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Abstract

The purpose of this thesis is to study the geometry of power spectra and develop geometric

methods for spectral analysis, modeling, and filtering of time series. We first study notions of

distance suitable to quantify mismatch between probability distributions, power spectra, and

covariance matrices. To this end, we review and relate relevant concepts from statistical in-

ference, information theory, signal processing, and quantum mechanics. We introduce several

alternative metrics for scalar as well as multivariate power spectra, and explore concepts from

Riemannian geometry, in particular geodesics and means, to model slowly varying time series,

and to interpolate and fuse statistics from different sources.

We first study mismatch between power spectra in the context of linear prediction. We in-

troduce two alternative metrics. The first quantifies the degradation of predictive error variance

when one power spectrum is used to design an optimal filter which is then applied to a process

corresponding to another power spectrum. The second metric reflects the flatness of the inno-

vations process. For this second metric, we provide closed-form expressions for the induced

geodesics and geodesic distances. The theory we develop applies to multivariate power spectra.

The metrics based on the prediction paradigm lack the important property of weak continuity.

To this end we explore an alternative framework based on the transportation problem. In this,

energy content has a physical significance and metrics quantify transportation cost between

frequencies.

Throughout we explore geometric methods on the Riemannian manifold of power spec-

tra, in a way analogous to the familiar Euclidean geometry. In particular, we use the notion

of a geodesic to model the evolution of power spectral densities for slowly varying time se-

ries. More specifically, we develop the idea of geodesic path-fitting as an analogue of the least

squares line-fitting in the Euclidean space. Further, we investigate means or averages of distri-

butions and of positive semi-definite matrices arising in signal processing, computer vision and

pattern recognition applications. The transportation mean, as well as the median, for normalized

scalar power spectra are provided analytically. For multivariate Gaussian distributions, we show

that the transportation mean requires solving a linear matrix inequality problem, which is com-

putationally tractable. Furthermore, linear structural constraints on the means, based on prior

knowledge, can be easily incorporated and solved efficiently using the linear matrix inequality
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formulation. We highlight the relevance of the geometric framework with several applications in

signal processing, such as spectral tracking, speech morphing, filtering, and spectral averaging.
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Chapter 1

Introduction

A power spectral density (PSD) function represents the energy distribution of a second-order

stationary time series over frequencies [1]. In sonar and radar systems, the PSD of a received

signal provides information on the locations of sources with respect to the receiver. For speech

signal, the spectral content can be used to detect formants, which is essential in speech recogni-

tion and synthesis. For stock market data, spectral density may reveal hidden periodic patterns.

Accordingly, much effort has been devoted to the techniques of spectral estimation, which

is non-trivial due to the finite record of observations. Below, we first provide a brief account on

the spectral analysis methods for stationary or slowly varying time series. We then propose our

geometric methods and describe these in detail in the following chapters.

1.1 Time Series and Spectral Analysis

We first briefly review spectral estimation methods for stationary processes. These methods can

be divided into two categories, parametric or non-parametric. For more details, we refer to the

book by Stoica and Moses [1].

Parametric approaches postulate a model for the data, thus convert the task into estimating

model parameters. When the data indeed satisfy the assumed model, parametric methods nor-

mally provide a quite accurate estimation. Some well-known parametric estimation algorithms

are Yule-Walker, least-squares, Burg, Pisarenko and MUSIC, Min-norm, ESPRIT, and so forth.

Non-parametric methods typically estimate the energy in each frequency by passing the

signal through a narrow-banded filter centered at that frequency. The energy of the filtered
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signal divided by the bandwidth of the filter approximates the spectral content of the signal at

that frequency. The classical methods in this category are Blackman-Tukey, Bartlett, Welch,

Daniell, Slepian methdo, RFB, Capon, and so on.

The above spectral estimation methods are based on the assumption that the underlying

process is second-order stationary, while in reality most signals we encounter are time-varying.

In speech signal, formants change from one phoneme to another. In seismology, the spectral

content of signal changes with ground movement. In sonar and radar systems, spectral density

also changes if a target moves. This brings up two questions. First, how can we decide whether

a process is stationary? Second, what can we do if the process is not stationary?

To determine whether a process is stationary, Silverman [2] defined a class of random pro-

cesses to be locally stationary if the covariance can be expressed as a stationary covariance mul-

tiplied by a sliding power factor. Martin [3] studied the class of quasi-stationary harmonizable

processes which can be approximated as piecewise stationary processes. He then used so-called

stability and precision of the pseudo Wigner estimator as a measure of non-stationarity in each

frequency band. Xiao et al. [4, 5] generated a set of surrogate data to serve as the null hypothe-

sis of stationarity. These surrogate data have the same marginal spectrum as the non-stationary

process but with the uniformly distributed spectrum phase. Then they compared the selected

statistic significance of the actual observation with the surrogate data to decide the degree of

non-stationarity. Priestley and Rao [6] employed the log transform of the evolutionary spec-

trum estimator to test whether the process is stationary. The test is equivalent to a two-factor

analysis of variance procedure with the known residual variance. By parameterizing a locally

wide sense stationary Gaussian random process as a time-varying autoregressive (AR) process

with each coefficient in the linear span of some known basis functions, Kay [7] proposed to use

a Rao test to check the stationarity of the data.

Regarding the spectral analysis of non-stationary signals, the techniques proposed can still

be divided into parametric or non-parametric methods. Along the line of parametric meth-

ods, Rao [8] proposed to approximate the time-varying coefficients of an AR model by the

first three terms of the Taylor expansion. Unknown parameters are estimated by minimizing a

weighted least square problem. Grenier [9] extended well-known Levinson’s AR model, Burg’s

method, Prony’s method, and Cadzow’s autoregressive-moving-average (ARMA) model to the

time-varying case, under the restriction that the unknown coefficients are the weights of the
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linear combinations of known basis functions. Dahlhaus [10] proposed to estimate slowly time-

varying parameters of a non-stationary process by minimizing a generalized Whittle function

over periodograms constructed for successive time-windows. Under the assumption that the

coefficients of ARMA model change slowly with time, Kaderli and Kayhan [11] obtained the

AR coefficients from the time-varying modified Yule-Walker equations. The time-varying auto-

correlations are estimated from the inverse Fourier transform of the evolutionary periodogram.

Based on the estimated evolutionary cepstrum, they obtained the MA coefficients by a simple

recursion.

Nonparametric methods generally assume that the signal doesn’t change too fast. The signal

is considered to be stationary in a sufficiently small time interval, and spectral estimation can

be carried out in each of such intervals. This is called the time-frequency analysis, of which the

short-time Fourier transform (STFT) is the most widely used tool. The STFT can be thought of

as the inner product of the signal with basis sinusoidal signals having support over a window

which is shifted in time. It is straightforward and easy to implement, but it is limited by the

uncertainty principle. A long window may give smaller variance of the estimation, but reduces

the time resolution. A short window, on the other hand, increases the time resolution with the

sacrifice of the frequency resolution. Along a similar spirit, wavelet transforms take the inner

product of the signal with translated and dilated square integrable functions, which are also

called wavelets. Since the wavelet will be highly concentrated at the high frequency range, it’s

believed that wavelet transform has better time-resolution than STFT at high frequency range

[12].

Another important method is based on so called time-frequency distributions (TFD), which

is a general extension of the classical Fourier analysis. Its concept is closely related to the

instantaneous frequency (IF), which corresponds to the frequency of a sinusoid wave. TFD ap-

proximates the nonstationary signal as the sum of several monocomponent time varying signals.

For each monocomponent signal, TFD tracks the spectral variation based on IF, and provides the

energy concentration of the signal around IF at each time. Cohen generalized many well-known

TFDs into a unified formulation, which is called Cohen’s bilinear class. The desired properties

of a TFD are as follows. (1) TFD must be real; (2) Integration of TFD over both time and

frequency yields the energy of the signal; (3) Integration of TFD over time yields the spectral

density of the signal; (4) Integration of TFD over frequency yields the instantaneous power of

the signal; (5) The first moments of TFD yield the instantaneous frequency and the time-delay
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of the signal. Four major TFDs have all these properties: the Wigner-Ville distributin, the Ri-

haczek distribution, the Cohen distribution, and the Choi-Williams distribution. However, these

distributions can’t guarantee the positivity of TFD. To ensure the positivity of TFD, property (5)

has to be sacrificed, which is the case of spectrogram. Because of the possible negative values

of TFD, it is more proper to interpret TFD as an energy gradient representation, rather than the

distribution of energy over time and frequency [13, 14].

Several generalizations have been made to extend the concept of spectrum to non-stationary

processes. One of the early attempts is Page’s instantaneous power spectra, which is defined

as the differentiation of magnitude squared Fourier transform of the signal from the past to the

current with respect to time [15]. Under the assumption that the non-stationary characteristics

change slowly over time, Priestley [16] proposed the concept of evolutionary spectrum, which

can be interpolated as the local energy distribution over frequency. The evolutionary spectrum

can be estimated by using the “double windows” technique. By choosing proper windows, the

estimator can be unbiased, and the variance of the estimator was also derived by Priestly.

1.2 Outline and Contributions

In this thesis, we propose geometric methods for spectral analysis. Naturally, a metric ge-

ometry allows power spectral density functions to be thought of as points in a suitable space

and provides a framework for problems of approximation, smoothing, and averaging, in a way

analogous to the familiar Euclidean geometry.

To proceed, we first need suitable metrics to quantify the distance between two power spec-

tral density functions. In Chapter 2, we review various metrics and their geometries for prob-

ability distributions, power spectra, as well as positive definite matrices. Such distances arise

naturally in statistic inference, information theory, signal processing, or quantum mechanics.

We discuss their relationship in the context of Gaussian random processes.

In Chapter 3, we generalize the prediction-based distance for multivariate power spectra.

More specifically, two categories of divergences are proposed. The first quantifies the degrada-

tion of the predictive error variance: a choice between the two power spectra is used to design an

optimal filter, which is then applied to a process corresponding to the second power spectrum.

The second quantifies the “flatness” of the innovations process. We further identify correspond-

ing Riemannian metrics, and for the second metric we provide closed-form expressions for the
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induced geodesics and geodesic distances.

We then utilize notions of distances and geodesics to model the evolution of power spectral

densities in Chapter 4. To be more precise, we propose geodesic path fitting on a Riemannian

manifold in a similar way as the least squares line fitting in the Euclidean space. We put our

emphasis on the transportation distance and its induced geodesic due to its weak continuity

property.

In Chapter 5, we investigate means or averages of distributions or positive definite matrices.

The transportation mean, as well as the median, for normalized scalar-valued distributions are

provided analytically. For multivariate zero-mean Gaussian distributions, we show that the

computation of the transportation mean requires solving a linear matrix inequality problem,

which is computationally tractable. As a result, linear structural constraints on the means can

be easily incorporated.

Finally, in Chapter 6 we discusses some applications of these geometric methods to signal

processing problems, such as speech morphing and spectral averaging.



Chapter 2

Metrics on Distributions and Positive
Definite Matrices

A variety of distance measures have been proposed to quantify changes in probability distri-

butions or power spectral densities [17, 18, 19, 20]. These have been linked to probabilistic

concepts, statistical inference, quantum mechanics, as well as practical issues motivated by ap-

plications such as speech analysis. This chapter provides a general view of this topic. More

specifically, Section 2.1 focuses on distances and metrics for one-dimensional distributions.

Section 2.2 reviews metrics for positive definite matrices, such as covariance matrices, and den-

sity matrices in quantum mechanics. Section 2.3 links various metrics naturally by considering

Gaussian random processes.

2.1 One-dimensional Distributions

The Kullback-Leibler (KL) divergence is firmly rooted in probability theory for its relevance

in data compression and hypothesis testing (see Appendix D). In information theory, the KL

divergence quantifies the degradation in source coding efficiency when a code is based on a

particular probability distribution f1 while the pdf of the source f0 differs. It can be expressed

as

dKL( f0, f1) :=
∫

X
f0 log

f0

f1
dx,

6



7

where X is the underlying probability space. When f1 is an infinitesimal perturbation of f0, the

KL divergence gives rise to the Fisher information metric

g f ,Fisher(δ ) :=
∫

X

δ 2

f
dx (2.1)

by ignoring the higher order terms on δ [21]. This turns out to be natural from one additional

perspective. It is the unique Riemannian metric for which the stochastic maps are contractive

[22] –a property that motivates a family of metrics in the context of matricial counterparts of

probability distributions (see Section 2.2). The induced geodesic of the Fisher metric can be

expressed as √
fτ =

sin(1− τ)ϑ

sinϑ

√
f0 +

sinτϑ

sinϑ

√
f1 (2.2)

for τ ∈ [0, 1], and the geodesic distance is the angle ϑ between
√

f0 and
√

f1, i.e.,

cosϑ =
∫

π

−π

√
f0 f1

dθ

2π
.

The latter is also known as the Bhattacharyya coefficient. Geodesics in the Fisher metric in

fact correspond to great circles on the “sphere” {
√

f :
∫

f = 1} and geodesic distances to the

corresponding arclength. A closely related metric is the Hellinger distance [23], also called the

Matusita distance [24], which measures the straight line distance between
√

f0 and
√

f1.

The KL divergence has been widely used in information theory, however it may not be the

best choice in other applications. In particular, in the context of speech analysis and synthesis,

the Itakura-Saito distance [25, 19] has been commonly used to measure the mismatch between

two spectra f0 and f1. This is given by

dIS( f0, f1) :=
∫

π

−π

(
f0

f1
− log

f0

f1
−1
)

dθ

2π
.

In this the density functions are not required to have the same integrals. It is well-known that

infinitesimal perturbations from a given f (θ) lead the Itakura-Saito distance to a Riemannian

metric [17]

g f ,IS(δ ) := || f−1
δ ||22. (2.3)

Moreover, the unique geodesic path from f0 to f1 is parameterized as

fτ = f 1−τ

0 f τ
1 ,
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and the geodesic distance is the log spectral deviation [18]

dLog( f0, f1) := || log f0− log f1||2. (2.4)

A gain-optimized expression of the Itakura-Saito distance, which is often called the Itakura

distance [26, 19], has also been suggested and is given by

dI( f0, f1) := min
α>0

dIS( f0,α f1)

= log
∫

π

−π

f0(θ)

f1(θ)

dθ

2π
−
∫

π

−π

log
f0(θ)

f1(θ)

dθ

2π
.

The exact same expression was obtained in [17] by considering the ratio of the “degraded” pre-

dictive error variance over the optimal variance by analogy to how the KL divergence quantifies

degradation in source coding efficiency. When one spectral density is a perturbation of another,

the Itakura distance leads (modulo a scaling factor of 2) to the Riemannian pseudo-metric [17]

g f ,Prediction(δ ) :=
∫

π

−π

(
δ (θ)

f (θ)

)2 dθ

2π
−
(∫

π

−π

δ (θ)

f (θ)
dθ

2π

)2

(2.5)

on density functions. This is analogous to the Fisher metric and we refer to it as the “prediction

metric” due to its roots in quadratic prediction theory [17]. It turns out that geodesic paths

fτ (τ ∈ [0,1]) connecting spectral densities f0, f1 and having minimal length can be explicitly

computed as

fτ(θ) = f 1−τ

0 (θ) f τ
1 (θ), (2.6)

for τ ∈ [0,1], see [17]. Furthermore, the length along such “prediction geodesics” can be also
explicitly computed in terms of the end points

dpg( f0, f1):=

√∫
π

−π

(
log

f1(θ)

f0(θ)

)2 dθ

2π
−
(∫

π

−π

log
f1(θ)

f0(θ)

dθ

2π

)2

, (2.7)

which is closely related to the L2 norm of the difference of the log spectra used in speech

processing [19].

