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Abstract—This paper explores a geometric framework for
modeling non-stationary but slowly varying time series, based on
the assumption that short-windowed power spectra capture their
spectral character, and that energy transference in the frequency
domain has a physical significance. The framework relies on
certain notions of transportation distance and their respective
geodesics to model possible non-parametric changes in the power
spectral density with respect to time. We discuss the relevance
of this framework to applications in spectral tracking, spectral
averaging, and speech morphing.

Index Terms—spectral metrics, geodesics, transportation dis-
tance, spectral analysis, spectral tracking, spectral averaging,
speech morphing

I. INTRODUCTION

Spectral analysis of time-series has been a remarkable tool
across science and engineering for the best part of the past
century. Historically, the modeling of time series has evolved
in parallel with the birth of probability and stochastic process,
blended with analytic function theory, orthogonal polynomials,
Toeplitz operators, and now constitutes a mature discipline.
Early on the subject received a strong impetus by the advent
of the fast Fourier transform and subsequently, it was once
again transformed by the influx of optimization methods
along with notions of entropy, likelihood, and other statistical
concepts. For the most part, the basic theoretic tools rely on
the assumption that time-series are sample paths of wide-sense
stationary, and possibly ergodic, processes [1]. Invariably, the
key challenge to spectral estimation methods lies in trade-offs
between resolution and variance that stem from the finiteness
of the observation record. The challenge is further amplified
when dealing with non-stationary time-series where various
models and methods, mostly parametric, have been proposed
to cope the changes in the power spectra over time. Evidently,
such time-series are ubiquitous, from seismic recordings to
speech, sonar, radar, etc. The present paper puts forth a non-
parametric framework which is geometric in nature and aims
to deal with modeling of non-stationary spectra.

Several methods have been proposed to deal with a slowly
time-varying spectral content, and the existing approaches can
be broadly classified into two categories. The first class is
based on parametric estimation. For instance, Rao [2] proposed
to approximate time-varying coefficients of an AR model
by the first terms of a Taylor expansion while unknown
parameters are being estimated via a weighted least-squares
problem. Grenier [3] extended the well-known Levinson’s
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AR model, Cadzow’s ARMA model, Burg’s method, and
Prony’s method to the time-varying case, under the restriction
that the unknown coefficients are the weights of the linear
combinations of known basis functions. Under the assumption
that the coefficients of an ARMA model change slowly with
time, Kaderli and Kayhan [4] obtained the AR coefficients
from the time-varying modified Yule-Walker equations. The
time-varying autocorrelations are estimated from the inverse
Fourier transform of the evolutionary periodogram. Based
on the estimated evolutionary cepstrum, they obtain the MA
coefficients by a simple recursion. There have also been
applications of Kalman filtering to tracking changes in the
coefficients of suitable models under appropriate assumptions,
see for instance [5, Sec. 3.3].

The second family of methods which are nonparametric,
generally assume that the signal is stationary over sufficiently
small time intervals, and carry out the spectral estimation in
each interval, of which short time Fourier transform (STFT)
is the most widely used method. STFT can be thought of
as the inner product of the signal with a fixed window
translating both in time and frequency. In a similar spirit,
wavelet transforms evaluate the inner product of the signal
with translated and dilated square integrable functions known
as wavelets [6]. As a general extension of the classical Fourier
analysis, time-frequency distributions (TFDs) approximate a
non-stationary signal as the sum of several mono-component
time-varying signals. For each such signal, a TFD tracks the
spectral variation based on instantaneous frequency (IF), and
provides the energy concentration of the signal around IF at
each time [7]. Many well-known TFDs are generalized into
a unified formulation, which is also called Cohen’s bilinear
class [8].

Several generalizations have been made to extend the con-
cept of spectrum to non-stationary processes. One of the early
attempts is the Page’s instantaneous power spectrum, which is
defined as the differentiation of the magnitude squared Fourier
transform of the signal from the past to the current with respect
to time [9]. Under the assumption that the non-stationary
characteristics change slowly over time, Priestley [10] pro-
posed the concept of evolutionary spectrum, which can be
interpolated as the local energy distribution over frequencies.
The evolutionary spectrum can be estimated by using the
“double windows” technique.

