero-mean stationary random process
and denote by its power spectrum. We are

interested in quadratic optimization problems with respect to
the usual inner product

where denotes expectation and “ ” denotes complex conju-
gation. The closure of span , which we denote by

, can be identified with the space of functions,
which are square integrable with respect to the spectral measure

with inner product

where and . Further, the
correspondence

is a Hilbert space isomorphism (see [17]), and thus, least-vari-
ance approximation problems can be equivalently expressed in

.

In particular, the variance of the one-step-ahead prediction
error for the predictor

is

(1)

Similarly, the variance of the error of the smoothing filter

(2)

is simply

(3)

In general, the power spectrum is a bounded nonnega-
tive measure on and admits a decomposition

with a singular measure and the absolutely
continuous part of (with respect to the Lebesgue measure).
In general, the singular part has no effect on the minimal vari-
ance of the error, and the corresponding component of can
be estimated with arbitrary accuracy using any “one-sided” in-
finite past. The variance of the optimal one-step-ahead predic-
tion error depends only on the absolutely continuous part of
the power spectrum and is given in terms by the celebrated
Szegö–Kolmogorov formula stated below (see [20] and also [12,
p. 183], [13], [19], and [21, Ch. 6]).

Theorem 1: With as above

when , and zero otherwise.
In case , the prediction-error variance is

nonzero and the random process is nondeterministic in the sense
of Kolmogorov. In this case, it can be shown that

where is an outer function in the Hardy space with
, i.e.,

(4)

is analytic in the unit disk , and its ra-
dial limits are square integrable (see [18]). Then, the linear
combination

(5)
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serves as the optimal predictor of based on past observations
and the least variance of the optimal prediction error becomes

Analogous expressions exist for the optimal smoothing
error and the corresponding smoothing filter, which uses
both past and future values of . It is quite interesting, and
rather straightforward, that while the variance of the optimal
one-step-ahead prediction error is the geometric mean of the
spectral density function, the variance of the error, when a
smoothing filter utilizes both past and future, turns out to be the
harmonic mean of the spectral density function. This is stated
below—for a proof, see [11].

Theorem 2: With as above

(6)

when , and zero otherwise.
In case the variance of the optimal

smoothing error is nonzero and the random process is nonde-
terministic in the sense that past and future specify the present,
which can be estimated with zero variance. In this case (cf.
[11])

(7)

is the image of the optimal smoothing error
under the Kolmogorov map, and

III. DEGRADATION OF THE PREDICTION-ERROR VARIANCE

We now consider two distinct spectral density functions
and and postulate a situation where filtering of an under-
lying random process is attempted based on the incorrect choice
between these two alternatives. The variance is then compared

with the least possible variance, which is achieved when the cor-
rect choice is made (i.e., when the predictor is optimal for the
spectral density against which it is being evaluated). The degra-
dation of performance is quantified by how much the ratio of
the two prediction-error variances exceeds the identity.

This ratio may serve as a measure of mismatch between the
two spectral densities (the one that was used to design the pre-
dictor and the one against which it is being evaluated). The re-
sulting mismatch turns out to be scale-invariant—i.e., the ex-
pression is homogeneous. Hence, as a measure of distance, it
actually quantifies distance between the positive rays that the
two spectral density functions define, and thus, it quantifies dis-
tance between the respective “shapes.” It turns out that this dis-
tance is log-convex on logarithmic intervals and has a number
of distancelike properties, short of being a metric.

Proposition 3: Consider two second-order stationary nonde-
terministic random processes having power spec-
tral densities , for , respectively. The degradation of
prediction-error variance defined as

(8)

where represent the coefficients of optimal linear predic-
tors defined in (4) and (5), is

(9)

Proof: The proof is a trivial application of classical predic-
tion theory summarized in the previous section. Indeed, if the
predictor is based on whereas the underlying process has
as its spectral density, then the variance of the prediction error
is

If we divide this variance by the optimal value we obtain

The expression for in (9) is the ratio of the arith-
metic mean over the geometric mean of the fraction of
the two spectral density functions. It is not symmetric in the two
arguments. It can be readily seen, as a consequence of Jensen’s
inequality, that unless is constant, in which
case .