While these geometric concepts have proven relevant in many applications, they lack a

very important and natural property that is often desirable, weak continuity. By definition, a

sequence of measures {µk} converges to µ weakly if for any continuous bounded function φ ,∫
φdµk→

∫
φdµ as k→∞. This is desirable for a notion of convergence of power spectra since

small changes in the power spectral density ought to reflect small changes in the statistics and



9

vice versa. For instance, a “proper” distance between two line-spectra ought to decrease as two

lines move closer, but it is not the case for distances that fail to be weakly continuous. In order

to bring in this additional property, we consider a certain family of distances that have a long

history in mathematics and relate to the so-called Monge-Kantorovich transportation problem

[27, pg. 212].

In the context of “transportation” problem, density functions represent mass distributions

and a cost is associated with transferring one unit of mass from one location to another. The

idea is that by doing so, one gives a precise correspondence between two densities while the

transportation distance quantifies the optimal cost for establishing this correspondence. The

original formulation goes back to Gaspar Monge in 1781, while Leonid Kantorovich developed

the modern formulation and theory after the World War II –interestingly, Leonid Kantorovich

received the Nobel prize in Economics for related work and application of the theory .

Throughout, we will only consider quadratic transference-cost which is known as the Wasser-

stein distance of order 2. We do so due to the computational simplicity of the metric. Thus, for

two density functions f0 and f1 supported on the space X (e.g., X = [−π,π]), the transportation

distance is defined as follows:

dW2( f0, f1) :=
{

inf
ψ(x)

∫
X
|x−ψ(x)|2 f0(x)dx

} 1
2

where, in general, ψ(x) is a measure-preserving map between f0 and f1. That is,

|det∇ψ(x)| f1(ψ(x)) = f0(x). (2.8)

In the case that f0 and f1 are one dimensional power spectra, the optimal transportation plan

can be computed explicitly [27, pg. 75] through

F0(θ) = F1 (ψ(θ)) , (2.9)

where

Fi(θ) =
∫

θ

−π

fi(ϑ)dϑ

is the cumulative function of fi (i = 0,1). It allows determining ψ(θ) by integrating f0, f1 and

comparing the respective values of their integrals [28, section 3.2]. The scaling function ψ(θ)

is monotonically increasing since both f0 and f1 are positive. Now, let t = F0(θ) and t ∈ [0,1],

then we can represent θ by an inverse function of F0, that is

θ = F−1
0 (t), and similarly ψ(θ) = F−1

1 (t).
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Consequently in this one dimensional case, the transportation distance has a closed form

dW2( f0, f1) =

{∫ 1

0

(
F−1

0 (t)−F−1
1 (t)

)2
dt
} 1

2

. (2.10)

When f1 is a small perturbation of f0, the transportation distance results in a Riemannian

metric; see [27, section 7.6], where the more general high dimensional space is also considered.

In the one dimensional case, this as well can be computed explicitly as

g f ,W2
(δ ) :=

∫
π

−π

Φ(θ)2

f (θ)
dθ

2π
,

where

Φ(θ) =
∫

θ

−π

δ (ϑ)
dϑ

2π
.

It is interesting to see how this metric may be seen as related to the Fisher information metric.

Perturbations δ of the density function having integral zero, can be thought of as “tangent

vectors” in the space of densities. The requirement that the integral is zero follows from the

requirement that all densities have the same mass. Thus, in order to compute d2
W2

( f , f +δ ) one

needs to integrate this tangent vector δ and compute Φ –this is a linear operation. It is important

to recall that f0 and f1 can be thought of as defined on the unit circle. Accordingly Φ(θ) can

be represented as the integral of δ starting from any point on [−π,π], not necessary −π , and

returning to it modulo 2π .

Geodesics fτ (τ ∈ [0,1]) between two end “points” f0 and f1 are determined by a gradient

flow [27, page 252] , which, in this very special one-dimensional case, specifies the geodesic

via

Fτ((1− τ)θ + τψ(θ)) = F0(θ), (2.11)

for ψ(θ) computed from (2.9) with Fτ being the cumulative function of fτ .

2.2 Positive Definite Matrices

In quantum mechanics, the uncertainty of a quantum system is measured by the von Neumann

entropy [29] as a direct analog of the Shannon entroy. We shall consider only the manifold M

of invertible finite density matrices to avoid boundary problems:

M := {ρ : ρ = ρ
∗, ρ > 0, tr(ρ) = 1}.
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For a quantum system described by a density matrix ρ ∈M , the von Neumann entropy is

defined as:

SvN(ρ) :=− tr(ρ logρ)

The von Neumann entropy has also been interpreted as the capacity of a quantum communica-

tion channel as the quantum analog of the Shannon entropy in the classical information theory

[30]. Furthermore, Umegaki [31] considered the quantum relative entropy between two density

matrices ρ0 and ρ1:

SvN(ρ0||ρ1) = tr(ρ0 logρ0)− tr(ρ0 logρ1).

It measures the difficulty of distinguishing the state ρ0 from the state ρ1 [32, 33]. Just as the

Kullback-Leibler divergence gives rise to the Fisher information metric, the quantum relative

entropy induces the Kubo-Mori inner product as a Riemannian metric [34]. Let X and Y be

tangent vectors at ρ , which are self-adjoint matrices with trace 0, the Kubo-Mori inner product

of X and Y is defined to be

gρ,KM(X ,Y ) :=
∫

∞

0
tr X(ρ + s)−1Y (ρ + s)−1ds.

Its derivation is based on the observation that

∂t log(ρ + tX)|t=0 =
∫

∞

0
(ρ + s)−1X(ρ + s)−1ds,

thus the Hessian of the relative entropy is1

−∂t1∂t2SvN(ρ + t1X ||ρ + t2Y )|t1, t2=0 = ∂t2 tr (X log(ρ + t2Y )) =
∫

∞

0
tr X(ρ + s)−1Y (ρ + s)−1ds.

As noted earlier, the Fisher information metric is the unique Riemannian metric for which

the stochastic maps are contractive. In quantum mechanics, a similar property has been sought

1 There is an alternative expression for the derivative of log(ρ) in terms of its Loewner matrix [35, p. 154].
Suppose ρ has the eigen-decomposition ρ =UΛU∗. The Loewner matrix F(ρ) of log(ρ) is

[F(ρ)]i, j =

{
λ
−1
i , i = j

logλi−logλ j
λi−λ j

, i 6= j

Then the derivative of log(ρ) is ∂t log(ρ + tX)|t=0 =U (F(ρ)◦ (U∗XU))U∗ where ◦ denotes the Schur product. As
a result, the Kubo-Mori metric can also be expressed as

gρ,KM(X ,Y ) =<U∗XU,F(ρ)◦ (U∗YU)> .
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for the non-commutative analog of probability vectors, namely, density matrices. These are

positive semi-definite and have trace equal to one. In this setting, there are several metrics for

which stochastic maps (these are now linear maps between spaces of density matrices, preserv-

ing positivity and trace) are contractive. They take the form

tr(XDρ(Y ))

where Dρ(Y ) can be thought as a “non-commutative division” of a matrix Y by the matrix

ρ . Thus, if ρ , X and Y are scalars, the above is simply XY/ρ . Examples of such a “non-

commutative division” are

Dρ,1(Y ) := ρ
−1Y, (2.12a)

Dρ,2(Y ) :=
∫

∞

0
(ρ + sI)−1Y (ρ + sI)−1ds, (2.12b)

Dρ,3(Y ) := M, where
1
2
(ρM+Mρ) = Y, (2.12c)

see e.g., [36]. The metric which corresponds to (2.12a) was introduced by Petz [36], the one

corresponding to (2.12b) is the Kubo-Mori metric [36], while the one corresponding to (2.12c)

is known as the Bures metric [37].

We refer to Appendix A for background information on the Bures metric. As long as ρ > 0,

the Hermitian matrix M is determined uniquely [38]. The Bures length of a curve ρ(t) is thus

defined to

L(ρ) =
∫ √

tr(Mρ̇)dt, s.t. ρ̇ =
1
2
(Mρ +ρM).

It’s easy to see that given two density matrices ρ0 =W0W ∗0 and ρ1 =W1W ∗1 , where W0 and W1

are not unique since W0U0 and W1U1 are also factors for U0 and U1 being unitary matrices. The

parallel purification of the geodesic path between ρ0 and ρ1 is the arc with the minimum arc

length on great circles passing between W0’s and W1’s. Thus, the geodesic distance between ρ0

and ρ1 is the minimum angle between W0’s and W1’s. To be more specific, the angle ϑ between

W0 and W1 can be computed from

cosϑ = Real tr(W ∗0 W1).

Clearly the angle ϑ is minimized when | tr(W ∗0 W1)| achieves its maximum. It can be shown that

the maximum of cosϑ is achieved if W1 = (ρ1]ρ
−1
0 )W0, where ρ1]ρ

−1
0 is the geometric mean

between ρ
−1
0 and ρ1:

ρ1]ρ
−1
0 = ρ

1
2

1 (ρ
1
2

1 ρ0ρ
1
2

1 )
− 1

2 ρ
1
2

1 .
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As a result, the maximum is cosϑ = tr(ρ
1
2

0 ρ1ρ
1
2

0 )
1
2 , which is also called the root fidelity in

quantum mechanics. The corresponding angle is called the Bures angle. The arc between W0

and W1 can be parameterized as

W (τ) =
sin(1− τ)ϑ

sinϑ
W0 +

sinτϑ

sinϑ
W1,

and the geodesic path of the density matrices becomes ρ(τ) =W (τ)W (τ)∗ for τ ∈ [0,1].

The Bures length can be seen as the arc length between W0 and W1. The straight-line dis-

tance between them is the Bures distance [39], which corresponds to the following optimization

problem:

dB(ρ0,ρ1) : = min
U,V

{
‖ρ

1
2

0 U−ρ
1
2

1 V‖F |UU ′ = I,VV ′ = I
}

= min
U

{
‖ρ

1
2

0 U−ρ
1
2

1 ‖F |UU ′ = I
}
, (2.13)

since, clearly, only one unitary transformation U can attain the same minimal value. Note that

the Bures distance has been considered as a generalization of the standard Hellinger distance

by Ferrante et al. [40], and this differs from the quantum Hellinger distance ‖ρ1/2
0 − ρ

1/2
1 ‖F

proposed in [41].

Interestingly, as shown in [37, 40],

dB(ρ0,ρ1) =

(
tr(ρ0 +ρ1−2(ρ

1
2

1 ρ0ρ
1
2

1 )
1
2 )

) 1
2

.

Also, the optimizing unitary matrix U in (2.13) is

U = ρ
− 1

2
0 ρ

− 1
2

1 (ρ
1
2

1 ρ0ρ
1
2

1 )
1
2 .

We note that the Bures distance applies equally well to positive definite matrices without any

need for normalization on the traces, and as such, it has been used to compare multivariate

power spectral densities [40].

We now depart from density matrices, and focus on the positive definite matrices. We use

Pn to denote the manifold of n× n positive definite matrices. In recently years, a particular

Riemannian metric has received much attention, which coincides with the Rao metric used in

statistical inference in the context of Gaussian distributions, see Section 2.3. It is defined as

gq,Rao(dq) := ||q−
1
2 dqq−

1
2 ||2F = tr(q−1dq)2
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at the point q on the manifold Pn. The length of a curve γ(t) in Pn can be computed as

L(γ) =
∫
||γ−

1
2 (t)γ̇(t)γ−

1
2 (t)||Fdt.

Our exposition on this metric follows mainly the work by Bhatia and Holbrook [42]. First of

all, this metric is congruence invariant, i.e., for any invertible g ∈ GLn, the metric at q with a

tangent vector dq is the same as the metric at gqg∗ with the tangent vector gdqg∗. Consequently

L(γ) = L(gγg∗).

Given two points γ0 and γ1 in Pn, we are interested in the shortest path between them. The

geodesic distance is

d(γ0,γ1) = inf{L(γ) : γ(0) = γ0, γ(1) = γ1}.

To derive the geodesic, we shall first introduce the infinitesimal exponential metric increasing

property (IEMI).

Proposition 1 (IEMI property [42, pg. 203]). For any Hermitian matrices H and K in Hn, let

DeH(K) denote the derivative of the exponential map at the point H in the direction K, i.e.,

DeH(K) = lim
t→0

eH+tK− eH

t
.

Then for any unitary invariant norm ||| · |||, the following inequality holds:

|||e−H/2DeH(K)e−H/2||| ≥ |||K|||.

Since γ(t) ∈ Pn, it can be written as γ(t) = eH(t), where H(t) = logγ(t). Consequently

γ̇(t) = DeH(t)(Ḣ(t)). Using the IEMI property, we get∫ 1

0
||γ−

1
2 γ̇γ
− 1

2 ||Fdt ≥
∫ 1

0
||Ḣ(t)||Fdt

= || logγ0− logγ1||F .

If γ0 and γ1 commute, then by choosing the path

γ(t) = e(1−t) logγ0+t logγ1 = γ
1−t
0 γ

t
1, (2.14)

we have

γ̇(t) = γ(t)(logγ1− logγ0),
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and

L(γ) = || logγ0− logγ1||F .

In addition, since the shortest path between logγ0 and logγ1 is the unique straight line segment,

the path γ(t) in (2.14) is the unique shortest path between two commuting matrices. Further-

more, γ(t) in (2.14) is the geodesic parameterized by the arc length, i.e.,

d(γ0,γ(t)) = td(γ0,γ1).

If γ0 and γ1 do not commute, using the congruence invariant property of the metric, we have

d(γ0,γ1) = d(I,γ−1/2
0 γ1γ

−1/2
0 ).

Since the identity matrix I commutes with γ
−1/2
0 γ1γ

−1/2
0 , we readily obtain the geodesic distance

d(γ0,γ1) = || log I− logγ
−1/2
0 γ1γ

−1/2
0 ||F = || logγ

−1/2
0 γ1γ

−1/2
0 ||F , (2.15)

which can be seen as the log deviation between γ0 and γ1. The unique geodesic is

γ(t) = γ
1/2
0 (γ

−1/2
0 γ1γ

−1/2
0 )t

γ
1/2
0 .

2.3 Relationship among Metrics

For simplicity, we consider a stationary zero-mean Gaussian random process {Yk; k ∈ Z}. The

probability distribution pn of any random vector Y n
1 = (Y1, · · · ,Yn)

′
is fully described by its

Toeplitz covariance matrix Pn = E(Y n
1 Y n

1
′) ∈Tn, where

Tn = {X ∈ Pn : X Toeplitz}

and Pn being the manifold of n-by-n positive definite matrices as noted earlier. To simplify the

notation, we shall use
∫

dy to denote
∫

dy1 · · ·dyn. The differential entropy of Y n
1 is

h(Y n
1 ) =−

∫
pn log pndy =

1
2
(n log2π +n+ logdet(Pn)) .

As n goes to ∞, the average of the differential entropy gives rise to the differential entropy rate

h(Y ) of the random process {Yk}:

h∞(Y ) := lim
n→∞

1
n

h(Y n
1 )
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provided the limit exists. Let f (θ) denote the power spectral density of {Yk}. It has been shown

[43, pg. 273-274] that for Gaussian random process {Yk},

h∞(Y ) =
1
2

(
log(2π)+1+

∫
π

−π

log f (θ)
dθ

2π

)
.

If owing to a lack of correct information, one considers Y n
1 distributed as qn = N(0,Qn). We can

define the relative entropy (or the KL divergence) between pn and qn as

S(pn||qn) =
∫

pn log
pn

qn
dy.

Plug in the probability density functions for pn and qn. After some simple manipulations, we

get

S(pn||qn) =
1
2
(
logdet(Qn)− logdet(Pn)+ tr(Q−1

n Pn)−n
)
. (2.16)

As n goes to ∞, we define the notion of relative entropy rate as

S∞(p||q) := lim
n→∞

1
n

S(pn||qn)

if the limit exists. The following proposition evaluates the relative entropy rate for the Gaussian

random process {Yk}. We shall restrict ourselves to the set of power spectral densities

F :=
{

f : f differentiable on [−π,π], f (θ)> 0, and f , f−1 bounded
}
.

