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Solution of the General Moment Problem via a
One-Parameter Imbedding

Tryphon T. Georgiou, Fellow, IEEE

Abstract—This paper presents a computational theory for the
general scalar moment problem. The formalism is sufficiently gen-
eral to encompass problems in sensor arrays with arbitrary geom-
etry and dynamics, and in nonuniform multidimensional sampling.
Given a finite set of moments, the theory provides a test for the ex-
istence of a positive measure which is consistent with such data.
At the same time, the theory also provides a characterization of all
such consistent positive measures. It should be noted that classical
results (e.g., in the theory of the trigonometric moment problem,
Hamburger, Stieljes, Nevanlinna–Pick interpolation, etc.) are not
applicable to the general setting sought herein where there is no
natural shift operator in the space spanned by the integration ker-
nels. The centerpiece of the theory is a differential equation which
depends on the given finite set of moments and on an arbitrary
positive function 	—which plays the role of a “free parameter.”
The differential equation has an exponentially attractive point of
equilibrium if and only if there exists a consistent positive measure.
For each	, the fixed point determines a corresponding measure.
Suitable choice of	 allows recovering any measure which is con-
sistent with the data. The fixed point of the differential equation
corresponds to an extremum of an entropy-like functional, and the
differential equation is constructed via an appropriate homotopy
that follows changes in the Lagrange multipliers from a convenient
starting value to a value for the multipliers that corresponds to the
given moments.

Index Terms—Antenna arrays, homotopy, Kullback–Leibler
distance, multidimensional moment problem, multidimensional
spectral analysis, relative entropy, sensor arrays.

I. INTRODUCTION

I N 1894, Stieljes published his classical memoir [56],
in which he posed and solved the following problem:

Find a bounded nondecreasing function on such
that its “moments” have specified values for

. The term “moments” was borrowed from
mechanics. Subsequent formulations dealt with the support and
properties of the distribution function , the class of integration
kernels (e.g., ), and the cardinality of this set. The
term “moments” was borrowed from Mechanics. At the present
time, more than a century later, a vast amount of literature has
grown around this type of a problem.

The classical theory was developed for function spaces where
a convenient representation of positive elements is available as
a sum of squares. Such a property is convenient when testing
for the solvability of the moment problem—the existence of a
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solution relates to the sign definiteness of a suitable quadratic
form (Toeplitz, Pick, etc.). In the mid 1930s, Krein discovered
a deep connection with the theory of convex bodies and much
of the classical theory was extended to Tchebysev systems (see,
e.g., the classical monographs by the Russian school [1], [2],
[39], [53], and [37]). Connections with the analytic interpolation
theory of the early part of the twentieth century were explored
(see [33]) and a beautiful operator theory emerged (see, e.g.,
[3]–[6], [19], and [52]).

The multidimensional moment problem where the support of
is of dimension larger than one, has led a somewhat sepa-

rate existence. The dichotomy between the algebras of polyno-
mials in one and, in many variables, is a major difference and as
a consequence the corresponding operator theory is far deeper
(e.g., [16] and [49]). In the absence of a manageable algebraic
structure [18], [45], [50], a computational approach was sought
based on the use of entropy functionals [17], [21], [22], [36],
[41], [43], [44], [47], [58]. Entropy functionals are natural bar-
riers on convex cones, and hence, the idea is to seek a positive
measure which is an extremum of such a functional. This paper
builds on this general idea, yet it follows a distinct path, which
has led to further multivariable generalizations [29], [30].

Two logarithmic entropy functionals have received particular
attention: and . Minimiza-
tion of the first, subject to moment constraints, leads to a “ra-
tional” model. Minimization of the second leads to an “expo-
nential” one. There is usually a preference for the first one when

is the spectral density function of a random process, and for
the second when is a probability density function (pdf). This
is due to a natural interpretention of such integrals in the respec-
tive contexts ([40], [42]) with being entropy rate
while simply the entropy of a random vari-
able. Yet, at times, a direct interpretation may be unnecessary
([32], [47]) and the functional simply thought of as a compu-
tational tool. To this end, alternative choices with similar prop-
erties are and ,
for added flexibility in selecting a “weight ”.

The existence of extrema has been investigated in [7], [8],
[22], [36], and [44], with tools from probability and large devi-
ations theory, convex optimization, and duality theory, in great
generality. Invariably, computations are carried out by seeking
the extremum of a dual unconstrained functional via a (care-
fully stepped up) Newton method. In contrast, our starting point
is an approach suggested in [23, p. 76], to use a homotopy in
the space of moments. This allows us to follow a corresponding
path of extrema in the space of Lagrange multipliers. It provides
an independent treatment of the existence of extrema that de-
termines the solvability of the moment problem. The Lagrange
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multipliers along the path obey a differential equation which
converges with an a priori guaranteed rate, provided the mo-
ment problem is solvable. Otherwise, the differential equation
diverges.

The same tools can be used to characterize the complete solu-
tion set of positive measures. The functional form of extrema for
a relative entropy functional is taken instead. This depends on
Lagrange multipliers and on a “parameter” (a positive func-
tion with the same support as the ’s). The differential equa-
tion is constructed accordingly. When it converges, then it does
so independently of our choice of . Selecting different ’s al-
lows us to recover all (absolutely continuous) positive measures
that are consistent with the given moments.