In this paper, we propose geometric ways to model the evo-
lution of the spectral content of slowly time-varying stochastic
processes. More specifically, by regarding the short-windowed
spectra as a path on the manifold of power spectral density
functions, we can use notions of distances and geodesics to
improve upon these estimations. To proceed, we first need a
suitable metric to quantify the distance between two power
spectral density functions. Typical distance measures that
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have been introduced in various contexts, such as Kullback-
Leibler divergence and Itakura-Saito distance, are not metrics
in the rigorous sense. In recent years, certain suitable metrics
were derived having a physical interpretation, one such is
prediction metric [11] which is closely related to the Itakura-
Saito distance and endows the space of admissible power spec-
tral densities with a Riemannian structure. Naturally, metric
geometry allows power spectral density functions to be thought
of as point in a suitable space and provides a framework for
problems of approximation, smoothing, averaging, etc. In the
present paper, we focus on a certain transportation distance
between power spectra. This has its roots in the Monge-
Kantorovich problem of transportation of measures and has
the added benefit that the metric is weakly continuous. This
property is very important since it ensures that small changes
in approximating, deforming, morphing power spectral densi-
ties correspond to small changes in their statistics.

The paper is organized as follows. Section II introduces
certain alternative distance measures which are suitable for
metrizing power spectra with the main focus on the transporta-
tion metric and its geodesics. We then develop optimization
techniques for spectral tracking in Section III, and for spectral
averaging in Section IV. Section V explores the use of such
methods in applications, and we conclude with remarks for
possibly future development in Section VI.

II. DISTANCES AND GEODESICS

A variety of distance measures have been proposed to
quantify changes in power spectral densities [12], [13]. These
have been linked to probabilistic concepts, statistical inference,
as well as practical issues motivated by applications such as
speech analysis. Among these, Kullback-Leibler (KL) diver-
gence is firmly rooted in probability theory for its relevance
in data compression, hypothesis testing, etc. For instance, it
quantifies the degradation in source coding efficiency when a
code is based on a particular probability distribution while the
pdf of the source differs. It can be expressed as

dKL(f0, f1) :=

∫ π

−π
f0 log

f0
f1

dθ

2π
,

where f0 and f1 are normalized density functions with total
integral being 1. When f1 is an infinitesimal perturbation of
f0, the KL divergence gives rise to the Fisher information
metric, i.e.,

dKL(f, f + δ) '
∫ π

−π

δ2

f

dθ

2π

by ignoring the higher order terms on δ [14]. This is a
Riemannian metric, that is, one given by a quadratic form
in the perturbation δ. Its induced geodesic can be expressed
as √

fτ =
sin (1− τ)ϑ

sinϑ

√
f0 +

sin τϑ

sinϑ

√
f1 (1)

for τ ∈ [0, 1], and ϑ denotes the angle between
√
f0 and

√
f1,

i.e.,

cosϑ =

∫ π

−π

√
f0f1

dθ

2π
.

The latter is also known as the Bhattacharyya distance.
Geodesics in the Fisher metric in fact correspond to great
circles on the “sphere” {

√
f :

∫
f = 1} and geodesic

distances to the corresponding arclength.
The KL divergence has been widely used in information

theory, however it may not be the best choice in other
applications. In particular, in the context of speech analysis
and synthesis, the Itakura-Saito distance [15], [13] has been
widely used to measure the mismatch between two spectra.
This is given by

dIS(f0, f1) :=

∫ π

−π

(
f0
f1
− log

f0
f1
− 1

)
dθ

2π
.

In this the density functions are not required to have the
same mass. A gain-optimized expression of the Itakura-Saito
distance, which is often called the Itakura distance [16], [13],
has also been suggested and is given by

dI(f0, f1) := min
α>0

dIS(f0, αf1)

= log

∫ π

−π

f0(θ)

f1(θ)

dθ

2π
−
∫ π

−π
log

f0(θ)

f1(θ)

dθ

2π
.

The exact same expression was obtained in [17] by considering
the ratio of the “degraded” predictive error variance over the
optimal variance by analogy to how the KL divergence quanti-
fies degradation in source coding efficiency. When one spectral
density is a perturbation of another, the Itakura distance leads
(modulo a scaling factor of 2) to the Riemannian pseudo-
metric [17]

dI(f, f + δ) '
∫ π

−π

(
δ(θ)

f(θ)

)2
dθ

2π
−
(∫ π

−π

δ(θ)

f(θ)

dθ

2π

)2

(2)

on density functions. This is analogous to the Fisher metric
and we refer to it as the “prediction metric” due to its roots
in quadratic prediction theory [17]. It turns out that geodesic
paths fτ (τ ∈ [0, 1]) connecting spectral densities f0, f1 and
having minimal length can be explicitly computed as

fτ (θ) = f1−τ0 (θ)fτ1 (θ), (3)

for τ ∈ [0, 1], see [17]. Furthermore, the length along such
“prediction geodesics” can be also explicitly computed in
terms of the end points

dpg(f0, f1)=

√∫ π

−π

(
log

f1(θ)

f0(θ)

)2
dθ

2π
−
(∫ π

−π
log

f1(θ)

f0(θ)

dθ

2π

)2

,

(4)

which is closely related to the L2 norm of the difference of
the log spectra used in speech processing [13].