Proposition 2. Let f1(θ) and f2(θ) denote power spectral densities corresponding to the

Toeplitz covariance matrices Pn and Qn respectively, Pn, Qn ∈ Tn, (n ∈ Z), and f1, f2 ∈ F ,

then the relative entropy rate is half the Itakura-Saito distance dIS( f1, f2) [25]:

S∞(p||q) = 1
2

dIS( f1, f2),

and

dIS( f1, f2) =
∫

π

−π

(
f1(θ)

f2(θ)
− log

f1(θ)

f2(θ)
−1
)

dθ

2π
.

Proof. According to the fundamental eigenvalue distribution theorem of Szegö [44, 45], we

have

lim
n→∞

1
n

logdet(Pn) =
1

2π

∫
π

−π

log f1(θ)dθ (2.17)

lim
n→∞

1
n

logdet(Qn) =
1

2π

∫
π

−π

log f2(θ)dθ . (2.18)
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Also since f2(θ) is strictly positive, f−1
2 (θ) is the power spectral density corresponding to

Q−1
n as n goes to ∞ [45, pg. 63]. Likewise, the product of two Toeplitz matrices Q−1

n Pn is

asymptotically equivalent to the Toeplitz matrix corresponding to f1(θ)/ f2(θ). Consequently

lim
n→∞

1
n

tr(Q−1
n Pn) =

1
2π

∫
π

−π

f1(θ)

f2(θ)
dθ . (2.19)

Substituting (2.17) and (2.19) into (2.16), we obtain

lim
n→∞

1
n

S(pn||qn) =
1
2

∫
π

−π

(
f1(θ)

f2(θ)
− log

f1(θ)

f2(θ)
−1
)

dθ

2π
=

1
2

dIS( f1, f2).

As mentioned in Section 2.1, the Riemannian metric induced by the Itakura-Saito distance

is

g f ,IS(δ ) = || f−1
δ ||22,

and the unique geodesic path from f0 to f1 is parameterized by

fτ = f 1−τ

0 f τ
1 , τ ∈ [0,1],

with the geodesic distance

dLog( f0, f1) = || log f0− log f1||2.

Remark 3. When {Yk,k ∈ Z} is an m-dimensional stationary zero-mean Gaussian random

process, a similar result as in Proposition 2 can be established [46, 47, 48], where the Itakura-

Saito distance between two matrix-valued power spectral densities is

dIS( f1, f2) =
∫

π

−π

(
tr
(

f1(θ) f−1
2 (θ)

)
− logdet

(
f1(θ) f−1

2 (θ)
)
−m

) dθ

2π
.

It’s not hard to derive that the infinitesimal perturbation from a given f (θ) leads to a Riemma-

nian metric

g f ,IS(δ ) =
∫
|| f−1/2

δ f−1/2||2F
dθ

2π
. (2.20)

For probability distributions f (x,θ) parameterized by a vector θ , the corresponding metric

is often referred to as the Fisher-Rao metric [49]

g f ,Fisher−Rao(δθ ) = δ
′
θ E
[(

∂ log f
∂θ

)(
∂ log f

∂θ

)′]
δθ ,
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while for zero-mean Gaussian distributions parameterized by the corresponding covariance ma-

trices, the metric becomes

gP,Rao(∆) =
∥∥∥P−1/2

∆P−1/2
∥∥∥2

F
(2.21)

and is often named after C.R. Rao. We summarize this below.

Proposition 4. Consider a zero-mean, normal distribution p with covariance P > 0, and a

perturbation pε with covariance P+ ε∆. Provided ||P−1/2ε∆P−1/2||F < 1,

S(p||pε) =
1
4

gP,Rao(ε∆)+O(ε3). (2.22)

Moreover, for δ = pε − p,

gP,Rao(ε∆) = 2gp,Fisher(δ )+O(ε4), (2.23)

where gp,Fisher(δ ) is the Fisher metric in (2.1).

Proof. The relative entropy between p and pε is

S(p||pε) =
1
2
(
logdet(P+ ε∆)− logdet(P)+ tr

(
(P+ ε∆)−1P

)
−n
)

Define ∆P = P−1/2∆P−1/2, then

S(p||pε) =
1
2

(
logdet

(
P1/2(I + ε∆P)P1/2

)
− logdet(P)+ tr

(
P−1/2(I + ε∆P)

−1P−1/2P
)
−n
)

=
1
2
(
logdet(I + ε∆P)+ tr(I + ε∆P)

−1−n
)
. (2.24)

We expand (I + ε∆P)
−1 into the Taylor series

(I + ε∆P)
−1 = I− ε∆P + ε

2
∆

2
P− ε

3
∆

3
P + · · · . (2.25)

Let λi, i = 1, · · · , n represent eigenvalues of ∆P, then

logdet(I + ε∆P) =
n

∑
i=1

log(1+ ελi)

=
n

∑
i=1

(ελi−
1
2

ε
2
λ

2
i +

1
3

ε
3
λ

3
i + · · ·)

= ε tr(∆P)−
1
2

ε
2 tr(∆2

P)+
1
3

ε
3 tr(∆3

P)+ · · · . (2.26)
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We substitute (2.25) and (2.26) into (2.24 to obtain

S(p||pε) =
1
4

ε
2 tr(∆2

P)+O(ε3).

By following the similar computation, one can easily see that S(pε ||p) gives rise to the same

metric, though the coefficients of higher order terms are different from those corresponding to

S(p||p+δ ).

To draw a connection with the Fisher metric, we substitute δ = N(0,P+∆)−N(0,P) into

the Fisher metric:

gp,Fisher(δ ) =

(∫ det(P)1/2

(2π)n/2 det(P+ ε∆)
e−

1
2 y′(2(P+ε∆)−1−P−1)ydy−1

)
.

Since ||ε∆P||F < 1, ε2∆2
P < I, and hence

−I < ε∆P < I.

Multiplying P1/2 from left and right on both sides of the above inequality, we get

−P < ε∆ < P,

or equivalently

0 <
1
2

P+
1
2

ε∆ < P.

It follows that

−(1
2

P+
1
2

ε∆)−1 <−P−1,

or equivalently

2(P+ ε∆)−1−P−1 > 0.

Consequently

1

(2π)n/2 det(2(P+ ε∆)−1−P−1)−1/2 e−
1
2 y′(2(P+ε∆)−1−P−1)y

is a Gaussian distribution with mean 0 and covariance (2(P+ ε∆)−1−P−1)−1. Since the inte-

gration of a Gaussian distribution is 1, we obtain

gp,Fisher(δ ) =

(
det(P)1/2

det(2(P+ ε∆)−1−P−1)1/2 det(P+ ε∆)
−1

)
.



20

Since

(P+ ε∆)−1 = P−1/2(I + ε∆P)
−1P−1/2,

and

2(P+ ε∆)−1−P−1 = P−1/2 (2(I + ε∆P)
−1− I

)
P−1/2.

Consequently

det
(
2(Pε∆

−1−P−1)1/2
det(P+ ε∆) = det

(
(P+ ε∆)

(
2(P+ ε∆)−1−P−1)(P+ ε∆)

)1/2

= det
(

P1/2(I + ε∆P)
(
2(I + ε∆P)

−1− I
)
(I + ε∆P)P1/2

)1/2

= det(P)1/2 det(I− ε
2
∆

2
P)

1/2,

and

gp,Fisher(δ ) =
(

det(I− ε
2
∆

2
P)
−1/2−1

)
=
(

det(I + ε
2
∆

2
P + ε

4
∆

4
P + · · ·)1/2−1

)
.

Using eigenvalues of ∆P, we get

det(I + ε
2
∆

2
P + ε

4
∆

4
P + · · ·)1/2 =

(
n

∏
k=1

(
∞

∑
i=0

(ελk)
2i)

)1/2

=

(
1+

n

∑
k=1

ε
2
λ

2
k +∑

k≤l
ε

4
λ

2
k λ

2
l + · · ·

)1/2

= 1+
1
2

ε
2||∆P||2F +O(ε4),

where in the last equality we used the fact that
n
∑

k=1
λ 2

k = tr(∆2
P) = ||∆P||2F . Therefore,

gp,Fisher(δ ) =
1
2

gP,Rao(∆)+O(ε4).

The geometry of the Rao metric has been introduced in Section 2.2. Here we shall only

mention a simple observation.

Corollary 5. The geodesic path induced from the Fisher metric on the manifold of standard

normal distributions is

pτ = N(0,Pτ)
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where

Pτ = P1/2
0

(
P−1/2

0 P1P−1/2
0

)τ

P1/2
0 ,

for two end points p0 = N(0,P0) and p1 = N(0,P1), and the geodesic length is

L(pτ) = || log(P−1/2
0 P1P−1/2

0 )||F .



Chapter 3

Metrics on Multivariate Power Spectra

In Chapter 2, we have reviewed various metrics that have been proposed to quantify the differ-

ence between two scalar-valued power spectra. Distances between multivariate power spectra

have only recently received any attention. In this direction we mention generalizations of the

Hellinger and Itakura-Saito distances by Ferrante et al. [46, 40, 50, 51] and the use of the

Umegaki-von Neumann relative entropy [52].

In this chapter, we generalize the geometric framework in [17] to the matrix-valued power

spectra [53]. We compare two power spectra in the context of linear prediction: a choice be-

tween the two is used to design an optimal filter which is then applied to a process corresponding

to the second power spectrum. The “flatness” of the innovations process, as well as the degra-

dation of the prediction error variance, when compared to the best possible, are used to quantify

the mismatch between the two. This rationale provides us with natural divergence measures.

We then identify corresponding Riemannian metrics that dictate the underlying geometry. For

a certain case we compute closed-form expressions for the induced geodesics and geodesic dis-

tances. These provide a multivariable counterpart to the logarithmic intervals in [17] and the

logarithmic spectral deviation [19, page 370]. It is noted that the geodesic distance has cer-

tain natural desirable properties; it is inverse-invariant and congruence-invariant. Moreover,

the manifold of the multivariate spectral density functions endowed with this geodesic distance

is a complete metric space. A discrete counter part of certain of these Riemannian metrics,

on the manifold of positive definite matrices (equivalent to power spectra which are constant

across frequencies), has been studied extensively in connection to the geometry of positive op-

erators [35] and relates to the Rao-Fisher geometry on probability models restricted to the case

22
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of Gaussian random vectors.

3.1 Preliminaries on Multivariate Prediction

Consider a multivariate discrete-time, zero mean, weakly stationary stochastic process {u(k), k∈
Z} with u(k) taking values in Cm×1. Throughout, boldface denotes random variables/vectors, E

denotes expectation, j =
√
−1 the imaginary unit, and ∗ the complex conjugate transpose. Let

Rk = E {u(`)u∗(`− k)} for l,k ∈ Z

denote the sequence of matrix covariances and dµ(θ) be the corresponding matricial power

spectral measure for which

Rk =
∫

π

−π

e−jkθ dµ(θ)

2π
.

For the most part, we will be concerned with the case of non-deterministic processes of full

rank with an absolutely continuous power spectrum. Hence, unless we specifically indicate

otherwise, dµ(θ) = f (θ)dθ with f (θ) being a matrix-valued power spectral density (PSD)

function. Further, for such a non-deterministic process logdet f (θ) needs to be integrable, and

this will be assumed throughout as well.

Our interest is in comparing PSD’s and in studying possible metrics between such. The ev-

ident goal is to provide a means to quantify deviations and uncertainty in the spectral domain in

a way that is consistent with particular applications. More specifically, we present metrizations

of the space of PSD’s which are dictated by optimal prediction and reflect dissimilarities that

have an impact on the quality of prediction.

3.1.1 Geometry of multivariable processes

We will be considering least-variance linear prediction problems. To this end, we define L2,u

to be the closure of m× 1-vector-valued finite linear combinations of {u(k)} with respect to

convergence in the mean [54, pg. 135]:

L2,u :=

{
∑

finite
Pku(−k) : Pk ∈ Cm×m, k ∈ Z

}
.

Here, “bar” denotes closure. The indices in Pk and u(−k) run in opposite directions so as to

simplify the notation later on where prediction is based on past observations. This space is
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endowed with both, a matricial inner product

[[∑
k

Pku(−k),∑
k

Qku(−k)]] := E

{(
∑
k

Pku(−k)

)(
∑
k

Qku(−k)

)∗}
,

as well as a scalar inner product

〈∑
k

Pku(−k),∑
k

Qku(−k)〉 := tr[[∑
k

Pku(−k),∑
k

Qku(−k)]].

Throughout, “tr” denotes the trace of a matrix. It is standard to establish the correspondence

between

p := p(u) := ∑
k

Pku(−k) and

p(z) := ∑
k

Pkzk

with z = ejθ for θ ∈ [−π,π]. A time-shift on p generates the process

p(`) := ∑
k

Pku(`− k), with ` ∈ Z,

having

p(ejθ )
dµ(θ)

2π
p(ejθ )∗

as its power spectrum. The correspondence is the Kolmogorov isomorphism between the “tem-

poral” space L2(u) and “spectral” space L2,dµ ,

ϕ : L2(u)→ L2,dµ : ∑
k

Pku(−k) 7→∑
k

Pkzk.

It is convenient to endow the latter space L2,dµ with the matricial inner product

[[p,q]]dµ :=
∫

π

−π

(
p(ejθ )

dµ(θ)

2π
q(ejθ )∗

)
as well as the scalar inner product

〈p,q〉dµ := tr [[p,q]]dµ .

The additional structure due to the matricial inner product is often referred to as Hilbertian (as

opposed to Hilbert) [55].
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Throughout, p(ejθ ) =∑k Pkejkθ , q(ejθ ) =∑k Qkejkθ , where we use lower case p,q for matrix

functions and upper case Pk,Qk for their matrix coefficients. For non-deterministic processes

of full rank with absolutely continuous spectral measure dµ(θ) = f (θ)dθ , we simplify the

notation into

[[p,q]] f := [[p,q]] f dθ , and

〈p,q〉 f := 〈p,q〉 f dθ .

Least-variance linear prediction

min

{
trE{pp∗} : p = u(0)−∑

k>0
Pku(−k), Pk ∈ Cm×m

}
(3.1)

can be expressed equivalently in the spectral domain

min

{
[[p, p]] f : p(z) = I−∑

k>0
Pkzk, Pk ∈ Cm×m

}
(3.2)

where the minimum is sought in the positive-definite sense, see [55, pg. 354], [54, pg. 143].

We use “I” to denote the identity matrix of suitable size. It holds that, although non-negative

definiteness defines only a partial order on the cone of non-negative definite Hermitian matrices,

a minimizer for (3.1) always exists. Of course this corresponds to a minimizer for (3.2). The

existence of a minimizer is due to the fact that trE{pp∗} is matrix-convex. Here dµ = f dθ is an

absolutely continuous measure and the quadratic form is not degenerate; see [56, Proposition 1]

for a detailed analysis and a treatment of the singular case where µ is a discrete matrix-valued

measure. Further, the minimizer of (3.1) coincides with the minimizer of

min

{
〈p, p〉 f : p(z) = I−∑

k>0
Pkzk, Pk ∈ Cm×m

}
. (3.3)

From here on, to keep notation simple, p(z) will denote the minimizer of such a problem, with

f specified accordingly, and the minimal matrix of (3.1) will be denoted by Ω. That is,

Ω := [[p, p]] f

while the minimal value of (3.3) is trΩ. The minimizer p is precisely the image under the Kol-

mogorov isomorphism of the optimal prediction error p and Ω the prediction-error variance.
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3.1.2 Spectral factors and optimal prediction

For a non-deterministic process of full rank, the determinant of the error variance Ω is non-zero.