An important observation is that a diffeomorphism between
moments and Lagrange multipliers (under certain conditions;
see [36, Cor. 6.1], [13], and Section V) can be the basis of our
theory. In the present work on the scalar moment problem, such
a diffeomorphism is given to us by the functional form of the
entropy extrema. As shown in [30], the theory carries through
in a similar manner in the multivariable setting as well.

Works that have influenced our current development include
[12] who studied an entropy functional as a computational tool
for the “rational covariance extension problem” [23], [24], [14]
who study in a similar vain existence of rational families for a
general moment problems, [15] for interpolation problems, and
[31], [14] who suggest a relative entropy functional for seeking
minimizers in rational form. Early on, [41] also studied rational
models for power spectra via an entropy functionals in the con-
text of antenna arrays. We will develop both rational and expo-
nential models, and as we will see later, it is the latter that apply
in complete generality in higher dimensions.

We begin with three motivating examples in Section II. These
are revisited in Section VI after the exposition of the main tech-
nical results in Section III. Section III is followed by an analyt-
ical example in Section IV that provides insight to the derivation
of the main results in Section V.

II. MOTIVATING EXAMPLES

We begin with three basic examples that underscore the rele-
vance and applicability of the theory that follows. After we ex-
plain the key elements of the theory (in Theorems 2 and 3 and in
Section III), we will revisit these examples and work them out
with specific numerical values.

A. Input Power Spectrum From Output Measurements

Consider that measurements of a certain continuous-time,
zero-mean, stationary stochastic process
are obtained at the output of several (low-pass) sensors
with time-constant . Let denote
the corresponding outputs and assume that only variances

are available as well as .
If denotes the (continuous) autocorrelation function of

and denotes the nonnegative, finite spectral measure of
the process, the two are related via

If denotes the transfer function of
the typical sensor, then the ’s represent
moments of the spectral measure for kernel functions

. Indeed, the covariances at the output of
the sensors satisfy

for

with

and

It is not hard to imagine a situation where statistics can be col-
lected for an assortment of variables for which we possess in-
formation on their dynamical link with an unknown “input” sto-
chastic process. Such statistics are precisely moment constraints
on the spectral measure of the input. The natural question then
arises as to what we can infer about the spectral measure of the
input based on a finite set of covariance statistics, such as the
set .

The discrete-time counterpart of this question, has been raised
and addressed in [10] and [11] (see also [26]–[28]). In that, there
is a natural “shift” operator that relates the integration kernels.
Such a relationship between the kernels is absent in our
present “continuous-time” setting. As a consequence, the results
in [10], [11], [26], and [27] are not directly applicable.

B. Nonuniformly Spaced Sensor Arrays

In a variety of applications, typified by radar, sonar, and var-
ious ultrasound imaging apparatus’, the analysis of impinging
waves on an array of sensors reveals the makeup of the scat-
tering medium. Propagation delays in the medium translate into
sensor-dependent phase-shifts. The goal is then to unravel the
effect of propagation delays and assess the distribution of in-
coming energy from different directions.

The special case of a uniform linear array falls within the set-
ting of standard sampling theory (e.g., see [35, Sec. 2]). The
signal power, as a function of the angular direction of origin,
can be shown to be a moment generating function of the sample
correlations between the various sensors. Fourier techniques are
then suitable and, hence, extensively used. However, a chal-
lenging situation arises when the array is not linear and/or not
regularly spaced.

Situations of sensors with complicated geometry abound. For
instance, consider an array of sonar buoys launched at some
point in time and drifting along while their position may be con-
tinuously monitored via GPS. In other cases, while we may be
able to control the position of the sensors, these are expensive
and limited in number. Then it may happen that a nonuniform
positioning offers advantages (as is the case for the “Y” shape of
the VLA radio telescope in New Mexico, see [35, p. 86]). In sit-
uations where the geometry is complicated, Fourier techniques
are of little use. Instead, model-based methods, beamforming,
and the sensitivity of the array as a function of direction, help to
interpret the recorded signal and its statistics. For a state-of-the
art account of sensor array processing we refer to [57] (see also
[34], [35], and [54]).
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Fig. 1. Geometry of sensor array.

For our purposes, it suffices to consider a two-dimensional
planar monochromatic wave impinging upon an array of three
sensors. The three elements of this array (sensors) are indicated
as , , and in Fig. 1. They are placed linearly but in
noncommensurable distances from one another. In particular we
may take those distances to be 1 and wavelengths, as exempli-
fied in Fig. 1. The choice of “ ” only serves to underscore that
the distances are noncommensurable. The waves are assumed
to have support in the sector , highlighted in the upper
part of the figure. A simple model for the waves impinging at
the th element is

with the amplitude in the direction , a random
phase uniformly distributed over and independent for different
values of , the wavenumber, and the distance of the th
element from the first one (chosen to be the element , hence,

, and ).
By correlating the readings at the three locations, two at a

time, we arrive at the correlations

(1)

for , where in the last equation we rescale
, we set , and we absorb the nonlinear scaling

and the amplitude into . The index is chosen to represent
the distance between the respective sensors whose outputs are
being correlated. It is quite natural to ask the following basic
questions.

a) Given real values , , , and , how can we tell
whether they are admissible correlation values for the
setting that we have just described?

b) If these values are indeed admissible, and hence a
power distribution exists that is consistent with
(1), then how can we describe all other poosible power
distributions which are consistent with (1)?