While these geometric concepts have proven relevant in
many applications, they lack a very important and natural
property that is often desirable, weak continuity. By definition,
a sequence of measures {µk} converges to µ weakly if for
any continuous bounded function φ,

∫
φdµk →

∫
φdµ as

k →∞. This is desirable for a notion of convergence of power
spectra since small changes in the power spectral density ought
to reflect small changes in the statistics and vice versa. For
instance, a “proper” distance between two line-spectra ought
to decrease as two lines move closer, but it is not the case for
distances that fail to be weakly continuous. In order to bring
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in this additional property, in this paper, we consider a certain
family of distances that have a long history in mathematics
and relate to the so-called Monge-Kantorovich transportation
problem [18, pg. 212].

In the context of “transportation” problem, density functions
represent mass distributions and a cost is associated with
transferring one unit of mass from one location to another. The
idea is that by doing so, one gives a precise correspondence
between two densities while the transportation distance quan-
tifies the optimal cost for establishing this correspondence.
The original formulation goes back to Gaspar Monge in 1781,
while Leonid Kantorovich developed the modern formulation
and theory after the second world war –interestingly, Leonid
Kantorovich received the Nobel prize for related work and
application of the theory in Economics.

For the purposes of this paper, we will only consider
quadratic transference-cost. This is what is known as the
Wasserstein distance of order 2. We do so due to the computa-
tional simplicity of the metric. Thus, for two density functions
f0 and f1 supported on the space X (e.g., X = [−π, π]), the
transportation distance is defined as follows:

dW2(f0, f1) :=

{
inf
T (x)

∫
X

|x− T (x)|2f0(x)dx

} 1
2

where, in general, T (x) is a measure-preserving map between
f0 and f1. That is,

|det∇T (x)|f1(T (x)) = f0(x). (5)

In the case that f0 and f1 are one dimensional power spectra,
the transportation plan can be computed explicitly through∫ θ

−π
f0(σ)dσ =

∫ T (θ)

−π
f1(σ)dσ. (6)

The map T (θ) satisfying (6) ensures the optimal transportation
cost for moving f0 to f1. It allows determining T (θ) by
integrating f0, f1 and comparing the respective values of
their integrals [19, section 3.2]. The scaling function T (θ) is
monotonically increasing since both f0 and f1 are positive.

When f1 is a small perturbation of f0, the transportation
distance results in a Riemannian metric; see [18, section
7.6] where the more general high dimensional space is also
considered. In the one dimensional case, this as well can be
computed explicitly as

d2W2
(f, f + δ) '

∫ π

−π

Φ(θ)2

f(θ)

dθ

2π
,

where

Φ(θ) =

∫ θ

−π
δ(φ)

dφ

2π
.

It is interesting to see how this metric may be seen as related
to the Fisher information metric. Perturbations δ of the density
function having integral zero, can be thought of as “tangent
vectors” in the space of densities. The requirement that the
integral is zero follows from the requirement that all densities
have the same mass. Thus, in order to compute d2W2

(f, f + δ)
one needs to integrate this tangent vector δ and compute Φ
–this is a linear operation. It is important to recall that f0 and

f1 can be thought of as defined on the unit circle. Accordingly
Φ(θ) can be represented as the integral of δ starting from any
point on [−π, π], not necessary −π, and returning to it modulo
2π.

Geodesics fτ (τ ∈ [0, 1]) between two end “points” f0 and
f1 are determined by a gradient flow [18, page 252], which, in
this very special one-dimensional case, specifies the geodesic
via

((1− τ) + τT ′(θ)) fτ ((1− τ)θ + τT (θ)) = f0(θ), (7)

for T (θ) computed from (6).
These geometric properties of spectral densities provide

a variety of tools for spectral analysis. By regarding each
spectral density as a point in this manifold, we can apply
intuition from Euclidean geometry to spectral analysis. For
instance, as will be discussed in the sequel, we can use
a geodesic to fit density functions in complete analogy to
Gauss’s least-square line fitting. We can also ask for the mean,
or the median of a set of estimated density functions. This type
of processing holds the promise to provide additional versatile
tools for fusing information from various sensors, modeling
variability of spectra with time and space, etc. In particular,
given two density functions, we may deform one into another
by following the geodesic between them–an technique that can
be used for speech morphing. These ideas will be developed
in more detail in the following sections.