Equivalently, the product of its eigenvalues is non-zero. The well-known Szegö-Kolmogorov

formula [55, pg. 369]

detΩ = exp{
∫

π

−π

logdet f (θ)
dθ

2π
} (3.4)

relates the product of the eigenvalues of the optimal one-step-ahead prediction error variance

with the corresponding PSD. No expression is available in general that would relate f to Ω

directly in the matricial case. It is only the product of the eigenvalues that is known to relate to

the geometric mean of the determinant of the power spectrum as given above.

We consider only non-deterministic processes of full rank and hence we assume that

logdet f (θ) ∈ L1[−π,π].

In this case, f (θ) admits a unique factorization

f (θ) = f+(ejθ ) f+(ejθ )∗, (3.5)

with f+(ejθ ) ∈H m×m
2 (D),

det( f+(z)) 6= 0 in D := {z : |z|< 1},

and normalized so that f+(0) = Ω
1
2 . Throughout, M

1
2 denotes the Hermitian square root of a

Hermitian matrix M. The factor f+ is known as the canonical (left) spectral factor. In the case

where f is a scalar function (m = 1) the canonical spectral factor is explicitly given by

f+(z) = exp
{

1
2

∫
π

−π

(
1+ ze−jθ

1− ze−jθ

)
log f (θ)

dθ

2π

}
, |z|< 1,

As usual, H2(D) denotes the Hardy space of functions which are analytic in the unit disk D
with square-integrable radial limits. Spectral factorization presents an “explicit” expression of

the optimal prediction error in the form

p(z) = f+(0) f−1
+ (z). (3.6)

Thus, p(z)−1 is a “normalized” (left) outer factor of f . The terminology “outer” refers to a

(matrix-valued) function g(ejθ ) for θ ∈ [−π,π] that can be extended into an analytic function
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in the open interior of the unit disc D which is also invertible in D. It is often standard not

to differentiate between such a function in D and the function on the boundary of radial-limits

since these are uniquely defined from one another. In the engineering literature outer functions

are also referred to as “minimum phase.”

Remark 6. Right-outer factors, where f (θ)= f+,right(ejθ )∗ f+,right(ejθ ) instead of (3.5) relate to

a post-diction optimal estimation problem; in this, the present value of the process is estimated

via linear combination of future values (see e.g., [56]). Only left factorizations will be used in

the present paper.

3.2 Comparison of PSD’s

We present two complementing viewpoints on how to compare two PSD’s, f1 and f2. In both,

the optimal one-step-ahead predictor for one of the two stochastic processes, is applied to the

other and compared to the corresponding optimal. The first is to consider how “white” the

power spectrum of the innovations’ process is. The second viewpoint is to compare how the

error variance degrades with respect to the optimal predictor. Either principle provides a family

of divergence measures and a suitable generalization of the Riemannian geometry of scalar

PSD’s given in [17]. There is a close relationship between the two.

3.2.1 Prediction errors and innovations processes

Consider two matrix-valued spectral density functions f1 and f2. Since an optimal filter will be

designed based on one of the two and then evaluated with respect to the other, some notation is

in order.

First, let us use a subscript to distinguish between two processes ui(k), i∈ {1,2}, having the

fi’s as the corresponding PSD’s. They are assumed nondeterministic of full rank, vector-valued,

and of compatible size. The optimal filters in the spectral domain are

pi := argmin{[[p, p]] fi
p(0) = I,

and p ∈H m×m
2 (D)},

and their respective error covariances

Ωi := [[pi, pi]] fi
.
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Now define

Ωi, j := [[p j, p j]] fi
.

Clearly, Ωi, j is the variance of the prediction error when the filter p j is used on a process having

power spectrum fi. Indeed, if we set

pi, j := ui(0)−Pj,1ui(−1)−Pj,2ui(−2)− . . . (3.7)

the prediction-error covariance is

[[pi, j,pi, j]] = [[p j, p j]] fi .

The prediction error pi, j can also be thought of as a time-process, indexed at time-instant

k ∈ Z,

pi j(k) := ui(k)−Pj,1ui(k−1)−Pj,2ui(k−2)− . . .

for i, j ∈ {1,2}. This is an innovations process. Clearly, from stationarity,

[[pi,i,pi,i]] = Ωi,

whereas

[[pi, j,pi, j]]≥Ωi,

since in this case p j is suboptimal for ui, in general.

3.2.2 The color of innovations and PSD mismatch

We choose to normalize the innovations processes as follows:

hi, j(k) = Ω
− 1

2
j pi, j(k), for k ∈ Z.

The Kolmogorov isomorphism takes

ϕ : hi, j(k) 7→ f−1
j+ ,

with the expectation/inner-product being that induced by fi, and hence, the power spectral den-

sity of the process hi, j(k) is

fhi j = f−1
j+ fi f−∗j+ ,
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where (·)−∗ is a shorthand for ((·)∗)−1. When fi = f j, evidently {hi,i
k } is a white noise process

with covariance matrix equals to the identity.

Naturally, in an absolute sense, the mismatch between the two power spectra fi, f j can be

quantified by the distance of fhi j to the identity. To this end we may consider any symmetrized

expression: ∫
π

−π

d( f−1
j+ fi f−∗j+ , I)

dθ

2π
+
∫

π

−π

d( f−1
i+ f j f−∗i+ , I)

dθ

2π
(3.8)

for a suitable distance d(·, ·) between positive definite matrices. In general, it is deemed desir-

able that distances between power spectra are invariant to scaling (as is the case when distances

depend on ratios of spectra, [19]). Researchers and practitioners alike have insisted on such

a property, especially for speech and image systems, due to an apparent agreement with sub-

jective qualities of sound and images. It is thus interesting to seek a multivariable analogues

inherent in the above comparison.

Due to the non-negative definiteness of power spectra, a convenient option is to take “d” as

the trace: ∫
π

−π

tr
(

f−1
j+ fi f−∗j+ − I

)
+ tr

(
f−1
i+ f j f−∗i+ − I

) dθ

2π
.

This indeed defines a distance measure since (x+ x−1− 2) is a non-negative function for 0 <

x ∈ R that vanishes only when x = 1. Thus, we define

D1( f1, f2) :=
∫

π

−π

tr
(

f−1
2 f1 + f−1

1 f2−2I
) dθ

2π
. (3.9a)

Interestingly, D1( f1, f2) can be re-written as follows:

D1( f1, f2) =
∫

π

−π

‖ f−1/2
1 f 1/2

2 − f 1/2
1 f−1/2

2 ‖2
Fr

dθ

2π
(3.9b)

where ‖M‖2
Fr := trMM∗ denotes the square of the Frobenius norm1 . It can be readily verified

starting from the right hand side of (3.9b) and simplifying this to match (3.9a). It is now easily

seen that D1( fi, f j) has a number of desirable properties listed in the following proposition.

Proposition 7. Consider fi, f j being PSD’s of non-deterministic processes of full rank and

g(ejθ ) an arbitrary outer matrix-valued function in H m×m
2 (D). The following properties hold:

(i) D1( fi, f j)≥ 0.

1 √trMM∗ is also referred to as the Hilbert-Schmidt norm.
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(ii) D1( fi, f j) = 0 iff fi = f j (a.e.).

(iii) D1( fi, f j) = D1( f j, fi).

(iv) D1( fi, f j) = D1( f−1
i , f−1

j ).

(v) D1( fi, f j) = D1(g fig∗,g f jg∗).

Proof. Properties (i-iv) follow immediately from (3.9b) while the invariance property (v) is

most easily seen by employing (3.9a).

3.2.3 Suboptimal prediction and PSD mismatch

We now attempt to quantify how suboptimal the performance of a filter is when this is based

on the incorrect choice between the two alternative PSD’s. To this end, we consider the error

covariance and compare it to that of the optimal predictor. A basic inequality between these

error covariances is summarized in the following proposition.

Proposition 8. Under our earlier standard assumptions, for i, j ∈ {1,2} and Ωi,Ω j > 0, it

holds that

Ωi, j ≥Ωi. (3.10a)

Further, the above holds as an equality iff pi = p j.

Proof. It follows from the optimality of pi since

[[p j, p j]] fi ≥ [[pi, pi]] fi = Ωi.

Corollary 9. The following hold:

Ω
− 1

2
i Ωi, jΩ

− 1
2

i ≥ I (3.10b)

det(Ωi, j) ≥ det(Ωi) (3.10c)

tr(Ωi, j) ≥ tr(Ωi) (3.10d)

Ω
− 1

2
j Ωi, jΩ

− 1
2

j ≥ Ω
− 1

2
j ΩiΩ

− 1
2

j . (3.10e)

Further, each “≥” holds as equality iff pi = p j.
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Thus, a mismatch between the two spectral densities can be quantified by the strength of the

above inequalities. To this end, we may consider a number of alternative “divergence measures”.

First we consider:

D2( fi, f j) := logdet
(

Ω
− 1

2
i Ωi, jΩ

− 1
2

i

)
. (3.11)

Equivalent options leading to the same Riemannian structure are:

1
m

tr(Ω−
1
2

i Ωi, jΩ
− 1

2
i )−1, and (3.12a)

det(Ω−
1
2

i Ωi, jΩ
− 1

2
i )−1. (3.12b)

Using the generalized Szegö-Kolmogorov expression (3.4) we readily obtain that

D2( fi, f j) = (3.13)

= logdet
(∫

π

−π

f−1
j+ fi f−∗j+

dθ

2π

)
−
∫

π

−π

logdet
(

f−1
j+ fi f−∗j+

) dθ

2π

= tr
(

log
∫

π

−π

f−1
j+ fi f−∗j+

dθ

2π
−
∫

π

−π

log f−1
j+ fi f−∗j+

dθ

2π

)
.

This expression takes values in [0,∞], and is zero if and only if the normalized spectral factors

p−1 = Ω−1/2 f+ are identical for the two spectra. Further, the formula in (3.13) provides a

natural generalization of the divergence measures in [17, Eq. (10b)] and of the Itakura distance

to the case of multivariable spectra. It satisfies “congruence invariance.” This is stated next.

Proposition 10. Consider two PSD’s fi, f j of non-deterministic processes of full rank and g(ejθ )

an outer matrix-valued function in H m×m
2 (D). The following hold:

(i) D2( fi, f j)≥ 0.

(ii) D2( fi, f j) = 0 iff pi = p j.

(iii) D2( fi, f j) = D2(g fig∗,g f jg∗).

Proof. Properties (i-ii) follow immediately from (3.11) while the invariance property (iii) is

most easily seen by employing (3.13). To this end, first note that g f+ obviously constitutes

the spectral factor of g f g∗. Substituting the corresponding expressions in (3.13) establishes the

invariance.
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3.2.4 Alternative divergence measures

Obviously, a large family of divergence measures between two matrix-valued power spectra can

be obtained based on (3.8). For completeness, we suggest representative possibilities some of

which have been independently considered in recent literature.

Frobenius distance

If we use the Frobenius norm in (3.8) we obtain

DF( f1, f2) :=
1
2 ∑

i, j

∫
π

−π

‖ f−1
j+ fi f−∗j+ − I‖2

Fr
dθ

2π
(3.14a)

where ∑i, j designates the “symmetrized sum” taking (i, j)∈ {(1,2),(2,1)}. It’s straightforward

to see that all of

f−1
j+ fi f−∗j+ , f−

1
2

j fi f−
1
2

j and f−1
j fi

share the same eigenvalues for any θ ∈ [−π,π]. Thus,

‖ f−1
j+ fi f−∗j+ − I‖2

Fr = ‖ f−
1
2

j fi f−
1
2

j − I‖2
Fr,

and

DF( f1, f2) =
1
2 ∑

i, j

∫
π

−π

‖ f−
1
2

j fi f−
1
2

j − I‖2
Fr

dθ

2π
. (3.14b)

Obviously (3.14b) is preferable over (3.14a) since no spectral factorization is involved.

Hellinger distance

A generalization of the Hellinger distance has been proposed in [40] for comparing multivari-

able spectra. Briefly, given two positive definite matrices f1 and f2 one seeks factorizations

fi = gig∗i so that the integral over frequencies of the Frobenius distance ‖g1−g2‖2
Fr between the

factors is minimal. The factorization does not need to correspond to analytic factors. When one

of the two spectra is the identity, the optimization is trivial and the Hellinger distance becomes∫
π

−π

‖ f
1
2 − I‖2

Fr
dθ

2π
.
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Following a variation of this idea we compare the normalized innovation spectra ( f−1
j+ fi f−∗j+ )

1
2 ,

for i, j ∈ {1,2}, to the identity in a symmetrized fashion. Thus, we define

DH( f1, f2) :=∑
i, j

∫
π

−π

‖( f−1
j+ fi f−∗j+ )

1
2 − I‖2

Fr
dθ

2π
(3.15)

=∑
i, j

∫
π

−π

‖( f−
1
2

j fi f−
1
2

j )
1
2 − I‖2

Fr
dθ

2π
.

The second equality follows by the fact that f j+ f−
1
2

j is a frequency-dependent unitary matrix.

Multivariable Itakura-Saito distance

The classical Itakura-Saito distance can be readily generalized by taking

d( f , I) = tr( f − log f − I).

The values are always positive for I 6= f > 0 and equal to zero when f = I. Thus, we may define

DIS( f1, f2) =
∫

π

−π

d( f−1
2+ f1 f−∗2+ , I)

dθ

2π
(3.16)

=
∫

π

−π

(
tr( f−1

2 f1)− logdet( f−1
2 f1)−m

) dθ

2π
.

The Itakura-Saito distance has its origins in maximum likelihood estimation for speech pro-

cessing and is related to the Kullback-Leibler divergence between the probability laws of two

Gaussian random processes [19, 47]. The matrix-version of the Itakura-Saito distance has been

used for multivariate spectral estimation problems in [46, 50, 51].

Log-spectral deviation

It has been argued that a logarithmic measure of spectral deviations is in agreement with per-

ceptive qualities of sound and for this reason it has formed the basis for the oldest distortion

measures considered [19]. In particular, the L2 distance between the logarithms of power spec-

tra is referred to as “Log-spectral deviation” or the “logarithmic energy.” A natural multivariable

version is to consider

d( f , I) = ‖ log( f )‖2
Fr.

This expression is already symmetrized, since d( f , I) = d( f−1, I) by virtue of the fact that the

eigenvalues of log( f ) and those of log( f−1) differ only in their sign. Thereby,

‖ log( f−1
j+ fi f−∗j+ )‖2

Fr = ‖ log( f−1
i+ f j f−∗i+ )‖2

Fr.
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Thus we define

DLog( f1, f2) :=
(∫

π

−π

‖ log( f−1
1+ f2 f−∗1+ )‖2

Fr
dθ

2π

)1/2

(3.17)

=

(∫
π

−π

‖ log( f−
1
2

1 f2 f−
1
2

1 )‖2
Fr

dθ

2π

)1/2

.

This represents a multivariable version of the log-spectral deviation (see [19, page 370]). In-

terestingly, as we will see later on, DLog( f1, f2) possesses several useful properties and, in fact,

turns out to be precisely a geodesic distance in a suitable Riemannian geometry.

3.3 Geometry on Multivariate Spectra

Consider a “small” perturbation f + ∆ away from a nominal power spectral density f . All

divergence measures that we have seen so far are continuous in their arguments and, in-the-

small, can be approximated by a quadratic form in ∆ which depends continuously on f . This is

what is referred to as a Riemannian metric. The availability of a metric gives the space of power

spectral densities its properties. It dictates how perturbations in various directions compare to

each other. It also provides additional important concepts: geodesics, geodesic distances, and

curvature. Geodesics are paths of shortest length connecting the start to the finish; this length

is the geodesic distance. Thus, geodesics in the space of power spectral densities represent

deformations from a starting power spectral density f0 to an end “point” f1. Curvature on the

other hand is intimately connected with approximation and convexity of sets.