Since , the expressions

(10a)
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and

(10b)

take values in . Their value is zero only when the ratio
is constant. Thus, either expression may be used to quan-

tify the distance between and .
Remark 4: Interestingly, was arrived at earlier by

Itakura (cf. [15, p. 371, Sec. C], [16]) following a different ra-
tionale—it was introduced as a “gain optimized” distortion for
use in speech recognition systems, and as a lower bound to the
Itakura–Saito distortion.

Viewing and as quantifying the slackness
in a Jensen-type inequality suggests a variety of other analogous
expressions based on generalized means that may be used to
quantify flatness of . More specifically, if

denotes the th generalized mean of function , then

for any

(see [5]). Hence

and (11a)

(11b)

with a value that depends on how “far” is from being constant.
Note that

(12a)

(12b)

since

(13)

is in fact the geometric mean of (see, e.g., [5, p. 23]).
Of particular interest is the following possible symmetrized

version of the Itakura distance :

which is in fact the logarithm of the ratio of the arithmetic mean
over the harmonic mean of the “likelihood” ratio .

IV. RIEMANNIAN STRUCTURE ON POWER SPECTRA

Infinitesimal perturbations about a given power spectral den-
sity function, when measured by any of , or (with

), give rise to the same nonnegative definite quadratic
form. The quadratic form varies continuously with the choice
of spectral density about which perturbations are being consid-
ered, and therefore, it constitutes a Riemannian metric. As it fol-
lows from the previous section, this Riemannian metric is quite
natural from a prediction-theory point of view as it measures the
degradation of predictive error variance for small perturbations.
For large perturbations, the metric can be integrated along paths
that represent the deformation of one spectral density into an-
other. When such deformations/paths are being selected so that
the overall distance between the end points (power spectra) is
minimal, they constitute geodesics. The geodesic distance be-
tween two power spectra defines a natural metric.

The geometry induced by a Riemannian metric is interesting
in its own right. However, in general, the computation of
geodesics and geodesic distances is a nontrivial task. Thus, it
is quite unexpected that, for our Riemannian metric, as we will
see in this section, geodesics and geodesic distances can in fact
be computed in closed form (by expressions that involve the
end power spectra). It turns out that the map

which takes the cone of power spectral densities into a linear
space is quite natural with respect to our Riemannian metric in
that geodesics map into straight lines. This is the reason for the
simplicity of the induced Riemannian geometry and provides a
further justification for the common practice of drawing insight
from logarithmic plots of power spectra.

Throughout, we assume that all functions are smooth enough
so that the indicated integrals exist. This, in particular, can be
ensured if all spectral density functions are bounded and have
bounded inverses as well as bounded derivatives. Weaker con-
ditions are clearly possible. For the purposes of this paper, we
define

differentiable on

with and bounded

and recall the definitions of the th norm and the supremal norm

and the supremal norm . The
natural tangent space of where perturbations may belong is

bounded .
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Proposition 5: Let , where such that
, and with . Then

(14)

(15)

Here, indicates terms of order 3 or higher.
The quadratic form that appears in (15) may be thought of as

the “variance” of the integrand . Similar expressions will
appear often; hence, we introduce the notation

(16)

and note that for any that is independent
of .

Proof: If represents a small perturbation
of the identity for , then

When , the same holds true. Indeed, using the series
and in view of (13)

Using the above, we observe that

as claimed. Similarly, since

it follows that is identical to up to
third-order terms. We note that when dealing with higher order
terms, we use the fact that for all , since

.
Proposition 5 suggests the following natural Riemannian

metric on the cone of spectral density functions.
Definition 6: For any , we define the Riemannian

metric

(17)

This is indeed a Riemannian metric as it represents a con-
tinuously varying non-negative definite quadratic form for any

. The fact that the quadratic form is non-nega-
tive is a direct consequence of the Cauchy–Schwartz inequality.
Next, we characterize the geodesics of our Riemannian metric.