The theory in Section III gives answers to both, albeit not
analytical ones. The case of planar, or even spatially distributed,
arrays with several elements and an arbitrary geometry does not
present any additional conceptual difficulty. We will revisit the
above plus one additional numerical example of such an array
after we develop the needed theory.

C. Sensor Arrays—Multidimensional Case

We focus on two-dimensional (2-D) examples. The general
case of three or higher dimensions is quite similar, as is the
case of near-field excitation. Most of the difficulties in dealing
with dimensions higher than one, become already apparent in
the 2-D-case—and manageable in the same way.

Consider the spatial correlation matrix of a two-dimensional
array (see [35, p. 50]), i.e., neglecting temporal correlations.
If the source of impinging (narrow bandwidth, stationary, etc.)
waves is distributed across a sector in the sky parametrized by,
say, Euler angles , then the correlation of signals at
the th and the th sensor locations would produce

(2)

The integration kernels encapsulate the relative at-
tenuation and phase difference at the two sensor locations of a
signal originating in the direction . Equation (2)
applies equally well when parametrizes a two-dimensional
power planar distribution of nearfield sources. There is no es-
sential difference in higher dimensional cases. The parameter
may be thought of as belonging to , etc. and (2) thought of as
a volume, etc. integral.

The same questions raised before are again central.

a) Given values , how can
we tell that they are consistent with the assumption of
being correlation samples?

b) If the answer to part a) is yes, then what are all consis-
tent 2–D-power distributions ?

It was Dickinson in 1980 [18] who in fact pointed out that,
even if sampling takes place on a rectangular grid, positive def-
initeness of is not sufficient (see also [50]). This
remark sparked considerable amount of interest in the subject
and, in particular, motivated the work by Lang and McClellan
[41]. Their approach was to seek a “rational” maximum entropy
distribution—the idea being that if there is a distribution at all
which is consistent with the data, then a maximum entropy one
ought to exist as well. Their conclusion was that for 2-D and be-
yond, this is not the case. However, as we will see in the sequel,
the exponential family allows completion of their program.

III. MAIN RESULTS

We present two main results (Theorems 2 and 3) that provide
the means to determine whether a given set of moments is ad-
missible, and if so, to describe all positive measures which are
consistent with the moments. Theorem 2 is essentially limited
to the 1-D case, and only extends to 2-D under a strong assump-
tion on the integration kernels. Theorem 3 on the other hand,
applies to multivariable distributions. Notation and much of the
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development proceeds in parallel. We specialize to 1-D or 2-D
only when needed.

We begin with a closed interval1 in which we
denote by . For notational convenience we will always take
the end points to be 0 and 1 respectively, as in

for the 2-D case. We denote by the space of real-valued,
twice differentiable, (scalar) functions on . We denote by a

- dimensional subspace of generated by a set of basis
functions . We specify that (though it
suffices to assume that has a positive element). The vector-
valued function

where denotes “the transpose of,” defines

as a curve, a surface, etc., depending on the dimensionality of
. The set is often referred to as the “array manifold” in the

signal processing literature. The conic closed convex hull of
is denoted by

and its dual cone is denoted by

Unless we intend to emphasize the role of , we will use the
more compact notation and respectively, dropping the
argument. We will also assume throughout that is not empty
or, equivalently, that is not the entire space.

The dual cone represents the cone of all vectors in
the dual space which form an acute or a right angle
with any vector of (see Fig. 7; also Figs. 2 and 5). The dual
space can be identified with the space where the ’s
live—though will always be drawn separately as in Fig. 7. Then,

can be thought of as the standard inner product.
The dual cone can also be identified with the cone of

nonnegative elements of (see [39, p. 14, Th. 3.3]). The proof
simply points to the fact that defines a support half-
space of , , which contains . So,

on . Conversely, if the hyperplane
cuts then it cannot be a support hyperplane for . The

argument holds in any dimension. It is also easy to see that is
an interior point of if and only if is strictly positive
on . The standing assumption that implies that has
at least one interior point.

The following fundamental result characterizes .
Theorem 1: [39, Th. 3.4] The cone is the set of points
such that

(3)

where is nonnegative measure on .

1With superficial modifications it is also possible to deal with more general
cases (see Section VI-A and Remark 7) where S is the semi-infinite interval
of the nonegative reals , the reals , , etc., by attaching points at 1
in each case, cf. [39], or with S being a discrete set of finitely many points
f0; 1; . . . ; kg.

Fig. 2. Schematic of and , and of the correspondence (r ; r ) $
(� ; � ) for case I.