In contrast to a general divergence measure, the geodesic distance obeys the triangular in-

equality and thus, it is a metric (or, a pseudo-metric when by design it is unaffected by scaling

or other group of transformations). Geodesics are also natural structures for modeling changes

and deformations. In fact, a key motivation behind the present work is to model time-varying

spectra via geodesic paths in a suitable metric space. This viewpoint provides a non-parametric

model for non-stationary spectra, analogous to a spectrogram, but one which takes into account

the inherent geometry of power spectral densities.

3.3.1 Riemannian structures

In the sequel we consider infinitesimal perturbations about a given power spectral density func-

tion. We explain how these give rise to nonnegative definite quadratic forms. Throughout, we
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assume that all functions are smooth enough so that the indicated integrals exist. This can be

ensured if all spectral density functions are bounded with bounded derivatives and inverses.

Thus, we will restrict our attention to the following class of PDF’s:

F := { f | m×m positive definite, differentiable

on [−π,π], with continuous derivative}.

In the above, we identify the end points of [−π,π] since f is thought of as a function on the

unit circle. Since the functions f are strictly positive definite and bounded, tangent directions

of F consist of admissible perturbations ∆. These need only be restricted to be differentiable

with square integrable derivative, hence the tangent space at any f ∈F can be identified with

D := {∆ | m×m Hermitian, differentiable on[−π,π]

with continuous derivative}.

Based on the “flatness” of innovations spectra

We first consider the divergence D1 in (3.9a-3.9b) which quantifies how far the PSD of the

normalized innovations process is from being constant and equal to the identity. The induced

Riemannian metric takes the form

g1, f (∆) :=
∫

π

−π

‖ f−1/2
∆ f−1/2‖2

Fr
dθ

2π
. (3.18a)

Proposition 11. Let ( f ,∆) ∈F ×D and ε > 0. Then, for ε sufficiently small,

D1( f , f + ε∆) = g1, f (ε∆)+O(ε3).

Proof. First note that

tr
(

f ( f + ε∆)−1)= tr
(

f 1/2(I + f−1/2
ε∆ f−1/2)−1 f−1/2

)
= tr

(
I + f−1/2

ε∆ f−1/2
)−1

tr
(

f ( f + ε∆)−1)= m− tr( f−1/2
ε∆ f−1/2)

+‖ f−1/2
ε∆ f−1/2‖2

Fr +O(ε3).
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Likewise,

tr( f + ε∆) f−1 = m+ tr(ε∆ f−1)

= m+ tr( f−1/2
ε∆ f−1/2).

Therefore,

D1( f , f+ε∆) = tr
∫

π

−π

(
f ( f + ε∆)−1+( f + ε∆) f−1−2I

) dθ

2π

=
∫

π

−π

‖ f−1/2
ε∆ f−1/2‖2

Fr
dθ

2π
+O(ε3).

Obviously, an alternative expression for g1, f that requires neither spectral factorization nor

the computation of the Hermitian square root of f , is the following:

g1, f (∆) :=
∫

π

−π

tr
(

f−1
∆ f−1

∆
) dθ

2π
. (3.18b)

It is interesting to also note that any of (3.14), (3.15), (3.16), and (3.17) leads to the same

Riemannian metric.

Based on suboptimality of prediction

The paradigm in [17] for a Riemannian structure of scalar power spectral densities was orig-

inally built on the degradation of predictive error variance, as this is reflected in the strength

of the inequalities of Proposition 8. In this section we explore the direct generalization of that

route. Thus, we consider the quadratic form which F inherits from the relevant divergence D2,

defined in (3.11). The next proposition shows that this defines the corresponding metric:

g2, f (∆) := tr
∫

π

−π

( f−1
+ ∆ f−∗+ )2 dθ

2π
− tr

(∫ π

−π

f−1
+ ∆ f−∗+

dθ

2π

)2

= g1, f (∆)− tr
(∫ π

−π

f−1
+ ∆ f−∗+

dθ

2π

)2
. (3.19)

Proposition 12. Let ( f ,∆) ∈F ×D and ε > 0. Then, for ε sufficiently small,

D2( f , f + ε∆) =
1
2

g2, f (ε∆)+O(ε3).
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Proof. In order to simplify the notation let

∆ε := f−1
+ ε∆ f−∗+ .

Since ∆, f are both bounded, | tr(∆k
ε)| = O(εk) as well as | tr(

∫
π

−π
∆ε

dθ

2π
)k| = O(εk). Using a

Taylor series expansion,

tr log
(∫

π

−π

f−1
+ ( f + ε∆) f−∗+

dθ

2π

)
= tr log

(
I +

∫
π

−π

∆ε

dθ

2π

)
= tr

(∫
π

−π

∆ε

dθ

2π

)
− 1

2
tr
(∫

π

−π

∆ε

dθ

2π

)2

+O(ε3),

while

tr
(∫

π

−π

log( f−1
+ ( f + ε∆) f−∗+ )

dθ

2π

)
=
∫

π

−π

tr log(I +∆ε)
dθ

2π

=
∫

π

−π

tr(∆ε −
1
2

∆
2
ε)

dθ

2π
+O(ε3).

Thus

D2( f , f + ε∆) =
1
2

tr
(∫

π

−π

∆
2
εdθ −

(∫ π

−π

∆ε

dθ

2π

)2
)
+O(ε3).

Interestingly, using of the divergences in (3.12) yields the same metric g2, f . We also remark

that although g1, f and g2, f are closely related, there is a substantial difference between them. In

contrast to g2, f , evaluation of g1, f does not require computing f+. However, on the other hand,

both g1, f , and g2, f are similarly unaffected by consistent scaling of f and ∆.

Remark 13. A dual theory based on post-diction error (see Remark 6 and [17]) leads to swap-

ping the left outer factor with the star of the right one. In it, while the analog of g1, f is the same

as before, the analogous expression for g2, f is different.

3.3.2 Geometry on positive matrices

As indicated earlier, a Riemannian metric on the space of Hermitian m×m matrices is a family

of quadratic forms originating from inner products that depend smoothly on the Hermitian base
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point M —the standard Hilbert-Schmidt metric gHS,M(∆) = 〈∆,∆〉 := tr(∆2) being one such. Of

particular interest are metrics on the space of positive definite matrices that ensure the space is

complete and geodesically complete2 . For our purposes, matrices typically represent covari-

ances. To this end a standard recipe for constructing a Riemannian metric is to begin with an

information potential, such as the Boltzmann entropy of a Gaussian distribution with zero mean

and covariance M,

S(M) :=−1
2

log(det(M))+ constant,

and define an inner product via its Hessian

〈X ,Y 〉M :=
∂ 2

∂x∂y
S(M+ xX + yY )|x=0,y=0

= tr(M−1XM−1Y ).

The Riemannian metric so defined,

gM(∆) : = tr(M−1
∆M−1

∆)

= ‖M−
1
2 ∆M−

1
2 ‖2

Fr,

is none other than the Fisher-Rao metric on Gaussian distributions expressed in the space of the

corresponding covariance matrices.

The relationship of the Fisher-Rao metric on Gaussian distributions with the metric g1, f in

(3.18b) is rather evident. Indeed, gM coincides with g1, f for power spectra which are constant

across frequencies, i.e., taking f = M to be a constant Hermitian positive definite matrix.

It is noted that gM(∆) remains invariant under congruence, that is,

gM(∆) = gT MT ∗(T ∆T ∗)

for any square invertible matrix-function T . This is a natural property to demand since it im-

plies that the distance between covariance matrices does not change under coordinate transfor-

mations. The same is inherited by g1, f for power spectra. It is for this reason that gM has in fact

been extensively studied in the context of general C∗-algebras and their positive elements; we

refer to [35, pg. 201-235] for a nice exposition of relevant material and for further references.

Below we highlight certain key facts that are relevant to this chapter. But first, and for future

reference, we recall a standard result in differential geometry.
2 A space is complete when Cauchy sequences converge to points in the space. It is geodesically complete when

the definition domain of geodesics extends to the complete real line R; i.e., extrapolating the path beyond the end
points remains always in the space.
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Proposition 14. Let M be a Riemannian manifold with ‖∆‖2
M denoting the Riemannian metric

at M ∈M and ∆ a tangent direction at M. For each pair of points M0, M1 ∈M consider the

path space

ΘM0,M1 := {Mτ : [0,1]→M : Mτ is a piecewise smooth

path connecting the two given points}.

Denote by Ṁτ := dMτ/dτ . The arc-length∫ 1

0
‖Ṁτ‖Mdτ,

as well as the “action/energy” functional∫ 1

0
‖Ṁτ‖2

Mdτ

attain a minimum at a common path in Θ f0, f1 . Further, the minimal value of the arclength is

the square root of the minimal value of the energy functional, and on a minimizing path the

“speed” ‖Ṁτ‖M remains constant for τ ∈ [0,1].

Proof. See [57, pg. 137].

The insight behind the statement of the proposition is as follows. The arclength is evidently

unaffected by a re-parametrization of a geodesic connecting the two points. The “energy” func-

tional on the other hand, is minimized for a specific parametrization of geodesic where the

velocity stays constant. Thus, the two are intimately related. The proposition will be applied

first to paths between matrices, but in the next section it will also be invoked for geodesics

between power spectra.

Herein we are interested in geodesic paths Mτ , τ ∈ [0,1], connecting positive definite matri-

ces M0 to M1 and in computing the corresponding geodesic distances

dg(M0,M1) =
∫ 1

0
‖M−1/2

τ

dMτ

dτ
M−1/2

τ ‖Frdτ.

Recall that a geodesic Mτ is the shortest path on the manifold connecting the beginning to the

end.
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Theorem 15. Given Hermitian positive matrices M0,M1, the geodesic between them with re-

spect to gM is unique (modulo re-parametrization) and given by

Mτ = M1/2
0 (M−1/2

0 M1M−1/2
0 )τM1/2

0 , (3.20)

for 0≤ τ ≤ 1. Further, it holds that

dg(M0,Mτ) = τ dg(M0,M1), for τ ∈ [0,1],

and the geodesic distance is

dg(M0,M1) = ‖ log(M−1/2
0 M1M−1/2

0 )‖Fr.

Proof. A proof is given in [35, Theorem 6.1.6, pg. 205]. However, since this is an important

result for our purposes and for completeness, we provide an independent short proof relying on

Pontryagin’s minimum principle.

We first note that, since gM is congruence invariant, the path T MτT ∗ is a geodesic between

T M0T ∗ and T M1T ∗, for any invertible matrix T . Further, the geodesic length is independent of

T . Thus, we set

T = M−
1
2

0 ,

and seek a geodesic path between

X0 = I and X1 = M−
1
2

0 M1M−
1
2

0 . (3.21)

Appealing to Proposition 14 we seek

min{
∫ 1

0
tr(X−1

τ UτX−1
τ Uτ)dτ, subject to Ẋτ =Uτ , and X0,X1 specified}. (3.22)

Now, (3.22) is a standard optimal control problem. The value of the optimal control must

annihilate the variation of the Hamiltonian with respect to the “control” Uτ

tr(X−1
τ UτX−1

τ Uτ)+ tr(ΛτUτ).

Here, Λτ represents the co-state (i.e., Lagrange multiplier functions). The variation is

tr(2X−1
τ UτX−1

τ δU +ΛτδU)
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and this being identically zero for all δU implies that

Uτ =−
1
2

XτΛτXτ . (3.23)

Similarly, the co-state equation is obtained by considering the variation with respect to X . This

gives

Λ̇τ = 2X−1
τ UτX−1

τ UτX−1
τ .

Substitute the expression for Uτ into the state and the co-state equations to obtain

Ẋτ = −1
2

XτΛτXτ

Λ̇τ =
1
2

ΛτXτΛτ .

Note that

ẊτΛτ +Xτ Λ̇τ = 0,

identically, for all τ . Hence, the product XτΛτ is constant. Set

XτΛτ =−2C. (3.24)

The state equation becomes

Ẋτ =CXτ .

The solution with initial condition X0 = I is

Xτ = exp(Cτ).

Matching (3.21) requires that exp(C) = X1 = M−
1
2

0 M1M−
1
2

0 . Thus, Xτ = (M−
1
2

0 M1M−
1
2

0 )τ and the

geodesic is as claimed. Further,

C = log(M−
1
2

0 M1M−
1
2

0 )

while Uτ =CXτ from (3.24) and (3.23). So finally, for the minimizing choice of Uτ we get that

the cost ∫
τ

0
tr(X−1

τ UτX−1
τ Uτ)dτ =

∫
τ

0
tr(C2)dτ

= τ‖ log(M−1/2
0 M1M−1/2

0 )‖2
Fr

as claimed.
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Remark 16. It’s important to point out the lower bound

dg(M0,M1)≥ ‖ logM0− logM1‖Fr (3.25)

on the geodesic distance which holds with equality when M0 and M1 commute. This is known

as the exponential metric increasing property [35, page 203] and will be used later on.

The mid point of the geodesic path in (3.20) is known as the geometric mean of the two

matrices M0 and M1. This is commonly denoted by

M 1
2

:= M0]M1.

Similar notation, with the addition of a subscript τ , will be used to designate the complete

geodesic path

Mτ = M0]τM1 := M1/2
0 (M−1/2

0 M1M−1/2
0 )τM1/2

0

(see [35]). A number of useful properties can be easily verified:

i) Congruence invariance: for any invertible matrix T ,

dg(M0,M1) = dg(T M0T ∗,T M1T ∗).

ii) Inverse invariance:

dg(M0,M1) = dg(M−1
0 ,M−1

1 ).

iii) The metric satisfies the semiparallelogram law.

iv) The space of positive definite matrices metrized by dg is complete; that is, any Cauchy

sequence of positive definite matrices converges to a positive definite matrix.

v) Given any three “points” M0, M1, M2,

dg(M0]τM1,M0]τM2)≤ τ dg(M1,M2),

which implies that geodesics diverge at least as fast as “Euclidean geodesics”.

Remark 17. Property v) implies that the Riemannian manifold of positive definite matrices with

metric dg has nonpositive sectional curvature [58, pg. 39–40]. The nonpositive sectional cur-

vature of a simply connected complete Riemannian manifold has several important geometric

consequences. It implies the existence and uniqueness of a geodesic connecting any two points

on the manifold [58, pg. 3–4]. Convex sets on such a manifold are defined by the requirement
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that geodesics between any two points in the set lie entirely in the set [58, pg. 67]. Then, “pro-

jections” onto the set exist in that there is always a closest point within convex set to any given

point. Evidently, such a property should be valuable in applications, such as speaker identifica-

tion or speech recognition based on a database of speech segments; e.g., models may be taken

as the “convex hull” of prior sample spectra and the metric distance of a new sample compared

to how far it resides from a given such convex set. Another property of such a manifold is that

the center of mass of a set of points is contained in the closure of its convex hull [58, pg. 68];

this property has been used to define the geometric means of symmetric positive matrices in

[59].

3.3.3 Geodesics and geodesic distances

Power spectral densities are families of Hermitian matrices parametrized by the frequency θ ,

and as such, can be thought of as positive operators on a Hilbert space. Geometries for positive

operators have been extensively studied for some time now, and power spectral densities may

in principle be studied with similar tools. However, what it may be somewhat surprising is that

the geometries obtained earlier, based on the innovations flatness and optimal prediction, have

points of contact with this literature. This was seen in the correspondence between the metrics

that we derived.

In the earlier sections we introduced two metrics, g1 and g2. Although there is a close

connection between the two, as suggested by (3.19), it is only for the former that we are able

to identify geodesics and compute the geodesic lengths, based on the material in Section 3.3.2.

We do this next.

Theorem 18. There exists a unique geodesic path fτ with respect to g1, f , connecting any two

spectra f0, f1 ∈F . The geodesic path is

fτ = f 1/2
0 ( f−1/2

0 f1 f−1/2
0 )τ f 1/2

0 , (3.26)

for 0≤ τ ≤ 1. The geodesic distance is

dg1
( f0, f1) =

√∫
π

−π

‖ log f−1/2
0 f1 f−1/2

0 ‖2
Fr

dθ

2π
. (3.27)
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Proof. As before, in view of Proposition 14, instead of the geodesic length we may equivalently

consider minimizing the energy/action functional

E =
∫ 1

0

∫
π

−π

‖ f−1/2
τ ḟτ f−1/2

τ ‖2
Fr

dθ

2π
dτ

=
∫

π

−π

∫ 1

0
‖ f−1/2

τ ḟτ f−1/2
τ ‖2

Frdτ
dθ

2π
.