III. SPECTRAL TRACKING

We now focus on modeling non-stationary time series in the
time-frequency domain through geodesic path fitting. Suppose
we are given a sequence of power spectral densities

G := {gτi(θ) : θ ∈ [−π, π] for i = 0, 1, . . . , n},

where τi is an increasing sequence of time-indices, normalized
so that τ0 = 0 and τn = 1. These power spectra may
typically be obtained from time-series data using STFT, and
τi (i = 0, 1, . . . , n) may represent the mid-points, or another
marker, of the corresponding time-windows. We propose to
use the concept of the distance and geodesic of spectra to
regularize the tracking of spectral density at different time
intervals [20]. We will focus on the transportation metric
and its geodesics to illustrate the idea. As usual, all spectra
are normalized whenever the transportation metric or the
corresponding geodesics are being considered.

Our objective is to determine a W2-geodesic fτ , τ ∈ [0, 1],
which minimizes

JG(fτ ) :=

n∑
i=0

(dW2
(fτi , gτi))

2
.

Any geodesic fτ is completely specified by two “points,”
in our case f0, f1. Alternatively, it is also specified by the
transference plan T according to (6) and (7). The optimal
choice of f0, f1, T needs to be determined from the data, i.e.,
the spectra G and the times τi (i = 0, . . . , n). The aim of this
section is to solve the corresponding optimization problem.
This is done next.
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Computation of dW2
(fτi , gτi) requires only the correspon-

dence θ̃ 7→ θ̂ for which∫ θ̃

−π
gτi(σ)dσ =

∫ θ̂

−π
fτi(σ)dσ,

for θ̃, θ̂ ∈ [−π, π]. But,∫ θ̃

−π
gτi(σ)dσ =

∫ θ̂=(1−τi)θ+τiT (θ)

−π
fτi(σ)dσ =

∫ θ

−π
f0(σ)dσ,

(8)
thus,

JG(fτ ) =

n∑
i=0

∫ π

−π

(
θ̃ − ((1− τi)θ + τiT (θ))

)2
gτi(θ̃)dθ̃

where the correspondence

θ̃ 7→ θ 7→ θ̂ = ((1− τi)θ + τiT (θ))

can be unravelled from (8).
To simplify the above expression for JG(fτ ), we bring in

the cumulative distribution functions

F (θ) =

∫ θ

−π
f(σ)dσ,

denoted by capital letters; that is, Fτi is the integral of fτi ,
and similarly for gτi . Then (8) reduces to

Gτi(θ̃) = Fτi((1− τi)θ+ τiT (θ)) = F0(θ) = F1(T (θ)). (9)

Let t = F0(θ), then t ∈ [0, 1] and increases monotonically
with respect to θ. We can represent θ by an inverse function
of F , that is

θ = F−10 (t), and similarly T (θ) = F−11 (t), θ̃i = G−1τi (t).

In addition, t also equals to Gτi(θ̃) from (9). Thus

dt = dGτi(θ̃) = gτi(θ̃)dθ̃.

Then the objective function can be re-written as

JG(fτ ) =

n∑
i=0

∫ 1

0

(
θ̃i − ((1− τi)θ + τiT (θ))

)2
dt

Since gτi ’s are given, θ̃i is known or can be computed
numerically, and the only unknowns are θ and T (θ) which
are functions of t.

To solve this problem numerically, we can divide the range
of t [0, 1], into N subintervals of equal length 1/N and denote
by θk, k = 0, 1, . . . , N the values of θ for which

F0(θk) =
k

N
.

Similarly, let θ̃i,k (i = 0, . . . , n, k = 0, 1, . . . , N ) denote the
values for which

Gτi(θ̃i,k) =
k

N
,

and by θ̂k the values for which

F1(θ̂k) =
k

N
.

Thereby, JG(fτ ) is approximated by the following finite sum

J =
1

N

n∑
i=0

N∑
k=1

(
θ̃i,k −

(
(1− τi)θk + τiθ̂k

))2
. (10)

The values of θ̃i,k (i = 0, . . . , n, k = 0, 1, . . . , N ) can be
readily computed from the problem data G, and the only
unknowns in this “discretization” of JG(fτ ) are the vector
of θ’s, namely θk, k = 0, 1, . . . , N (which help determine F0)
and the vector of corresponding θ̂’s (which help determine
F1, and then T ). Therefore, the spectral tracking problem
can be solved numerically via the following convex quadratic
program with linear constraints:

min {J : subject to − π ≤ θk ≤ θk+1 ≤ π (11)

and − π ≤ θ̂k ≤ θ̂k+1 ≤ π
for 0 ≤ k ≤ N − 1} .

The objective function is convex, so the optimal solution can
be found efficiently [21].

If instead we use the prediction-geodesic distance in (4),
the problem can still be formulated into a convex optimization
problem. We aim to determine a prediction-geodesic fτ , τ ∈
[0, 1], which minimizes

JG(fτ ) :=

n∑
i=0

(dpg(fτi , gτi))
2
.

Recall that the geodesic path fτi between f0 and f1 belongs
to the exponential family

fτi(θ) = f1−τi0 (θ)fτi1 (θ).