Proof: The proof given in [39, p. 15] is for but
applies almost verbatim to any dimension. Briefly, the set of ’s
given by (3) is a convex conic set containing (since all points
in can be obtained with a suitable choice of a singular point
measure ). The first step is to prove that this set is closed
and, hence, that it contains . Consider a limit point of a
sequence and corresponding measures
such that . Using the fact that has an interior
point it can be shown that the sequence is
uniformly bounded (cf. [39, p. 15]). Krein and Nudelman invoke
Helly’s selection theorem (see [39, p. 15]) to assertain that the
sequence has a weak limit bounded and positive, which
satisfies . The same is true in complete generality
for positive Borel measures with support on the compact set

. By Riesz’ representation theorem such measures
make up the dual of the space of continuous functions on .
The weak compactness of a bounded set gives the required
conclusion (see [51, pp. 67–68]). Hence, the set of ’s is closed
and contains .

The argument for the converse given in [39, p. 15] holds ver-
batim for .

A nonnegative measure on can be thought of as a
mass distribution on . The set of all nonnegative Borel mea-
sures on is itself a closed convex cone and will be denoted by

. The moment problem amounts to inferring properties of
from a vector of moments

(4)

In particular, given the key questions are as follows.

i) Does there exist for which (4) holds?
ii) If yes, then what are all such ’s that satisfy (4)?

Both, our assumption that on as well as our choice
to work with real-valued functions on can be relaxed at the
expense of a more complicated notation.

Answering i) is equivalent to determining whether a given
belongs to (Theorem 1 stated above), or altenatively,
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whether the functional

is nonnegative2 (again by virtue of Theorem 1 ). In general, nei-
ther condition is easy.

In the classical theory of moments it is often the case that
any positive element in (identified with a positive element

), can be represented as a “sum of squares” (e.g., see
[39, Ch. III]). In this case 3 the value of on positive elements
can be determined via a quadratic form (having typically a Pick,
Toeplitz, or Hankel structure). Naturally, positivity of in all
such cases can be assertained with relative ease. This is not to
be expected in the generality sought in this paper.

Later, we provide a way to test whether a given vector of
moments belongs to the interior of the cone in con-
siderable generality. This is accomplished by constructing ex-
plicitely a which satisfies (4). The particular is
obtained by integrating a certain differential equation. When

the differential equation diverges. When it con-
verges, the limit point provides a set of parameters that identify
a suitable .

We exploit two special families of measures

with

and

with

The elements of are in bijective correspondence with in-
terior points in in the 1-D case and, with some strong
assumption, in the 2-D as well. The elements of are in
bijective correspondence with interior points in in com-
plete generality. Similar facts hold true for

with

and

with

where is an arbitrary but fixed positive function in . The last
two families allow characterization of all solutions consistent
with a given in a nonclassical fashion.

These families represent extrema of certain logarithmic
entropy-like functionals subject to the moment constraint (4).
For the case of and the relevant functionals are

and respectively. In the
more general case of and the functionals can
be written in the Kullback–Leibler form

with and , respectively, for
. The fact that they provide minimizers to entropy func-

tionals is not being exploited at all in the present analysis. In-
stead, we consider directly the solvability of (4), and analyze it
with a continuation method.

2A functional is said to be nonnegative if it takes into and it is
said to be positive if it is nonnegative and does not vanish on nonzero elements
of .

3Similarly, when G is invariant under a “backward shift” operator, see [26]
and [27]; see also [25, p. 786] for a negative result.

The search for extremals of entropy for identifying spectra
has a long and well known history. In the context of our present
analysis, the work of Lang and Mcclellan [41] is particularly
relevant. In this early work, the authors sought measures within

for problems with multi-dimensional support. They
soon discovered that this family is not “rich” enough, and then
suggested replacing the multivariable support of the measures
with a finite net of points—effectively restricting attention
to 0-dimensional spectral support. Interest was rekindled in
recent years by Byrnes, Gusev, and Lindquist [12] with a
clever constructive solution of the rational covariance extension
problem of [23] and [24], based on minimizers of relative
entropy. Attention was then drawn to and to the effect
of selecting (first as a positive rational function of a given
degree in [10]–[12] and then, in increasing generality, in [13],
[14], and [31]).

The theory is developed in parallel for the rational and expo-
nential families since most of the steps are similar. We first state
the more restricted version which is based on the rational family
and then the more general one based on the exponential family.

Theorem 2: Consider , , , , a positive element ,
and a vector . Assume that the set is either a closed
interval in or in . In case is an interval in , assume that

is doubly periodic. Consider the differential equation

(5)

where

(6)

and (e.g., ). If
, then as the solution of (5) tends to a

limit that satisfies

(7)

Moreover, the following hold.

i) The trajectory remains in .
ii) The limit point is the unique solution of (7) in .
iii) The convergence is exponential with a Lya-

punov function

satisfying

along trajectories of (5).

Conversely, if then .
A completely analogous statement holds true for the expo-

nential family, with the added advantage that can now be an
interval in .
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Theorem 3: Consider , , , , a positive element ,
and a vector . The set is assumed to be a closed
interval in with . Consider the differential equation

(8)

where

and , e.g., . If
, then as the solution of (8) tends to a limit

that satisfies

(9)

Moreover, the following hold.

i) The trajectory remains bounded.
ii) The limit point is the unique solution of (9) in .
iii) The convergence is exponential with a Lya-

punov function

satisfying

along trajectories of (8).
Conversely, if , then .