Clearly, this can be minimized point-wise in θ invoking Theorem 15. Now, inversion as well as

the fractional power of symmetric (strictly) positive matrices represent continuous and differ-

entiable maps. Hence, it can be easily seen that, because f0, f1 are in F so is

fτ = f 1/2
0 ( f−1/2

0 f1 f−1/2
0 )τ f 1/2

0 .

Therefore, this path is the sought minimizer of∫ 1

0
‖ f−1/2

τ ḟτ f−1/2
τ ‖2

Frdτ

and the geodesic length is as claimed.

Remark 19. In the case of scalar power spectra, the (unique) geodesic (3.26) for g1, f is

fτ = f0

(
f1

f0

)τ

, with τ ∈ [0, 1].

This coincides with a particular choice of a geodesic ([17, Eq. (19)]) for the prediction-based

metric. Prediction-based geodesics are nonunique (see [17]).

Corollary 20. Given any f0, f1, f2 ∈F , the function dg1
( f0]τ f1, f0]τ f2) is convex on τ .

Proof. The proof is a direct consequence of the convexity of the metric dg(·, ·).

The importance of the statement in the corollary is that the metric space has nonposi-

tive curvature. Other properties are similarly inherited. For instance, dg1
satisfies the semi-

parallelogram law.

Next we explain that the closure of the space of positive differentiable power spectra, under

g1, is simply power spectra that are squarely log integrable. This is not much of a surprise in

view of the metric and the form of the geodesic distance. Thus, the next proposition shows that

the completion, denoted by “bar,” is in fact
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F̄ := { f | m×m positive definite a.e. on [−π,π], log f ∈ L2[−π,π]}. (3.28)

It should be noted that the metric dg1
is not equivalent to an L2-based metric ‖ log( f1)−

log( f2)‖2 for the space. Here,

‖h‖2 :=

√∫
π

−π

‖h‖2
Fr

dθ

2π
.

In fact, using the latter F̄ has zero curvature while, using dg1 , F̄ becomes a space with non-

positive (non-trivial) curvature.

Proposition 21. The completion of F under dg1
is as indicated in (3.28).

Proof. Clearly, for f ∈F , log f ∈ L2[−π,π] since f is continuous on the closed interval and

positive definite. Further, the logarithm maps positive differentiable matrix-functions to Hermi-

tian differentiable ones, bijectively. Our proof of F̄ being the completion of F is carried out

in three steps. First we will show that the limit of every Cauchy sequence in F belongs to F̄ .

Next we argue that every point in F̄ is the limit of a sequence in F , which together with the

first step shows that F is dense in F̄ . Finally, we need to show that F̄ is complete with dg1
.

First, consider a Cauchy sequence { fn} in F which converges to f . Hence, there exists an

N, such that for any k ≥ N, dg1
( fk, f )< 1. Using the triangular inequality for dg1

, we have that

dg1
(I, f )≤ dg1

(I, fN)+dg1
( fN , f ),

or, equivalently,

‖ log f‖2 < ‖ log fN‖2 +1.

Since ‖ log fN‖2 is finite, f ∈ F̄ .

Next, for any point f in F̄ which is not continuous, we show that it is the limit of a sequence

in F . Let h = log f , then h ∈ L2[−π,π]. Since the set of differentiable functions C1[−π,π] is

dense in L2[−π,π], there exits a sequence {hn ∈ C1[−π,π]} which converges to h in the L2

norm. Using Theorem 3 in [60, pg. 86], there exists a subsequence {hnk} which converges to h

almost everywhere in [−π,π], i.e.,

‖hnk(θ)−h(θ)||Fr→ 0 a.e., as nk→ ∞.
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Since the exponential map is continuous [61, pg. 430], ‖ehnk (θ)−eh(θ)||Fr converges to 0 almost

everywhere as well. Using the sub-multiplicative property of the Frobenius norm, we have that

‖I− e−h(θ)ehnk (θ)‖Fr ≤ ‖e−h(θ)‖Fr‖ehnk (θ)− eh(θ)‖Fr,

where the right side of the above inequality goes to zero. Thus the spectral radius of (I −
e−h(θ)ehnk (θ)) goes to zero [62, pg. 297]. Hence, all the eigenvalues λi(e−h(θ)ehnk (θ)), 1≤ i≤m,

converge to 1 as k→ ∞. Then, fnk = ehnk ∈F and

dg1
( fnk , f ) =

√∫
π

−π

‖ log f−1/2 fnk f−1/2‖2
Fr

dθ

2π

=

√∫
π

−π

m

∑
i=1

log2
λi( f−1 fnk)

dθ

2π

=

√∫
π

−π

m

∑
i=1

log2
λi(e−hehnk )

dθ

2π
.

Since logλi(e−hehnk )→ 0 a.e., for 1 ≤ i ≤ m, dg1
( fnk , f )→ 0 as well. Therefore, f is the limit

of { fnk}.
Finally we show that F̄ is complete under dg1

. Let { fn} be a Cauchy sequence in (F̄ ,dg1
),

and let hn = log fn. Using the inequality (3.25), we have

dg1
( fk, fl)≥

√∫
π

−π

‖hk−hl‖2
Fr

dθ

2π
.

Thus {hn} is also a Cauchy sequence in L2[−π,π], which is a complete metric space. As a

result, {hn} converges to a point h in L2[−π,π]. Following the similar procedure as in the

previous step, there exists a subsequence { fnk} which converges to f = eh ∈ F̄ . This completes

our proof.

Remark 22. Geodesics of g2, f for scalar power spectra were constructed in [17]. At the present

time, a multivariable generalization appears to be a daunting task. The main obstacle is of

course non-commutativity of matricial density functions and the absence of an integral repre-

sentation of analytic spectral factors in terms of matrix-valued power spectral densities. In

this direction we point out that some of the needed tools are in place. For instance, a square

matrix-valued function which is analytic and non-singular in the unit disc D, admits a logarithm
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which is also analytic in D. To see this, consider such a matrix-function, say f+(z). The matrix

logarithm is well defined locally in a neighborhood of any z0 ∈ D via the Cauchy integral

g(z) =
1

2πi

∫
Lz0

ln(ζ )(ζ I− f+(z))−1dζ .

Here, Lz0 is a closed path in the complex plane that encompasses all of the eigenvalues of f+(z0)

and does not separate the origin from the point at ∞. The Cauchy integral gives a matrix-

function g(z) which is analytic in a sufficiently small neighborhood of z0 in the unit disc D —the

size of the neighborhood being dictated by the requirement that the eigenvalues stay within Lz0 ,

and exp(g(z)) = f+(z). To define the logarithm consistently over D we need to ensure that we

always take the same principle value. This is indeed the case if we extend g(z) via analytic

continuation: since f+(z) is not singular anywhere in D and the unit disc is simply connected,

the values for g(z) will be consistent, i.e., any path from z0 to an arbitrary z ∈ D will lead to

the same value for g(z). Thus, one can set log( f+) = g and understand this to be a particular

version of the logarithm. Similarly, powers of f+ can also be defined using Cauchy integrals,

1
2πi

∫
Lz0

ζ
τ(ζ I− f+(z))−1dζ

for τ ∈ [0,1], first in a neighborhood of a given z0 ∈D, and then by analytic continuation to the

whole of D. As with the logarithm, there may be several versions. Geodesics for g2, f appear to

require paths in the space of canonical spectral factors for the corresponding matrical densities,

such as fτ+ = f0+( f−1
0+ f1+)

τ
+. However, the correct expression remains elusive at present.

3.4 Examples

We first demonstrate geodesics connecting two power spectral densities that correspond to all-

pole models, i.e., two autoregressive (AR) spectra. The geodesic path between them does not

consist of AR-spectra, and it can be considered as a non-parametric model for the transition.

The choice of AR-spectra for the end points is only for convenience. As discussed earlier, the

aim of the theory is to serve as a tool in non-parametric estimation, path following, morphing,

etc., in the spectral domain.
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A scalar example:

Consider the two power spectral densities

fi(θ) =
1

|ai(ejθ )|2
, i ∈ {0,1},

where

a0 =(z2−1.96cos(
π

5
)+0.982)(z2−1.7cos(

π

3
)+0.852)(z2−1.8cos(

2π

3
)+0.92),

a1 =(z2−1.96cos(
2π

15
)+0.982)(z2−1.5cos(

7π

30
)+0.752)(z2−1.8cos(

5π

8
)+0.92).

Their roots are marked by ×’s and ◦’s respectively, in Figure 3.2, and shown with respect to

the unit circle in the complex plane. We consider and compare the following three ways of

interpolating power spectra between f0 and f1.

Figure 3.1: Plots of log f0(θ) (upper) and log f1(θ) (lower) for θ ∈ [0,π].

First, a parametric approach where the AR-coefficients are interpolated:

fτ,AR(θ) =
1

|aτ(ejθ )|2
, (3.29a)

with aτ(z) = (1− τ)a0(z)+ τa1(z). Clearly, there is a variety of alternative options (e.g., to

interpolate partial reflection coefficients, etc.). However, our choice is intended to highlight the
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Figure 3.2: Locus of the roots of aτ(z) for τ ∈ [0,1].

fact that in a parameter space, admissible models may not always form a convex set. This is

evidently the case here as the path includes factors that become “unstable.” The locus of the

roots of aτ(z) = 0 for τ ∈ [0,1] is shown in Figure 3.2.

Then we consider a linear segment connecting the two spectra:

fτ,linear = (1− τ) f0 + τ f1. (3.29b)

Again, this is to highlight the fact that the space of power spectra is not linear, and in this case,

extrapolation beyond the convex linear combination of the two spectra leads to inadmissible

function (as the path leads outside of the cone of positive functions). Finally, we provide the

g1-geodesic between the two

fτ,geodesic = f0(
f1

f0
)τ . (3.29c)

We compare fτ,AR, fτ,linear and fτ,geodesic for τ ∈ {1
3 ,

2
3 ,

4
3}. We first note that in plotting log fτ,AR

in Figure 3.3, that f 2
3 ,AR is not shown since it is not admissible. Likewise log fτ,linear in Figure

3.4 breaks up for τ = 4
3 , since f 4

3 ,linear becomes negative for a range of frequencies –dashed

curve indicates the absolute value of the logarithm when this takes complex values. The plot of

log fτ,geodesic is defined for all the τ and shown in Figure 3.5. It is worth pointing out how two
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Figure 3.3: log fτ,AR(θ) for τ = 1
3 ,

2
3 ,

4
3 (blue), τ = 0,1 (red).

Figure 3.4: log fτ,linear(θ) for τ = 1
3 ,

2
3 ,

4
3 (blue), τ = 0,1 (red).

apparent “modes” in fτ,linear and fτ,geodesic are swapping their dominance, which does not occur

when following fτ,AR.

A multivariable example:

Consider the two matrix-valued power spectral densities

f0 =

[
1 0

0.1ejθ 1

][
1

|a0(ejθ )|2 0

0 1

][
1 0.1e−jθ

0 1

]
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Figure 3.5: log fτ,geodesic(θ) for τ = 1
3 ,

2
3 ,

4
3 (blue), τ = 0,1 (red).

f1 =

[
1 0.1ejθ

0 1

][
1 0

0 1
|a1(ejθ )|2

][
1 0

0.1e−jθ 1

]
.

Typically, these reflect the dynamic relationship between two time series; in turn these may

represent noise input/output of dynamical systems or measurements across independent array

of sensors, etc. The particular example reflects the typical effect of an energy source shifting its

signature from one of two sensors to the other as, for instance, a possible scatterer moves with

respect to the two sensors.

Below f0 and f1 are shown in Fig. 3.6 and Fig. 3.7, respectively. Since the value of a power

spectral density f , at each point in frequency, is a Hermitian matrix, our convention is to show

in the (1,1), (1,2) and (2,2) subplots the log-magnitude of the entries f (1,1), f (1,2) (which is

the same as f (2,1)) and f (2,2), respectively. Then, since only f (1,2) is complex (and the

complex conjugate of f (2,1)), we plot its phase in the (2,1) subplot.

Three dimensional surface shows the geodesic connecting f0 to f1 in Figure 3.8. Here,

fτ,geodesic is drawn using

fτ,geodesic = f
1
2

0 ( f−
1
2

0 f1 f−
1
2

0 )τ f
1
2

0 .

It is interesting to observe the smooth shift of the energy across frequency and directionality.
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Figure 3.6: Subplots (1,1), (1,2) and (2,2) show log f0(1,1), log | f0(1,2)| (same as log | f0(2,1)|)
and log f0(2,2). Subplot (2,1) shows arg( f0(2,1)).

3.5 Extensions

The aim of this study has been to develop multivariable divergence measures and metrics for

matrix-valued power spectral densities. These are expected to be useful in quantifying uncer-

tainty in the spectral domain, detecting events in non-stationary time series, smoothing and

spectral estimation in the context of vector valued stochastic processes.

The prediction-based geodesic distance (3.27) has deep roots in statistical inference and

information geometry. However, it doesn’t metrize the weak convergence. A sequence of prob-

ability measures {µn} is said to converge weakly to µ , if
∫

φdµk converges to
∫

φdµ for every

bounded continuous function φ . This is a desirable notion of convergence for power spectra

since small changes in the power spectral density ought to reflect small changes in the statistics

and vice verse. Thus it is natural to seek a transportation-like distance between two multivariate

power spectral densities which ensures weak convergence.

Let us consider two multivariate power spectra f0 and f1, and let φ be a bounded Lipschitz-

continuous function, i.e. φ ∈Φ where

Φ := {φ(θ) :−MI ≤ φ(θ)≤MI, φ(θ)−φ(ξ )≤ |θ −ξ |I, ∀θ ,ξ ∈ [−π,π]}
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Figure 3.7: Subplots (1,1), (1,2) and (2,2) show log f1(1,1), log | f1(1,2)| (same as log | f1(2,1)|)
and log f1(2,2). Subplot (2,1) shows arg( f1(2,1)).

and M is a constant large number. Then the following distance d( f0, f1) metrizes weak conver-

gence:

d( f0, f1) = {sup
φ∈Φ

tr(
∫

f1φdθ −
∫

f2φdθ)}. (3.30)

The dual of this problem turns out to be

min
π

tr
∫
|θ −ξ |π(θ ,ξ )dθdξ

s.t.
∫

π(θ ,ξ )dξ −
∫

π(ξ ,θ)dξ = f1(θ)− f2(θ)

π(θ ,ξ )≥ 0, ∀ θ ,ξ

In the scalar case, this dual problem is also called the Kantorovich-Rubinstein transshipment
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Figure 3.8: Subplots (1,1), (1,2) and (2,2) show log fτ(1,1), log | fτ(1,2)| (same as log | fτ(2,1)|)
and log fτ(2,2). Subplot (2,1) shows arg( fτ(2,1)), for τ ∈ [0,1].

problem [63, pg. 165], and it can be shown to be equivalent to the transportation problem

min
π

∫
|θ −ξ |π(θ ,ξ )dθdξ

s.t.
∫

π(θ ,ξ )dξ = f1(θ)∫
π(ξ ,θ)dξ = f2(θ)

π(θ ,ξ )≥ 0, ∀ θ ,ξ .

In the multivariate case, it is worth studying whether the distance (3.30) is equivalent to some

form of transportation problems, and how it behaves when one distribution is a small rotation

or translation of the other.



Chapter 4

Geodesics and Curve Fitting

Curve fitting is a process of constructing a curve that has the best fit to a set of given data. It is

typically used to smooth the data, or reduce the dimensionality by fitting a parametric model.