If we discretize θ into N intervals from −π to π, and let
f̂τi = log fτi , ĝτi = log gτi , for the simplicity of the notation,
we can work on the problem numerically by minimizing the
following expression

J =

n∑
i=0

N∑
k=1

(ĝτi(k)− (1− τi)f̂0(k)− τif̂1(k))2

− 1

N

n∑
i=0

(

N∑
k=1

(ĝτi(k)− (1− τi)f̂0(k)− τif̂1(k)))2

=

n∑
i=0

(ĝτi − (1− τi)f̂0 − τif̂1)T(I− 1

N
11T)

(ĝτi − (1− τi)f̂0 − τif̂1), (12)

where I is an N × N identity matrix, 1 is an N × 1 vector
with each component being 1. Since (I − 1

N 11T) is positive
semi-definite, formulation (12) is a convex function. Note that
because predictive metric is scale-invariant, the solution is
not unique. To make the computation stable, one can add
constraints on the norms of f̂0 and f̂1.

IV. SPECTRAL AVERAGING

Constructing means, or averages, of a given data set has
been of great interest for the purpose of modeling, smoothing,
clustering, etc. For example in spectral analysis, the Welch
estimator can be thought of as the arithmetic mean of the
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windowed periodograms [22], [23]. The arithmetic mean is
often used to track the central tendency of the data. However in
some applications, it may not be the best choice. For instance,
if we have two Gaussian distributions with means µ1 and
µ2, and the same variance σ2, then their arithmetic mean is
bimodal if |µ1−µ2| > 2σ, and unimodal otherwise [24], while
one would hope that the mean of two Gaussian distribution is
still a Gaussian distribution. For this reason, we consider the
transportation mean in this section.

The transportation mean arises naturally in the facility
allocation. For example, one has several possible holes to
fill each with probability wi. Now one needs to allocate a
pile of sand so that the cost of moving the sand to the
possible holes will be minimized. Mathematically, it can be
described in the following way. Given a set of nonnegative
functions fi(θ), i = 1, · · · , n, θ ∈ [a, b] with equal total
integrals being 1, the transportation mean is obtained through
the following optimization problem:

f̄ = arg min
f

n∑
i=1

wi (dW2(f, fi))
2
, (13)

where wi’s are weights with the sum 1. This problem has
been studied in [25], [26], [27] for general multidimensional
distributions. Below we shall provide the results for the one
dimensional case where proofs are relatively straightforward.

Using the cumulative distribution functions, the problem in
(13) is equivalent to

f̄ = arg min
f

n∑
i=1

wi

∫ b

a

|θ − Ti(θ)|2dF (θ) (14)

s.t. F (θ) = Fi(Ti(θ)), i = 1, · · · , n

Let t = F (θ) and represent θ by an inverse function of F ,
that is

θ = F−1(t), and Ti(θ) = F−1i (F (θ)) = F−1i (t).

Since f(θ) is nonnegative, F (θ) must increase monotonically
with respect to θ. Equivalently, F−1(t) has to increase mono-
tonically with respect to t. In addition, F−1(t) has to satisfy
the boundary condition, i.e., F−1(0) = a and F−1(1) = b.
Instead of solving the problem (14) directly, we can first seek
the optimal F−1. Defining g(t) = F−1(t), we consider the
following optimization problem:

g∗(t) = arg min
g(t)

n∑
i=1

wi

∫ 1

0

|g(t)− F−1i (t)|2dt (15)

s.t. g′(t) ≥ 0, ∀ t ∈ [0, 1]

g(0) = a

g(1) = b.

After obtaining g∗(t), we have the optimal cumulative distri-
bution function F̄ (g∗(t)) = t, and the optimal mean can be
calculated as

f̄(g∗(t)) = 1/ (g∗(t))
′
.

Theorem 1: Let

fi(θ) > 0, ∀ θ ∈ [a, b], and
∫ b

a

fi(θ)dθ = 1,

then the transportation mean f̄ defined in (14) is unique and
has an explicit form

F̄ (

n∑
i=1

wiF
−1
i (t)) = t

where F̄ is the cumulative distribution function of f̄ , and
F−1i (t) is the inverse cumulative distribution function of fi.

Proof: We will first solve the problem (15). Note that
fi(θ) is given, therefore F−1i (t) is known or can be calculated
numerically. Since fi(θ) is nonnegative,

(F−1i )′(t) ≥ 0, ∀ t ∈ [0, 1] (16)

and

F−1i (0) = a, F−1i (1) = b. (17)

If we ignore the constraints on g(t), the unique minimizer is

ĝ∗(t) =

n∑
i=1

wiF
−1
i (t). (18)

Because of the conditions on F−1i (t) in (16) and (17), ĝ∗(t)
satisfies

(ĝ∗)′(t) ≥ 0, ∀t ∈ [0, 1], F−1i (0) = a, and F−1i (1) = b

which are exactly the constraints in problem (15). Therefore,
(18) is the optimal solution for (15). Consequently, the optimal
transportation mean f̄ in (14) can be obtained explicitly from

F̄ (

n∑
i=1

wiF
−1
i (t)) = t.