Theorems 2 and 3 hold when is a discrete set, in which case
integration is to be replaced by summation over , and , ,
are interpreted accordingly.

IV. ANALYTIC EXAMPLE

It is often insightful to work through a simple analytic ex-
ample. We do this for the case where

and

in order to explain and highlight certain facts that are exploited
in the proofs of Theorems 2 and 3.

Since elements in can be identified with polynomials
which are nonnegative on , it is not hard to see that

Then, , being its dual cone, is given by

A schematic is shown in Figs. 2 and 5 (with detail intent to
explain the correspondence between moments and parameters
in two separate cases discussed below).

We restrict our attention to and determine explicitly
the correspondence

for the two cases, and
. In either case, we determine the values of the ’s

that correspond to and and explain the lim-
iting behavior of as is taken near the boundary
of .

Case I:

We readily compute that

These expressions can be rewritten in the form

(10)

(11)

(12)

We observe that

(13)

tends to as , it tends to 1 as , it tends to
0 as , and has a negative derivative throughout .
Hence, if we specify that when , (13) de-
fines a continuous and monotonically decreasing function of
in ; see Fig. 3.

Equation (13) thus defines a bijective correspondence be-
tween the ratios and . Then,
from (10), we see that the product of and depends only
on these ratios. Therefore, is a bijective map between pairs

and in the interior and , respectively.
A final point to be made is that when is taken to ap-

proach the boundary of then grows unbounded. To
see this, for simplicity, we take . From (10), we have that

Hence

while

Either way, tends to a singular measure.
Indeed, since grows unbounded, tends to zero
except at points where the denominator tends to vanish.

Case II: .
In this case with no restrictions and
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Fig. 3. r =r versus x := � =� .

We readily compute that

which shows that this time the ratio

(14)

can take any value in for a corresponding unique value of
. A plot of the versus is shown in Fig. 4. Then,

Thus, there is a bijective correspondence
between in the interior of and points .

Yet again, when is taken to approach the boundary
of (i.e., either or ), grows
unbounded. This can be seen from Fig. 4 and can easily verified
directly. However, an interesting fact which will be exploited in
the proof of Theorem 3, is that very much like in the previous
case of the rational family, once again tends to a singular
measure with singularities at the roots of an element in .
The difference with the earlier case is that this time, the curve

may lie outside depending on
the value of . This is sketched in Fig. 5. Yet, as , it
again “lines up” with the boundary of . Indeed

while

It is quite revealing to consider how this works: if for in-
stance, and , then becomes
large and negative over most of , except near 1. In a
small neighborhood of 1 it becomes “positive enough” so
that . Fig. 6 displays and

as a function of , for one such set of values.
Remark 4: As it will become apparent in Section V, when

the vector of moments is taken to approach the boundary of

Fig. 4. r =r versus � .

Fig. 5. Schematic of and , and of the correspondence (r ; r ) $
(� ; � ) for case II.

, both, the rational density as well as the exponen-
tial one in Theorems 2 and 3, tend to become singular
with singularities at the roots of a boundary element of . At
times, this observation may be useful in determining the max-
imum number of singularities (“spectral lines”) that such fami-
lies of density functions are capable of reproducing.

V. PROOFS OF THEOREMS 2 AND 3

The arguments for both theorems are similar and thus, for
the most part, proceed in parallel. The key idea is to study and
compute solutions for the nonlinear (7) and (9) via a one-param-
eter imbedding (homotopy). This is a standard technique in non-
linear analysis (see [46] and [38]) and amounts to introducing
a one-parameter family of problems, from one which is readily
solvable to the one of interest. This we do by introducing a path

, , from a convenient choice
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Fig. 6. �(� + � �) and e as a function of �.

Fig. 7. Schematic of the dual cones and , and of R and � , for � 2
[0; 1].

for a vector of moments to the given . We then consider
the family of equations

with (15)

in order to link a known to the sought-after solution ,
with in an appropriate family parametrized by a vector

. A schematic is shown in Fig. 7. At the end, we rescale
the homotopy variable , replacing it with a new variable

, so as to bring the differential equation which connects
the family of respective solutions into the feedback form given
in the two theorems.

First, a note regarding notation: both families and
consist of absolutely continuous positive measures

with bounded derivative, parametrized by . For both, we
denote by the corresponding “density” functions
and, whenever we want to emphasize their dependence on
we use the notation . At places, we need to indicate an

additional dependence on a homotopy variable , which we
then introduce as a subscript, i.e., as in .

We begin with a given vector of moments and
we are interested in the solvability of the nonlinear equation

(16)

with in one of or . We know a “starting”
pair, with and in the appro-
priate family. Simply take in or

in , with for
either, and compute the corresponding vector of moments using

(17)

Our plan is to study the one-parameter homotopy

(18)

where

(19)

and trace the family of respective solutions. Evidently,
is equivalent to (16) for which a solution is

being sought, while is equivalent to (17) for which
a solution is available.

If the equation has a solution such that

is nonsingular for , then it follows from the implicit
function theorem that satisfies the differential equation

with

(20)
Conversely, if (20) has a solution for
then for . Therefore,

, and gives rise to an
which satisfies (16).