In Euclidean geometry, most familiar curves are lines, splines, and ellipses. As an analogy, we

propose the geodesic path fitting on a Riemannian manifold. It can be used to model the non-

stationary time series in the time-frequency domain [64, 65]. Suppose we are given a sequence

of power spectral densities

G := {gτi(θ) : θ ∈ [−π,π] for i = 0,1, . . . ,n},

where τi is an increasing sequence of time-indices, normalized so that τ0 = 0 and τn = 1.

These power spectra may typically be obtained from time-series data using STFT, and τi (i =

0,1, . . . ,n) may represent the mid-points of the corresponding time-windows. We propose to

use the concept of the distance and geodesic of spectra to regularize the tracking of spectral

density at different time intervals. To be more specific, let d denote a geodesic distance. We

seek a geodesic fτ , τ ∈ [0,1], which minimizes

JG ( fτ) :=
n

∑
i=0

(d( fτi ,gτi))
2 .

When d is the Euclidean distance, we obtain the least-square line fitting.

We will focus on the transportation metric and its geodesic to illustrate the idea [65]. As

usual, all spectra are normalized whenever the transportation metric or its geodesic is applied.
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4.1 Geodesic Path Fitting

The global geodesic fitting aims to determine a W2-geodesic fτ , τ ∈ [0,1], which minimizes

JG ( fτ) :=
n

∑
i=0

(dW2( fτi ,gτi))
2 .

Any geodesic fτ is completely specified by two “points,” in our case f0, f1. Alternatively, it is

also specified by the transference plan ψ according to (2.9) and (2.11). The optimal choice of

f0, f1, ψ needs to be determined from the data, i.e., the spectra G and the times τi (i = 0, . . . ,n).

The aim of this section is to solve the corresponding optimization problem. This is done next.

In view of (2.10), we have that

(dW2( fτi ,gτi))
2 =

∫ 1

0

(
F−1

τi
(t)−G−1

τi
(t)
)2

dt, (4.1)

where F−1
τi

and G−1
τi

are the inverse functions of the cumulative distributions of fτi and gτi

respectively. On the other hand, since ψ(θ) is the optimal transference plan from f0 to f1 as in

(2.9), the geodesic fτ has the explicit expression in (2.11). Thus

F0(θ) = F1(ψ(θ)) = Fτi((1− τi)θ + τiψ(θ)).

Let t = F0(θ) for t ∈ [0,1], then equivalently

θ = F−1
0 (t), ψ(θ) = F−1

1 (t),

and

(1− τi)θ + τiψ(θ) = F−1
τi

(t).

Therefore,

F−1
τi

(t) = (1− τi)F−1
0 (t)+ τiF−1

1 (t), (4.2)

and by plugging (4.2) into (4.1), the objective function can be re-written as

JG ( f0, f1)=
n

∑
i=0

∫ 1

0

(
(1− τi)F−1

0 (t)+τiF−1
1 (t)−G−1

τi
(t)
)2

dt.

Since the gτi’s are given, G−1
τi
(t) can be computed by taking the inverse function of the cumu-

lative distribution Gτi , and the only unknowns in the above are F−1
0 (t) and F−1

1 (t) which are

functions of f0 and f1.
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To determine f0 and f1 numerically, we divide the range [0,1] into N subintervals of equal

length 1/N and denote by θk, k = 0,1, . . . ,N, the values of θ for which

F0(θk) =
k
N
. (4.3)

Similarly, let ϑi,k (i = 0, . . . ,n, k = 0,1, . . . ,N) denote the values for which

Gτi(ϑi,k) =
k
N
,

and θ̂k the values for which

F1(θ̂k) =
k
N
. (4.4)

Thereby, JG ( f0, f1) is approximated by the following finite sum

J=
1
N

n

∑
i=0

N

∑
k=1

(
(1− τi)θk + τiθ̂k−ϑi,k

)2
. (4.5)

The values of ϑi,k (i = 0, . . . ,n, k = 0,1, . . . ,N) can be readily computed from the problem data

G , and the only unknowns in this “discretization” of JG ( f0, f1) are the vector of θ ’s, namely

θk, k = 0,1, . . . ,N (which help determine F0) and the vector of corresponding θ̂ ’s (which help

determine F1, and then T ). Therefore, the spectral tracking problem can be solved numerically

via the following convex quadratic program with linear constraints:

min{J : subject to −π ≤ θk ≤ θk+1 ≤ π (4.6)

and −π ≤ θ̂k ≤ θ̂k+1 ≤ π

for 0≤ k ≤ N−1} .

The objective function is convex, so the optimal solution can be found efficiently [66]. The

cumulative functions of optimal f0 and f1 can be recovered from θk and θ̂k through (4.3) and

(4.4) respectively.

If instead we use the prediction-geodesic distance, the problem can still be formulated into

a convex optimization problem. We aim to determine a prediction-geodesic fτ , τ ∈ [0,1], which

minimizes

JG ( fτ) :=
n

∑
i=0

(
dpg( fτi ,gτi)

)2
.

Recall that the geodesic path fτi between f0 and f1 belongs to the exponential family

fτi(θ) = f 1−τi
0 (θ) f τi

1 (θ).
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If we discretize θ into N intervals from −π to π , and let f̂τi = log fτi , ĝτi = loggτi , for the

simplicity of the notation, we can work on the problem numerically by minimizing the following

expression

J=
n

∑
i=0

N

∑
k=1

(ĝτi(k)− (1− τi) f̂0(k)− τi f̂1(k))2

− 1
N

n

∑
i=0

(
N

∑
k=1

(ĝτi(k)− (1− τi) f̂0(k)− τi f̂1(k)))2

=
n

∑
i=0

(ĝτi− (1− τi) f̂0− τi f̂1)
T(I− 1

N
11T)

(ĝτi− (1− τi) f̂0− τi f̂1), (4.7)

where I is an N×N identity matrix, 1 is an N×1 vector with each component being 1. Since

(I− 1
N 11T) is positive semi-definite, formulation (4.7) is a convex function. Note that because

predictive metric is scale-invariant, the solution is not unique. To make the computation stable,

one can add constraints on the norms of f̂0 and f̂1.

4.2 Simulation Results

As a numerical example, we generate time-series data by driving a time-varying system with

unit-variance white noise and then superimposing white measurement noise with variance equal

to 2. The time-varying system consists of a succession of (15th-order) auto-regressive filters

chosen to match the spectral character of a W2-geodesic between an ideal power spectrum

f0,ideal(θ) =

∣∣∣∣1−0.5z−1 +0.6z−2

1+0.8z−1 +0.9z−2

∣∣∣∣2
z=e jθ

and a final

f1,ideal(θ) =

∣∣∣∣1+0.5z−1 +0.6z−2

1−0.8z−1 +0.9z−2

∣∣∣∣2
z=e jθ

.

These are shown in Figure 4.1. The STFT with a window of 128 points and an overlapping

between successive windows by 64 points provides us with a collection of power spectral G

as before. Figure 4.3 shows the time-series data (in the first row) and then, below, it com-

pares STFT power spectra (gτi(θ)) in the second row with corresponding spectra obtained via

a geodesic fit ( fτi(θ)). Figure 4.2 compares the spectrogram obtained by STFT and the one by
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Figure 4.1: Power spectra f0,ideal and f1,ideal as functions of θ/π .

the geodesic path fitting. It is clear that the geodesic path captures quite accurately the drift of

power in the spectrum over time. Furthermore, the corresponding “frozen time” spectra fτi(θ)

for i = 0, . . . ,n appear to reproduce quite accurately the expected power distribution at the par-

ticular points in time. On the other hand, due to the small signal to noise ratio (SNR) the STFT

seem quite unreliable.

Comparing with the transportation distance, Figure 4.4 and 4.5 show the estimated spectra

by using the prediction geodesic. We can see that the prediction geodesic results in a fade-in

and fade-out effect on the spectral tracking, thus may not be a proper choice in this situation.

To deal with a long record of data where signal gradually undergoes significant changes,

we can simply divide all spectra into several batches and determine a geodesic for each batch.

However, this method can lead to discrepancies at the connecting points of successive batches.

In order to ensure that no abrupt changes happen at these connecting points, we can add the

distances between the ends of geodesics and the beginnings of the successive geodesics to the

overall objective function. In addition, to guarantee that the signal changes slowly in each batch,

we can also include all the lengths of geodesics as a penalty term. Therefore, our objective

function becomes

JG ( fτ) :=
m

∑
j=1

n

∑
i=0

(dW2( f j,τi ,g j,τi))
2 +α

m−1

∑
j=1

(dW2( f j,τn , f j+1,τ1))
2

+β

m

∑
j=1

(dW2( f j,τ1 , f j,τn))
2 ,
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Figure 4.2: STFT spectrogram and estimated geodesic path.

where j is the index of batch, and m is the total number of batches. α and β are weights. In a
similar way as before, JG ( fτ) can be approximated as

J=
1
N

m

∑
j=1

n

∑
i=0

N

∑
k=1

(
θ̃ j,i,k−

(
(1− τi)θ j,k + τiθ̂ j,k

))2

+
α

N

m−1

∑
j=1

N

∑
k=1

(
θ̂ j,k−θ j+1,k

)2
+

β

N

m

∑
j=1

N

∑
k=1

(
θ̂ j,k−θ j,k

)2
,

where the definitions of θ̃ j,i,k, θ j,k, and θ̂ j,k are similar as before with j as the index of batch.

The constraints resemble before by replacing θk and θ̂k with θ j,k and θ̂ j,k. As an example, we

generate two chirp signals with additive noise of standard variance 1.5. The spectrogram using

STFT is shown in Figure 4.6. Since we allow the chirp to exceed the Nyquist frequency, there

is apparent discontinuity in the path of spectral lines. Figure 4.7 shows the result with α = 50,

β = 1 and the batch size being 20. Compared with Figure 4.8 where no penalty terms are added,

the improvement in the smoothness of the geodesic samples f j,τi’s is rather evident.

If computational cost is not an issue, we can fit a geodesic for every pair of successive

spectra so that the total geodesic length and the least square deviations from the given spectra

are minimized. Therefore, our purpose is to determine fτi , which minimizes

JG ( fτ) :=
n

∑
i=0

(dW2( fτi ,gτi))
2 +α

n−1

∑
i=0

(
dW2( fτi , fτi+1)

)2
.

Note that in this case fτi’s are not confined in a single geodesic. Let Fτi(θi,k) =
k
N , where

Fτi is the mass distribution function of fτi as before, then the above objective function can be
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Figure 4.3: First row: time-series data; second row: STFT spectra based on the highlighted

parts of the time-series; third row: samples of geodesic fit to the STFT spectra.

approximated numerically as

J=
1
N

n

∑
i=0

N

∑
k=1

(
θ̃i,k−θi,k

)2
+

α

N

n−1

∑
i=0

N

∑
k=1

(θi,k−θi+1,k)
2 .

The unknown variables θi,k are subject to the constraints that they are non-decreasing with

respect to k and their values are between 0 and 1. Since we have n ∗N unknowns, it can be

computationally expensive when the number of spectra n is large.

To illustrate the idea, we generate a signal with two chirps and additive noise of standard

variance 1.5. There are 19 spectra by STFT, which is shown in Figure 4.9. From Figure 4.10,

we can see that the estimated spectra by pair-wise geodesic fitting achieve much better accuracy

than those by STFT.

4.3 Extensions

So far we have focused on the geodesic path fitting for scalar-valued spectral density functions.

In the case of vectorial time series, we may need to consider geodesic fitting for multivariate

power spectra. The prediction-based geodesic distance proposed in Chapter 3 leads to a seemly
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Figure 4.4: STFT spectrogram and the prediction geodesic path.

very difficult optimization problem. To get around, one may consider the log distance

d( f0, f1) =

{∫
‖ log f0(θ)− log f1θ‖2

F
dθ

2π

} 1
2

,

which is the Euclidean distance after the log transformation. The geodesic path fτ is simply

log fτ = (1− τ) log f0 + τ log f1.

The resulting geodesic path fitting problem is convex in log f0 and log f1. Further research and

study is needed to derive simple algorithms for the path fitting based on the prediction geodesic.
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Figure 4.5: First row: time-series data; second row: STFT spectra based on the highlighted

parts of the time-series; third row: samples of prediction geodesic fit to STFT spectra.

Figure 4.6: STFT spectrogram.
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Figure 4.7: Top row: time-series with two chirp signals and additive noise; second row: STFT

spectra corresponding to windows marked with blue; third row: estimated geodesic-fit samples

with penalty terms; last row: the estimate geodesic path.

Figure 4.8: Top row: time-series with two chirp signals and additive noise; second row: STFT

spectra corresponding to windows marked with blue; third row: estimated geodesic-fit samples

without penalty terms; last row: the estimated geodesic path.
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Figure 4.9: STFT spectrogram.

Figure 4.10: Top row: time-series with two chirp signals and additive noise; second row: STFT

spectra corresponding to windows marked with blue; third row: estimated pairwise geodesic-fit

samples; last row: the estimated spectrum.



Chapter 5

Metrics and Means

Constructing means, or averages, of a given data set has been of great importance in the areas

of signal processing, computer vision and pattern recognition , optimal filtering and smoothing

[67, 68, 69, 70, 71]. A typical example in spectral analysis is the Welch method which takes

the arithmetic mean of the periodograms of overlapped data segments to reduce the variance of

the estimation [72, 73]. In [68], the geometric mean is taken over windowed periodograms to

reduce both the bias and variance.

From a geometric viewpoint means, such as the arithmetic, geometric, and harmonic mean,

represent solutions to certain optimization problems. Examples in different contexts include the

Fréchet mean, or Karcher mean. To be more specific, given a set of points { fi, i = 1, · · · ,m}, a

general notion of mean is defined to be the point f̄ such that

f̄ := argmin
f

m

∑
i

wid2( f , fi)

where d is a suitable distance and wi’s are normalized weights which sum to 1. It is easy to

check that when d is the Euclidean distance, f̄ is the arithmetic mean ∑
m
i wi fi.

In this chapter, we first illustrate the importance of means with the classical Welch method

in spectral analysis. We then focus on the transportation mean for the weak continuity property

of this distance. The transportation mean, as well as the median, for normalized scalar power

spectra is worked out explicitly. In the multivariate case, we review some classical results for

Gaussian distributions, and show that it coincides with the Bures distance between covariance

matrices. Most importantly, besides the physically appealing interpretation, computation of the

metric requires solving a linear matrix inequality (LMI). As a consequence, computations scale

66
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nicely for problems involving large-size matrices, and linear prior constraints on the structure

of means are easy to handle. At last, we consider the structured mean estimation problem from

a set of positive semi-definite matrices, which has recently become a hot topic in the computer

vision and pattern recognition area.

5.1 The Welch Method and Arithmetic Mean

Let {x(t), t ∈ Z} be a zero-mean, second-order stationary process with covariance sequence

r(k) = E (x(t)x(t− k)∗) , ∀ k, t ∈ Z.

The spectral density function (PSD) of x(t) is defined to be the DTFT of the covariance sequence

r(k)

f (θ) =
∞

∑
k=−∞

r(k)e− jθk.

Given only a finite sample record {x(t), t = 1, 2, · · · , N}, the spectra density estimation

by the periodogram is

f̂ (θ) =
1
N
|

N

∑
t=1

x(t)e− jθ t |2.

There are extensive references on the statistical analysis of the periodogram and its smoothed

versions [1, 74, 75, 76]. We shall only mention key results and skip the derivations.

First, the expection of the periodogram estimator can be shown to be

E( f̂ (θ)) =
1

2π

∫
π

−π

f (θ)WB(θ −φ)dφ ,

where WB(θ) is the DTFT of the triangular window ( also called the Bartlett window )

wb(k) =

{
1− |k|N , k = 0,±1, · · · ,±(N−1)

0, otherwise.