In the case where fi’s are delta functions

fi(θ) = δ(θ − φi),

we have
F−1i (t) = φi for 0 < t < 1.

Let φ̄ denote the arithmetic mean of {φi}

φ̄ =

n∑
i=1

wiφi.

Then the cumulative function F̄ of the transportation mean
satisfies

F̄−1(t) = φ̄ for 0 < t < 1.

Consequently,
f̄(θ) = δ(θ − φ̄).

To compare the transportation mean with the arithmetic
mean for Gaussian distributions, we have the following corol-
lary:

Corollary 2: Let {fi(θ) = N (µi, σ
2
i ), i = 1, · · · , n},

then their transportation mean f̄(θ) = N (µ̄, σ̄2) where µ̄ and
σ̄ are the arithmetic means of {µi} and {σi} respectively.

Proof: Let f0(θ) = N (0, 1), then fi(θ) is obtained by
translating and dilating f0(θ), that is

σifi(σiθ + µi) = f0(θ), i = 1, · · · , n.



6

Consequently,

Fi(σiθ + µi) = F0(θ), i = 1, · · · , n.

Using Theorem 1, the transportation mean satisfies

F̄

(
n∑
i=1

wi(σiθ + µi)

)
= F0(θ),

which is the same as

F̄

(
(

n∑
i=1

wiσi)θ +

n∑
i=1

wiµi

)
= F0(θ).

Thus f̄(θ) is still a Gaussian distribution with mean and
variance being

µ̄ =

n∑
i=1

wiµi, σ̄ =

n∑
i=1

wiσi,

which are the arithmetic means of {µi} and {σi} respectively.

V. APPLICATIONS

In this section, we shall provide some applications of the
ideas developed before. For all numerical examples that follow,
we used the software package SeDuMi, available through [28],
to solve optimization problems.

A. Geodesic Fitting

As a numerical example, we generate time-series data
by driving a time-varying system with unit-variance white
noise and then superimposing white measurement noise with
variance equal to 2. The time-varying system consists of a
succession of (15th-order) auto-regressive filters chosen to
match the spectral character of a W2-geodesic between an
ideal power spectrum

f0,ideal(θ) =
∣∣1− 0.5z−1 + 0.6z−2

1 + 0.8z−1 + 0.9z−2
∣∣2
z=ejθ

and a final

f1,ideal(θ) =
∣∣1 + 0.5z−1 + 0.6z−2

1− 0.8z−1 + 0.9z−2
∣∣2
z=ejθ

.

These are shown in Figure 1. STFT with a window of 128
points and an overlapping between successive windows by 64
points provides us with a collection of power spectral G as
before.

Figure 3 shows the time-series data (in the first row) and
then, below, it compares STFT power spectra (gτi(θ)) in the
second row with corresponding spectra obtained via a geodesic
fit (fτi(θ)). Figure 2 compares the spectrogram obtained by
STFT and the one by the geodesic path fitting. It is clear that
the geodesic path captures quite accurately the drift of power
in the spectrum over time. Furthermore, the corresponding
“frozen time” spectra fτi(θ) for i = 0, . . . , n appear to
reproduce quite accurately the expected power distribution
at the particular points in time. On the other hand, due to

Fig. 1. Power spectra f0,ideal and f1,ideal as functions of θ/π.

Fig. 2. STFT spectrogram and estimated geodesic path.

the small signal to noise ratio (SNR) the STFT seem quite
unreliable.

To deal with a long record of data where signal gradually
undergoes significant changes, we can simply divide all spectra
into several batches and determine a geodesic for each batch.
However, this method can lead to discrepancies at the con-
necting points of successive batches. In order to ensure that no
abrupt changes happen at these connecting points, we can add
the distances between the ends of geodesics and the beginnings
of the successive geodesics to the overall objective function. In
addition, to guarantee that the signal changes slowly in each
batch, we can also include all the length of geodesics as a
penalty term. Therefore, our objective function becomes

JG(fτ ) =

m∑
j=1

n∑
i=0

(dW2
(fj,τi , gj,τi))

2
+ α

m−1∑
j=1

(dW2
(fj,τn , fj+1,τ1))

2

+ β

m∑
j=1

(dW2
(fj,τ1 , fj,τn))