Thus, we consider continuous paths , , con-
necting two given spectral density functions and . A path is
to be thought as a continuous deformation of into . There-
fore, is a function of two arguments, the path parameter and
the frequency —hence, we write when the frequency
needs to be specified. We denote by the partial derivative of

with respect to , i.e.,

The partial derivative for a particular value for is, of course, a
function of and represents the rate that is deforming. The
length traversed as varies from 0 to 1 is

(18)

Paths of minimal length are called geodesics.
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Geodesics connecting two power spectra are not necessarily
unique. This is indeed the case for our Riemannian metric. In
fact, if is one particular geodesic, then for any that is a
continuous function of , independent of , and satisfies

, is also a geodesic. To see this, it suffices to
note that the integrand in (18) is independent of since

where the last equality follows from the fact that is inde-
pendent of . This can also be traced to the fact that the degrada-
tion of predictive-error variance in (9), on which
is based, is unaffected by scaling of either of its arguments.

For any path between and , a rescaling of the indexing
leaves the length traversed unaffected (and only affects the “ve-
locity”). Thus, if is a geodesic, then is also a geodesic
for any continuous, monotonically nondecreasing function
such that and . It turns out that, modulo
the above two possibilities, the geodesic connecting two power
spectra is essentially unique and can be written in the form of a
logarithmic interval (otherwise, exponential family)

for (19)

This is made precise in the following theorem.
Proposition 7: Consider the Riemannian structured on

endowed by . Given any two spectral density functions
, any continuous function which satisfies

, and any continuous non-decreasing function
which satisfies and , then

for (20)

is a geodesic connecting the two given densities. Conversely, all
possible geodesics between and are given by the above ex-
pression for a suitable choice of and . Moreover, the geodesic
distance is

Proof: Since the path-length (18) only depends on
, we define

and express (18) in terms of , i.e.,

(21)

The requirement that the end points of coincide with and
readily translates into boundary conditions for , namely

and . The task of finding extremals
of such integrals requires solving Euler–Lagrange equations for
the “rescaled” path . The Lagrangian

in (21) only depends on . Therefore, and the
Euler–Lagrange equations

simplify to being independent of . Since enters in
through an integral over , the partial derivative with respect

to is infinitesimal. Thus, we write

which is independent of , as we just explained. Since

where the latter term produces again a differential in , it follows
that

(22)

We first show that

(23)

for suitable functions , of . Set
and . Substituting in

(22), we obtain that

It therefore follows that satisfies (23) for as above

and . Hence

Letting , , and
we have that

Matching the required boundary condition at , we have
. Without loss of generality, we normalize

and , which gives
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Thus, it is necessary that geodesics are as in (20). Condition (20)
is also sufficient since there are no other extremal paths, and they
all have identical path length as follows:

where in step 2 we use the fact that does not depend on ,
and in step 3, the assumption that . If is not monotoni-
cally nondecreasing, the path length

is not minimal (since it “traces” some parts twice).
Remark 8: The geodesic length is a pseudometric on . The

logarithmic map

takes into a linear space. It is interesting that the geodesics
are mapped, essentially, into straight lines

modulo scaling of the path parameter and an additive constant
(with respect to ) . Therefore, it would be interesting
to consider other standard metrics/norms on
such as the 2-norm, and study their significance from a signal-
processing point of view.

V. DEGRADATION OF THE SMOOTHING-ERROR VARIANCE AND

RIEMANNIAN STRUCTURE

In a way completely analogous to the previous sections, we
consider the degradation in the variance of the smoothing error
when a smoothing filter is based on a wrong choice between
two alternative power spectra. The degradation of performance
quantifies the distance between the two power spectra and en-
dows with an alternative Riemannian structure.

We begin with , , and hence , are in-
tegrable (also bounded). Accordingly, we test the optimal
smoothing filter based on against . As explained in
Section II, the -optimal smoothing filter gives rise to an
error corresponding, via the Kolmogorov

mapping, to . Hence, the variance of the smoothing
error divided by the -optimal variance is

This can be readily rewritten as follows:

(24)

where

is a normalized measure with variation one. Expression (24) is
again of a familiar form. It shows that the degradation is the
square of the ratio of the mean square of the fraction over
its arithmetic mean. These two means, mean square and arith-
metic, are weighted by , which is, of course, dependent on
one of the two arguments. As in the case of in (9), the
expression is homogeneous and independent of scaling in either
of the two arguments or .