Since , (20) becomes

with

(21)
On the other hand, we readily compute that the partial derivative
with respect to is

(22)
in the case of Theorem 2, and

(23)
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for Theorem 3. We will show that is bounded and invert-
ible along trajectories of (20) for all , if and only if

. The same is true for provided is of di-
mension 1, or of dimension 2 and is periodic in its arguments.
When that happens, can be computed either through (19) or,
through (15) using with obtained via
(21).

Using (19), we have that

Now, by changing variables in (20) via

and substituting , we obtain

(24)

(where denotes , following a common
simplification of notation). In view of (22), (23), and (15),
the equivalence between (20) and the differential equations
in the two theorems, namely (5) and (8), is now complete.
We only need to prove the claim that and remain
invertible along trajectories of (20) for if and only
if , under the stated assumptions. We first
establish this in the context of Theorem 2.

Proposition 5: Let , be as in Theorem 2 and , be
as above. The integral

remains bounded and nonsingular along the trajectory
of

(25)

for if and only if .
Proof: Since is closed and is continuous on , as

long as , the function is bounded away from
0 and is integrable on . The integral is also
nonsingular because and the entries of are linearly
independent on . All this is certainly true for and hence
the differential equation can be integrated on a maximal interval

. Throughout, must remain in for otherwise
is not integrable.

If then for and, hence

(26)

satisfies (16). This is a positive function and hence
.

Let now and compute using

(27)

on the trajectory of (25) for . It follows that

throughout , in agreement with . We
assume belongs to and derive a contradiction.

If , then so does (seen as the limit of
in (27) when ). Yet, by our assumption that is

a maximal interval for which , as either
or tends to a boundary point of . We

first show that in fact it is always the case that .
If we momentarily assume that remains bounded and if
denotes a limit point of as , then vanishes at
some point on . It is here that we need the continuity properties
of .

When is one-dimensional, vanishing of at some
point in implies that is not integrable. A similar
conclusion can be drawn in the case where is two-dimen-
sional, but in this case we need to be periodic (and twice dif-
ferentiable). Then, can be thought of as the torus and
must have a double root. Consequently, again fails
to be integrable.

Lack of integrability in either case contradicts the fact that
lies in the interval between

and for . This is because the first entry of
last integral is simply and fails
to be bounded. We conclude that the only possibility is that

.
We now show that if , the functional

is not strictly positive, which contradicts the assumption that
. This last claim follows readily from the fact

that

is valid throughout , from being continuous, and from
the assertion that . Indeed, being iden-
tically equal to 1 throughout implies that there is a se-
quence for which the corresponding functionals

take values on vectors of
unit length. Thus, they are not bounded away from 0 and nei-
ther does their limit . Therefore, , which
gives the sought contradiction.

We proceed with an analogous statement in context of The-
orem 3.

Proposition 6: Let , , , and be as defined earlier.
The integral re-
mains bounded and nonsingular along a trajectories of

(28)

for if and only if .
Proof: For any value of , is positive and bounded

throughout . Hence, is integrable, and because
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the elements of are linearly independent, the integral is an in-
vertible matrix. It follows that (28) can be integrated on a max-
imal interval .

If , we see as before that for
, then and, hence

(29)

satisfies (16). This again is a positive function and, hence,
.

Conversely, if then and increase
without bound, while

(30)

tends to become singular as . We again compute

(31)

on , which is in agreement with .
We will show that

(32)

which implies that either, due to the convexity
of and the fact that .

Let be the limit of a convergent sequence
, with a suitably selected increasing se-

quence in tending to . That such a convergent sequence
exists follows from the boundedness of and the
fact that these are finite dimensional vectors. We claim that
is a boundary point of . To see this, note that

(33)

If failed to be in , then the sequence of continuous
functions would be negative on a subset of of nonzero
measure, for large enough. This, together with the fact that

, and the fact that the integral in (33) ought to
be uniformly bounded, leads to a contradiction. If on the other
hand, was an interior point of the sequence would
be strictly positive on , for large enough. This, together with
the growth of would indicate that the integral in (33)
ought to tend to 0 as instead of . This again is a
contradiction. Thus, on except for a subset of
possibly zero measure where it vanishes.

In order to prove that it suffices to show
that the sequence , which converges to from within

, is such as . We readily
observe that given any neighborhood of

because uniformly on and . On
the other hand, are positive integrable functions, with
a uniform bound on (due to (31) and the fact
that is bounded). But vanishes on . Thus

can be made arbitrarily small with appropriate selection of
. Hence, both terms in the representation

can be made arbitrarily small for a suitable choice of and
sufficiently large values of . This shows that is not strictly
positive and, as a consequence, cannot be in the interior of
the convex cone .

To recap, we have shown that whenever admits a represen-
tation with a strictly positive measure, then
one such measure can be found within the family of each the-
orem (with the dimensionality and periodicity restriction on
in the case of Theorem 2). This can be done by following the

-coefficients, which, as functions of the homotopy param-
eter (or ), satisfy the differential equation given in the respec-
tive theorem.