2
,

where j is the index of batch, m is the total number of batches,
α and β are weights. In a similar way as before, JG(fτ ) can
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Fig. 3. First row: time-series data; second row: STFT spectra based on the
highlighted parts of the time-series; third row: samples of geodesic fit to STFT
spectra.

be approximated as

J =
1

N

m∑
j=1

n∑
i=0

N∑
k=1

(
θ̃j,i,k −

(
(1− τi)θj,k + τiθ̂j,k

))2
+
α

N

m−1∑
j=1

N∑
k=1

(
θ̂j,k − θj+1,k

)2
+
β

N

m∑
j=1

N∑
k=1

(
θ̂j,k − θj,k

)2
,

where the definitions of θ̃j,i,k, θj,k, and θ̂j,k are similar as
before with j as the index of batch. The constraints resemble
before by replacing θk and θ̂k with θj,k and θ̂j,k. As an
example, we generate a quadratic chirp signal with additive
noise of standard variance 1. Figures 4 and 5 show the result
with α = 50, β = 1 and the batch size being 20. The black
dots denote the true frequency of the signal at that time.

Fig. 4. STFT spectrogram and the batched geodesic path without penalty
terms.

If the computational cost is not an issue, we can fit a
geodesic for every pair of successive spectra so that the total
geodesic length and the least square deviations from the given
spectra are minimized. Therefore, our purpose is to determine

Fig. 5. Top row: time-series with two chirp signals and additive noise; second
row: STFT spectra corresponding to windows marked with blue; third row:
batched geodesic-fit samples without penalty terms.

fτi , which minimizes

JG(fτ ) :=

n∑
i=0

(dW2(fτi , gτi))
2

+ α

n−1∑
i=0

(
dW2(fτi , fτi+1)

)2
.

Note that in this case fτi ’s are not confined in a single
geodesic. Let Fτi(θi,k) = k

N , where Fτi is the mass distribu-
tion function of fτi as before, then the above objective function
can be approximated numerically as

J =
1

N

n∑
i=0

N∑
k=1

(
θ̃i,k − θi,k

)2
+
α

N

n−1∑
i=0

N∑
k=1

(θi,k − θi+1,k)
2
.

The unknown variables θi,k are subject to the constraints that
they are non-decreasing with respect to k and their values are
between 0 and 1. Since we have n ∗ N unknowns, it can be
computationally expensive when the number of spectra n is
large.

To illustrate the idea, we generate a chirp signal with the
additive noise of standard variance 1.25. The total of 19 spectra
by STFT and those estimated by pair-wise geodesic fitting
are shown in Figure 6. Figure 7 compares several samples of
spectra with the black dotes denote the true frequency of the
signal at the corresponding time.

Comparing with the transportation distance, Figure 8 and 9
show the estimated spectra by using the prediction geodesic.
We can see that the prediction geodesic results in a fade-in
and fade-out affect on the spectral tracking, thus may not be
a proper choice in this situation.

B. Spectral Averaging

The idea of the transportation mean can be applied to the
smoothing of spectral densities. For a slowly time-varying
signal, the spectral densities are estimated by short time
Fourier transformation (STFT). At each “frozen” time, we use
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Fig. 6. STFT spectrogram and the pair-wise geodesic path.

Fig. 7. Top row: time-series with two chirp signals and additive noise; second
row: STFT spectra corresponding to windows marked with blue; third row:
pair-wise geodesic-fit samples.

the transportation mean of its spectral density and its neighbors
to represent the smoothed spectral estimation.

As an example, we generated a chirp signal with additive
noise. At each time, transportation mean is calculated with two
neighbors from the past and two neighbors from the following
with weights being [0.1250 0.2188 0.3125 0.2188 0.1250].
Figure 10 compares the spectral densities by STFT and the
smoothed ones using the transportation mean. The black dots
represents the true frequency at that time. We can see that
spectral averaging has the potential of improving the resolution
of the spectral estimation.

C. Speech Morphing

The purpose of this subsection is to consider geodesic
paths between power spectral density functions as a means
to morph voice of one individual to the voice of another
[29]. Speech morphing is the process of transforming one
person’s speech pattern (e.g., Alice’s) into another’s (Bob’s),
gradually, creating a new pattern with a distinct identity, while
preserving the speech-like quality and content of the spoken

Fig. 8. STFT spectrogram and the prediction geodesic path.

Fig. 9. First row: time-series data; second row: STFT spectra based on the
highlighted parts of the time-series; third row: samples of prediction geodesic
fit to STFT spectra.

sentence. Despite great strides in the theory and technology
of speech processing, speech morphing is still in an early
phase and far from being a standard application [30], [31],
[32], [33], [34], [30]. The key difference between our work
and those earlier attempts is in the algorithm for interpolating
the resulting power spectra. In our work we suggest that this
can be most conveniently, and perhaps naturally, effected by
following geodesics in suitable metrics. Below, we briefly
discuss the steps taken for analyzing a voiced phoneme for A
and B, generating the respective spectra, and then generating
the morphed sound.