Accordingly, we may define as a distance measure

For convenience, we again introduce notation

(25)
and note that, as before, for any
that is independent of .

Proposition 9: Let , where such that
. Then

(26)
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(27)

Proof: It is completely analogous to the proof of Proposi-
tion 5; hence, it is omitted.

In view of the above, it is natural to define a corresponding
Riemannian metric.

Definition 10: For any , we define the Riemannian
metric

(28)

where .
The characterization of geodesics and geodesic distances ap-

pears substantially more involved than in the case of the predic-
tion problem and will be left for future investigations.

VI. CONTRAST WITH INFORMATION GEOMETRY

We believe that it is instructive to contrast the material pre-
sented herein in the backdrop of information geometry. There-
fore, below, we summarize certain of the key concepts. The
monograph of Amari and Nagaoka [2] contains an overview of
the development of the subject during the past 50 years.

We focus on the differential geometry of the finite-dimen-
sional probability simplex

The optimal codelength for a random source of inde-
pendent symbols generated according to is

[9, Sec. 5.4]. When the code is based
on the wrong choice between two alternatives , i.e.,
when the code is designed based on while the symbols are
generated according to , then the degradation of code length
efficiency is given by the difference between actual and ideal
code lengths

(29)

which is precisely the Kullback–Leibler divergence. Infinites-
imal perturbations from a given give rise to a Riemannian
metric

(30)

which is known as the Fisher information metric. The map

(31)

which takes onto the first orthant of the sphere
, turns out to correspond distances measured by the Fisher

metric on the probability simplex, to Euclidean distances (e.g.,
see [1] and [7]). Geodesics on correspond to great circles, and
geodesic distances in the Fisher metric on the probability sim-
plex correspond to lengths of arcs on the sphere. Then, the Bhat-
tacharyya distance [4] , which
is the cosine of the geodesic arc between the two image points
under (31), the geodesic arc, the angle , and
the Hellinger discrimination [14]

, all represent equivalent metrics induced by the ge-
ometry of the Fisher information metric.

It is interesting to contrast the metrics introduced earlier

and

with the Fisher information metric

Both and admit a rather explicit characterization
of geodesics and explicitly computable geodesic distances,
albeit quite distinct ones. However, with regard to the defining
mathematical expressions, there appears to be a closer affinity
between and ; yet, an explicit characteriza-
tion of geodesics/distances for the latter is still open. The
Kullback–Leibler divergence (29), on the other hand, is anal-
ogous to the degradation of predictive-error variance (8) of
Section III and of smoothing-error variance of Section V.
In all cases, these quantities represent degradation of perfor-
mance of a certain design when the wrong choice between
two alternatives is made. ccordingly, they endow the manifold
of the respective distributions with a Riemannian metric and
appropriate geodesic distances (metrics or pseudometrics,
respectively).

Perhaps, a crowning result of information geometry is
Chentsov characterization of the Fisher information metric as
the unique metric for which stochastic maps are contractive [7],
[8]. The possible relationship of with classes of nat-
ural transformations on spectral density functions, analogous
to stochastic maps in the probabilistic context, remains to be
studied.

VII. CONCLUDING REMARKS

The manifold of power spectral density functions can be
endowed with a variety of Riemannian metrics. Naturally, such
metrics are helpful in quantifying distances. We presented two
alternatives and , which are motivated by a prediction
and a smoothing problem, respectively. The geometry induced
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by , in particular, is especially simple because, in essence, the
logarithmic map

takes geodesics to straight lines. This fact raises the possibility
that logarithmic -simplices, e.g.,

and

may be useful in modeling spectral uncertainty and in modeling
families of spectra with a certain affinity. This is reminiscent
of geometric mixtures that appear in geometric programming.
From a computational viewpoint, logarithmic simplices are cer-
tainly attractive since the geodesic distance of a given power
spectrum from such a simplex

and

is readily solvable with standard tools—being an ordinary least-
squares problem with inequality constraints. The value of a dif-
ferential geometric viewpoint and of a natural metric appears
especially pertinent in hypothesis testing and, in general, for ap-
plications requiring symmetric distances for comparing alterna-
tives and evaluating models of time series.
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