A proof of uniqueness of such a representation is as follows.
Consider the mapping

where refers to domains and , respectively,
for the two theorems. This is a -mapping between two
open convex subsets of , with a positive–definite Jacobian
throughout. Thus, if there exist two distinct vectors and in

which are mapped onto the same point , we
may consider the path between them, for

, and denote . Since
by the assumption that the two end points coincide, it follows
that as well. However, this
is not possible since is nonnegative throughout, unless
of course , which is the desired conclusion.

Remark 7: It is clear that the rational family of measures is
essentially restricted to the one-dimensional case of .
It extends to the two-dimensional setting only under the as-
sumption that is doubly periodic. A similar conclusion
was drawn in [41, p. 886]. The exponential family however
has no such restriction. Alternative rational families, e.g.,

etc., may turn out to be applicable for certain
cases in the multidimensional setting. However, periodicity of

seems essential, otherwise, vanishing of may in-
troduce only a single pole on the boundary of for the density
function, which may not be enough to prevent integrability in
higher dimensional cases.

Thus, the one-parameter imbedding leads to the differential
(25) and (28), in the parameter , which converge to the sought
parameter when integrated over the interval starting
from . Replacing by leads to
a “feedback form” of the differential equation, where the vector
field explicitely involves the difference between the moment
vector at the “current position” and the “target value” . The
resulting differential equations are conveniently expressed in the
new variable and integrated over . Thus,
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we obtain (5) and (8) given in Theorems 2 and 3. Both are of the
form

(34)

the only difference between them being in the precise form of
the function . It should also be emphasized that an ordinary
ODE solver is all that is needed. A final point to be emphasized
is that convergence is exponentially fast with time-constant of
1, since the trajectory in the -coordinates follows the trajectory
of the linear differential equation:

(35)

via the correspondence

(36)

for any of the two possibilities given (see also the
schematic in Fig. 7). We now complete the proof of the relevant
claim in Theorems 2 and 3, which we restate in the following
proposition.

Proposition 8: The function

is a Lyapunov function for the differential (34). Moreover, along
trajectories of (34) it holds that

Proof: Clearly, is continuous, differentiable, with
for , ( being or depending on

whether is in or , respectively) and only
vanishes at a possible stationary point of (34). For either choice
of , (34) is simply

with being the Jacobian of (36). Hence

which completes the proof.

VI. MOTIVATING EXAMPLES (CONTINUED)

This section is meant to highlight the fact that constructing a
moment generating function from a set of moments is not any
more complicated when the set of kernel functions lacks any
apparent “shift” structure. To this end, we follow up on the ex-

amples presented earlier and present numerical results on cer-
tain representative cases. The two families of measures, in The-
orems 2 and 3, give similar results. Hence, our selection as to
which ones to display has been somewhat arbitrary. In all cases,
we took , although, a selection of an arbitrary does not
in any way burden the computational steps.

A. Power Spectrum of Input Given Output Measurements
(Continued)

Theorems 2 and 3 can be adopted to the case where the inte-
gration kernels have support on the real line or the half line

, provided these kernels possess a limit at , cf. [39, Ch.
V]. 4 This is not an unreasonable assumption from a practical
viewpoint. In fact, this is the case for the example introduced in
Section II-A.

We begin with low-pass “sensors” having transfer func-
tions , , with

, respectively. We assume a real-valued
stationary zero-mean stochastic process as the input to
all four of them. We further assume that the only available data
are the variance of and the variances
at the output of each sensor. Hence, if denotes the power
distribution function of , these variances provide the
following moment contraints:

for (37)

for and

with for , respectively.
In order to compare a “reconstructed” power spectrum with

an “authentic” one we take

as the power distribution of . The spectral density func-
tion is drawn in Fig. 8
with a continuous line.

We readily compute the variances and form the
vector of moments

The next step is to seek a spectral density function that agrees
with the moments in .

The transformation

takes the half axis onto and brings us to a familiar
setting. Its inverse is given by

4Theorem 3 can also be adopted to higher dimensional cases with support in
or in , provided the kernels are similary well-behaved.
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Fig. 8. Spectral density based on covariance statistics.

while the differentials relate via and
. For a general in (37), the moment constraints

become

for . The framework of Theorems 2 and 3 now
applies. The integration kernel functions are continuous on the
closed interval . Moreover, is a finite measure on

provided is a finite measure on , and vice
versa. Hence, a finite measure can be identified to match
the given moments in either the rational or the exponential form
(as per Section III). Then,

serves as an appropriate spectral measure for which is
consistent with the given moments.

We specialize to the context of Theorem 2 and integrate (5)
so as to obtain a rational spectral density with support on
in the form

which agrees with . Then a spectral density for the original
problem, as a function of , is obtained in the form

For the particular values selected earlier, the resulting
is drawn in Fig. 8 with a dashed line, for comparison. Fig. 9
shows the error in matching the known
variances as a function of the integration variable of Theorem
2—converging to zero with exponent . The lower subplot of
Fig. 9 shows how the entropy integral varies
with . In this example it is monotonically increasing, which is
not a general property.

Fig. 9. Error kR � R k and log(m (!))d! versus t.