For analyzing voiced phonemes we use linear prediction
techniques to obtain the coefficients for a modeling filter as
well as to estimate the pitch. The frame size is 25 [ms], and
the frame interval is 12 [ms]. A standard “pre-emphasis” filter
is used to reduce the low-frequency content in the signal.
The filtered data is weighted using a Hamming window. For
modeling, we use the autocorrelation method for estimating
the covariance lags and then the Levinson-Durbin method for
obtaining the coefficients of the AR model. The AR model
of the phoneme, for each of the two speaker, provides a
corresponding power spectral density. A power spectrum at
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Fig. 10. First row: spectral densities by STFT; second row: smoothed spectral
densities by transportation mean.

Fig. 11. Time signals corresponding to the phoneme “a” for A (female) and
B (male)

a point τ ∈ [0, 1] on the geodesic path is then determined. We
estimate the pitch period for speakers A and B. These periods
are linearly interpolated along the path. The synthesized power
spectral densities are approximated as AR-spectra and, finally,
a pulse train with the interpolated pitch period is used to drive
the synthesized AR-filter (at τ ∈ [0, 1] on the geodesic) in
order to produce the synthesized sound. A post-emphasis filter
is used to compensate the effect of the pre-emphasis filter–a
standard practice. In synthesizing complete sentences, more
complicated methods have been suggested to further improve
the voice quality, such as a glottal-flow-like excitation [35].
With the purpose of illustrating the idea of spectral morphing,
we didn’t involve ourselves with these advanced techniques.

The voiced sound that is being analyzed (an “a”) is shown
as two superimposed time-waveforms in Figure 11 (one for
speaker A and one for B); it was sampled at 8KHz. For
modeling, we choose an AR model of order 14. The spectral
deformation by the three alternative geodesics (1), (3), and (7)
are shown in Figure 13, 14 and 15 respectively. Though the
effect on the acoustic quality is very subjective, we find that
geodesic (3) has surprisingly good acoustic qualities, in spite

of the fact that visually, in Figures 14, there is an apparent
“fade in” and “fade out” of the respective formants in the two
power spectra. The voice quality by geodesic (7) has some
artifacts, which may due to the gradually transport of formant
locations and our ears may be very sensitive to it. The audio
of speech morphing of the complete sentence “Thank you
for your attention.” using these techniques is included in a
plenary presentation posted in [36]. The audio demonstrates
intermediate reconstructions between the voices of two of the
authors.

Fig. 12. Power spectra for subjects A (female) and B (male).

Fig. 13. Geodesic path between the two spectra following Fisher information
metric.

VI. CONCLUSION

In recent years there has been an interest in endowing the
space of power spectral densities with a natural metric (see
[17], [37], [29], [38]). This has been motivated by a desire to
develop tools for quantitative spectral analysis and modeling.
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Fig. 14. Geodesic path between the two spectra following prediction metric.

Fig. 15. Geodesic path between the two spectra following transportation
metric.

Besides the relevance of metrics in quantifying modeling
uncertainty, comparing spectra, etc., a metric topology brings
up the concept of geodesics. These are the analogs of the
straight lines of Euclidean geometry and represent the simplest
models of paths across the space of density functions. In the
present paper we sought to explore the concept of spectral
geodesics for tracking features of a “time-varying” power
spectrum. Such “time-varying spectra” are typically associated
with non-stationary time-series [8], [39] modeling of which
has always been somewhat of a conundrum in signal analysis.
In this work, we formulated the problem of approximating
spectra with geodesics utilizing the transportation metric. We
then show that this “geodesic fit” problem is amenable to
standard numerical tools of convex optimization. We use
numerical examples to highlight the potential of the concept of
a geodesic between spectra as a model for time-variability. The
data for our formulations can be provided by standard spectral
analysis techniques and, in particular, by the short-time Fourier
transform. We also apply the idea of spectral geodesics to
speech morphing, which could be potentially useful for voice
transformation.

As a future direction, we expect to extend the transportation
distance to distributions with unequal mass. Following earlier
insights on this topic [40], [41], [42], [38], one may consider
merging transportation distance with the L2 distance. That is,
at each step, for a spectral density f and its small perturbation
f + δ, we seek an intermediate point f̂ such that the sum of
the squared transportation distance between f and f̂ and the
squared L2 distance between f̂ and f + δ is minimized. We
expect that the geodesic induced from such a mixed distance
will provide a smooth deformation of both shape and total
energy of the spectral density function which is natural from
an applications’ standpoint.
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