B. Nonuniformly Spaced Sensor Arrays—Planar Far Field
Excitation (Continued)

We once again consider the linear array shown in Fig. 1 and
discussed in Section II-B. This consists of three nonequispaced
sensors. We generate a vector of moments

via

for and a particular “reference” spectral
density chosen as piecewise constant on . Fig. 10
shows with a dashed line as well as three other spectral den-
sity functions that are consistent with . In particular, Fig. 10
shows densities corresponding to the families and
which have been obtained as indicated in Theorems 2 and 3, re-
spectively, with . It can be seen that these two spectral den-
sities differ very little from one another (the first marked with a
continuous line and the second with a dotted line).

In the same figure, we superimpose one additional spectral
density marked as dashed–dotted – – . This is listed as an el-
ement of constant (meaning that constant

an element of the exponential family). This last spectral
density is obtained by mimicking the Pisarenko–Carathèodory
construction which underlies high resolution methods (see [25],
[26], and [55]). Briefly, if we postulate that the moment gener-
ating measure has a “white noise” component , then it
is possible to determine the maximal power density that such a
component can account for in explaining . To this end, we
compute a vector of moments corresponding to a uniform mea-
sure . This turns out to be

white

Then

white
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Fig. 10. d� 2 M .

For each value of that white we can apply
either Theorem 2 or 3, and obtain a spectral measure for
which

As we increase and white approaches the boundary
of , the measure tends to become singular with singularities
at roots of for a suitable on the boundary of (cf.
Remark 4). This is indeed the case when (the value
used for the figure is 1.004).

It may be instructive to draw the connection with case
where is an ordinary Fourier vector corresponding to an
equispaced linear array uniform uniform spacial sampling, i.e.,
when . Then, is the lowest eigenvalue of a
Toeplitz matrix formed out of the moments.

Thesamerationalecanbeusedtodeterminethemaximalpower
density for a component of known “color” that is consistent with
thegivenmoments,cf. [26].Thus,usingsuchideasandfurtherex-
ploiting the parameter in the two theorems (Theorems 2 and 3)
a variety of spectral density functions can be generated—all con-
sistentwiththemoments—thatmayincorporatepriorinformation
about the moment generating density/measure.

We conclude by demonstrating the effect of additional mo-
ments. The same is used to generate moments for an
array extended with two additional elements, say and , in
line with the rest and at distances 9 and 19 wavelenghts from .
A schematic is shown in Fig. 11. Utilizing the first elements,
with , and correlating the respective readings at
each sensor location, we have

as the “array manifold” with taking values in

and

Fig. 11. Geometry of sensor array.

Fig. 12. Nonuniformly spaced moments: UsingM .

respectively, in the three cases. The values correspond to dis-
tances between every pair of elements of the sensor array in each
case. Fig. 12 shows for comparison spectral density functions

, , and , constructed according to Theorem
2, i.e., with the corresponding measures

. Each shares with exactly
moments, in each case. It is noted that, as expected, matching
of and improves as increases.

C. Sensor Arrays—Multidimensional Case

Theorem 3 can be used to generate all multidimensional dis-
tributions that match given moments, in complete generality.
However, the example we have selected to demonstrate its ap-
plicability is rather basic. The support set is two-dimensional,
the convolution kernels are sinusoidal functions (though not pe-
riodic in ), and we are content with producing the one distri-
bution which corresponds to selection of .

We begin with a two-dimensional density function

with , and centered at
. The integration kernels are chosen as
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Fig. 13. m (�; �) on [0; �] � [0; �].

for , and a corresponding matrix of moments is
computed as

This formulation encompasses spatial correlation data of a
two-dimensional array (see [35, p. 50]), neglecting temporal
correlations, where the support of the impinging (narrow band-
width stationary, etc.) wave is parametrized by the two angular
parameters . The particular may represent a dominant
component concentrated around on a uni-
form background.

We continue on as usual with

We integrate (8) with equal to 1 and

Since consists of moments of a positive distribution, the dif-
ferential equation converges as claimed in the theorem, and the
limiting value of turns out to be

As claimed in the theorem, the corresponding density

Fig. 14. e on [0; �] � [0; �].

agrees with the moments in . The two density functions
and are shown in Figs. 13 and 14, respectively, for com-
parison.

VII. SYNOPSIS

This paper develops a theory for the general scalar5 moment
problem. The formalism is sufficiently general to encompass
problems in system identification, sensor arrays with arbitrary
geometry and dynamics, and in nonuniform multi-dimensional
sampling. It begins with a known finite set of moments with
respect to known convolution kernels. The goal is to determine
whether the moments are consistent with the hypothesis of a
positive moment-generating density, and if so, to characterize
all densities which are consistent with the moments.

Tools and techniques of the classical theory of the moment
problem and of analytic interpolation are not suitable for the
generality sought in this paper—where the convolution kernels
have no discernible structure and the support of the density func-
tion can be multidimensional. Hence, our approach is quite dis-
tinct from the classical theory. Yet, it answers the typical ques-
tions of existence and parametrization of solutions just as effec-
tively and in great generality.

The techniques we have used complement those in earlier
works based on duality and convexity theory [13], [22], [36],
[44]. They are also quite distinct from homotopy methods em-
ployed in [9], [11], [20], and [48] in a specialized context.
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