The main lobe of WB(θ) has width about 1/N in frequency, which leads to the resolution limit

of the periodogram. The side lobes of WB(θ) cause the leakage of the energy from energy

concentrated bands to the bands with less energy.

As the sample size N goes to infinity, the expection of f̂ (θ) goes to f (θ) asymptotically.

However, its variance does not converge to zero. Instead, for a general linear signal, which is
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generated by passing the Gaussian white noise through a linear filter,

lim
N→∞

E{[ f̂ (θ1)− f (θ1)][ f̂ (θ2)− f (θ2)]}=

{
f 2(θ), θ1 = θ2

0, otherwise.

Thus for a large sample record, the periodogram behaves like uncorrelated random variables

with standard deviations being the true value of PSD. To deal with these limitations, several

modified periodogram methods have been proposed, among which we will focus on Welch

method due to its interpretation as the arithmetic mean of windowed periodograms.

The Welch method [72, 77] splits the data record into several overlapped segments, and

then takes an average of all the periodograms of windowed segments. Consequently, the vari-

ance of the estimated PSD is reduced. Windowing each segment prior to the computation of

periodogram helps reducing the correlation between two successive segments, and at the same

time offers more flexibility in controlling the resolution of the estimated PSD.

To analyze statistic properties of the Welch method, let {xk(t), t = 1, · · · , L} represents

the k-th segment of data with the length being L, and let the starting points of two successive

segments being D units apart. Then

xk(t) = x(t +(k−1)D), k = 1, · · · , K

where K = b(N−L+D)/Dc with N being the total length of the data record. To each segment,

the windowed periodogram is estimated as

f̂k(θ) =

(
1
L
|

L

∑
t=1

w(t)xk(t)e− jθ t |2
)
/

(
1
L

L

∑
t=1

w2(t)

)
where the denominator denotes the power of the window w(t). The Welch estimation of PSD is

computed as:

f̂W(θ) =
1
K

K

∑
k=1

f̂k(θ).

It can be shown that the expectation of the Welch estimator is

E( f̂W(θ)) =
1

2π

∫
π

−π

f (θ)h(θ −φ)dφ ,

where h(θ) is the normalized periodogram of window w(t):

h(θ) =

(
1
L
|

L

∑
t=1

w(t)e− jθ t |2
)
/

(
1
L

L

∑
t=1

w2(t)

)
.
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If the sample size N goes to infinity, the length L of each segment also goes to infinity. Then the

estimated PSD by Welch method is asymptotically unbiased. In the case that x(t) is a sample

from a Gaussian process, f (θ) is flat over the passband of the estimator, and h(θ −φ) = 0 for

θ < 0 and θ > π , then

Var{ f̂W(θ)}=


f 2(θ)

K

{
1+2

K
∑

k=1

K−i
K ρ(i)

}
, θ 6= 0 or π

2 f 2(θ)
K

{
1+2

K
∑

i=1

K−i
K ρ(i)

}
, θ = 0 or π

where ρ(i) is the correlation between f̂k and f̂k+i. Under the above conditions,

ρ(i) =

[
L

∑
k=1

w(k)w(k+ iD)

]2

/

[
L

∑
k=1

w2(k)

]2

.

If the length of the data record N is sufficiently large, we can split it into K segments without any

overlapping. In this case, the correlation ρ(i) will be zero, and the variance of Welch method is

about

Var{ f̂W(θ)}=

{
f 2(θ)

K , θ 6= 0 or π

2 f 2(θ)
K , θ = 0 or π.

Therefore, by dividing the data record into several segments and taking the arithmetic mean

of their periodograms, the Welch estimation achieves smaller variance than the classical peri-

odogram over the whole data record.

It is worth mentioning that the log-Welch estimation, which is the geometric mean of local

periodograms, is believed to have variance-stabilizing property [75, 78, 79].

5.2 The Transportation Mean

The arithmetic mean mentioned in the previous section is often used to track the central ten-

dency of the data, however it can be easily influenced by outliers. In some applications, arith-

metic mean doesn’t seem to be meaningful. For instance, if we choose xi’s to be Gaussian

distributions with mean µi and same variance σ2, we would expect that the mean of xi’s can

still be a Gaussian-type distribution which is peaked at the arithmetic mean of µi. However, it

is not the case as shown in the following lemma.
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Lemma 23. Let

f1(x) =
1√

2πσ2
e−

(x−µ1)
2

2σ2 , f2(x) =
1√

2πσ2
e−

(x−µ2)
2

2σ2 ,

then their arithmetic mean f̄ (x) = 1
2 [ f1(x)+ f2(x)] is bimodal if |µ1−µ2|> 2σ , and unimodal

otherwise.

The proof is referred to [80]. Figure 5.1 shows examples for both cases.

Figure 5.1: Arithmetic mean of two Gaussian distributions.

To this end, we introduce the transportation-based mean which preserves the Gaussian-

ity. In addition, the transportation distance, which relates to the so-called Monge-Kantorovich

transportation problem [27, pg. 212], has the weak continuity property. By definition, a se-

quence of measures {µk} converges to µ weakly if for any continuous bounded function φ ,∫
φdµk→

∫
φdµ as k→∞. This is desirable for a notion of convergence of power spectra since

small changes in the power spectral density ought to reflect small changes in the statistics and

vice versa. For instance, a “proper” distance between two line-spectra ought to decrease as two

lines move closer, but it is not the case for distances that fail to be weakly continuous. Let

f1(θ) = δ (θ −φ1), f2(θ) = δ (θ −φ2), and φ1 6= φ2,

where δ (θ) is a Dirac delta function, which is infinity at θ = 0 and 0 elsewhere such that its

total integral is 1.

Let’s first consider the L2 distance, which is

|| f1− f2||22 =
∫

( f1(θ)− f2(θ))
2 dθ =

∫
(δ (θ −φ1)−δ (θ −φ2))

2 dθ = ∞.
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The infinity of the total integral of the squared delta function can be reasoned in the following

way. Consider a function which has the constant value 1/ε over an interval ε and 0 elsewhere.

As ε→ 0, the function approaches to be a delta function. The total integral of its square is 1/ε ,

which goes to infinity as ε → 0.

If we consider the L1 distance, then

|| f1− f2||1 =
∫
| f1(θ)− f2(θ)|dθ =

∫
|δ (θ −φ1)−δ (θ −φ2)|dθ = 2.

Therefore, the L1 distance between two delta functions is always 2 as far as φ1 6= φ2.

For the line spectral estimation problems, one would like to quantify errors consistently with

the corresponding errors in the frequency between identified lines. Therefore, the transportation

distance, which has the property of weak continuity, is much more desired in this case than the

L1 and L2 distances.

5.2.1 The one-dimensional case

For the completeness of this chapter, we provide the definition of the transportation distance in

one dimensional case again. Let f1 and f2 be two nonnegative functions on [a, b] with equal

total integrals. Throughout, we consider the cost for moving one unit of mass from location θ

to ψ(θ) to be (θ −ψ(θ))2. Then their transportation distance is the minimum cost of moving

f1 to f2. Mathematically, it is defined to be

dW2( f1, f2) :=
{∫ b

a
|θ −ψ(θ)|2 f1(θ)dθ

} 1
2

where the optimal transference plan ψ(θ) satisfies the constraint that∫
θ

a
f1(σ)dσ =

∫
ψ(θ)

a
f2(σ)dσ . (5.1)

In general this transportation distance defines a metric on the space of (normalized) density

functions where the geodesic distance between two densities in fact equals the actual distance

between the two. In this very special one-dimensional case, the geodesic path fτ (τ ∈ [0,1])

between points f1 and f2 is specified via(
(1− τ)+ τψ

′(θ)
)

fτ((1− τ)θ + τψ(θ)) = f1(θ), (5.2)

where θ and ψ(θ) satisfy the constraint (5.1).
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When both f1 and f2 are delta functions with peaks located at φ1 and φ2 respectively, the

only way to transport f1 to f2 is to move the unit of mass from φ1 to φ2. Thus, their transportation

distance is clear to be

dW2( f1, f2) = |φ1−φ2| (5.3)

whose value decreases as φ1 approaches φ2.

The transportation mean arises naturally in facility allocation. For example, one has several

possible holes to fill each with probability wi. Now one needs to allocate a pile of sand so that

the cost of moving the sand to the possible holes will be minimized. Mathematically, it can be

described in the following way:

Given a set of nonnegative functions fi(θ), i = 1, · · · , m, θ ∈ [a, b] with equal total inte-

grals being 1, the transportation mean is obtained through the following optimization problem:

f̄ = argmin
f

m

∑
i=1

wi (dW2( f , fi))
2 , (5.4)

where wi’s are weights with the sum 1. This problem has been studied in [81, 82, 83] for general

multidimensional distributions. Below we shall provide the results for the one dimensional case

where proofs are relatively straightforward.

Using the cumulative distribution functions, the problem in (5.4) is equivalent to

f̄ = argmin
f

m

∑
i=1

wi

∫ b

a
|θ −ψi(θ)|2dF(θ) (5.5)

s.t. F(θ) = Fi(ψi(θ)), i = 1, · · · , m

Let t = F(θ) and represent θ by an inverse function of F , that is

θ = F−1(t), and ψi(θ) = F−1
i (F(θ)) = F−1

i (t).

Since f (θ) is nonnegative, F(θ) must increase monotonically with respect to θ . Equivalently,

F−1(t) has to increase monotonically with respect to t. In addition, F−1(t) has to satisfy the

boundary condition, i.e., F−1(0) = a and F−1(1) = b. Instead of solving the problem (5.5)

directly, we can first seek the optimal F−1. Defining g(t) = F−1(t), we consider the following
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optimization problem:

g∗(t) = argmin
g(t)

m

∑
i=1

wi

∫ 1

0
|g(t)−F−1

i (t)|2dt (5.6)

s.t. g′(t)≥ 0, ∀ t ∈ [0, 1]

g(0) = a

g(1) = b.

After obtaining g∗(t), we have the optimal cumulative distribution function F̄(g∗(t)) = t, and

the optimal mean can be calculated as

f̄ (g∗(t)) = 1/(g∗(t))′ .

Theorem 24. Let

fi(θ)> 0, ∀ θ ∈ [a, b], and
∫ b

a
fi(θ)dθ = 1,

then the transportation mean f̄ defined in (5.5) is unique and has an explicit form

F̄(
m

∑
i=1

wiF−1
i (t)) = t

where F̄ is the cumulative distribution function of f̄ , and F−1
i (t) is the inverse cumulative dis-

tribution function of fi.

Proof. We will first solve the problem (5.6). Note that fi(θ) is given, therefore F−1
i (t) is known

or can be calculated numerically. Since fi(θ) is nonnegative,

(F−1
i )′(t)≥ 0, ∀ t ∈ [0, 1] (5.7)

and

F−1
i (0) = a, F−1

i (1) = b. (5.8)

If we ignore the constraints on g(t), the unique minimizer is

ĝ∗(t) =
m

∑
i=1

wiF−1
i (t). (5.9)

Because of the conditions on F−1
i (t) in (5.7) and (5.8), ĝ∗(t) satisfies

(ĝ∗)′(t)≥ 0, ∀t ∈ [0, 1], F−1
i (0) = a, and F−1

i (1) = b
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which are exactly the constraints in problem (5.6). Therefore, (5.9) is the optimal solution for

(5.6). Consequently, the optimal transportation mean f̄ in (5.5) can be obtained explicitly from

F̄(
m

∑
i=1

wiF−1
i (t)) = t.

In the case where fi’s are delta functions

fi(θ) = δ (θ −φi),

we have

F−1
i (t) = φi for 0 < t < 1.

Let φ̄ denote the arithmetic mean of {φi}

φ̄ =
m

∑
i=1

wiφi.

Then the cumulative function F̄ of the transportation mean satisfies

F̄−1(t) = φ̄ for 0 < t < 1.

Consequently,

f̄ (θ) = δ (θ − φ̄).

As an example, we choose { fi, i = 1, · · · , 8} as spectral estimations of some sinusoidal

signals. Figure 5.2 shows the results where wi = 1/8. We can see that the transportation mean

is still like a line spectra, with the location of the peak as the average of those of the given data.

To compare the transportation mean with the arithmetic mean for Gaussian distributions,

we have the following corollary:

Corollary 25. Let { fi(θ) = N(µi,σ
2
i ), i = 1, · · · , m}, then their transportation mean f̄ (θ) =

N(µ,σ2) where µ and σ are the arithmetic means of {µi} and {σi} respectively.

Proof. Let f0(θ) = N(0,1), then fi(θ) is obtained by translating and dilating f0(θ), that is

σi fi(σiθ +µi) = f0(θ), i = 1, · · · , m.
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Figure 5.2: An example of transportation mean. The center of the second row shows the cen-

troid, while others are the given spectra.

Consequently,

Fi(σiθ +µi) = F0(θ), i = 1, · · · , m.

Using Theorem 24, the transportation mean satisfies

F̄

(
m

∑
i=1

wi(σiθ +µi)

)
= F0(θ),

which is the same as

F̄

(
(

m

∑
i=1

wiσi)θ +
m

∑
i=1

wiµi

)
= F0(θ).

Thus f̄ (θ) is still a Gaussian distribution with mean and standard deviation being

µ =
m

∑
i=1

wiµi, σ =
m

∑
i=1

wiσi,

which are the arithmetic means of {µi} and {σi} respectively.

As an numerical example, we choose the given data to be two Gaussian distributions with

same variance 1 and different means. Figure 5.3 shows the results for wi = 1/2. Comparing

with Figure 5.1, we can see clearly that the transportation mean is still a Gaussian distribution

which is peaked at the center of two peaks.
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Figure 5.3: Transportation mean of two Gaussian distributions

To see the connection between the transportation mean and geodesic, we have the following

lemma:

Lemma 26. Let

fi(θ)≥ 0, ∀ θ ∈ [a, b], and
∫ b

a
fi(θ)dθ = 1, i = 1, 2,

then the transportation mean f̄ defined in (5.5) lies on the geodesic path, that is

f̄ (θ) = fτ(θ)

where τ = w2, which is the weight for d2
W2
( f̄ , f2).

Proof. Using Theorem 24, we have the cumulative function of the transportation mean

F̄(w1F−1
1 (t)+w2F−1

2 (t)) = t.

Since

w1 = 1−w2,

and

F1(F−1
1 (t)) = F2(F−1

2 (t)) = t,

according to the condition on the transportation geodesic in (5.2) which is equivalent to

Fτ((1− τ)θ + τψ(θ)) = F1(θ) = F2(ψ(θ)),
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we have

F̄ = Fτ

where τ = w2. Thus

f̄ (θ) = fτ(θ).

5.2.2 The multivariate-normal-distribution case

Consider now the transportation mean problem for the multidimensional distributions. Agueh

and Carlier [81] have shown that it is equivalent to the multi-marginal optimal transportation

problem which is defined as follows:

inf
π∈Π(µ1,··· ,µm)

m

∑
i=1

wi

∫
X1×···×Xm

|xi− x|2dπ(x1, · · · ,xm) (5.10)

s.t. x =
m

∑
i=1

wixi

where xi is a random valuable with distributions fi, x corresponds to the transportation mean f̄ ,

and Π is the set of all possible joint distributions.

A sketch of argument is as follows. The transportation mean problem considers all the joint

distributions πi between the marginal fi and the mean f̄ . Since the optimal transference plan ψi

between f̄ and fi determines the relation xi = ψi(x), the set of optimal πi’s dictates the unique

relation between xi and x j as

xi = ψi ◦ψ
−1
j (x j).

Then using the inverse limit theorem [84, pg. 70], there exits a unique joint distribution

π(x,x1, · · · ,xm) which yields all the marginals πi’s. Then from the dual problem, it is easy to see

that the optimal mean x = ∑
m
i=1 wixi. Therefore, the transportation mean problem is equivalent

to (5.10).

The existence and uniqueness of the optimal transference plan of this multi-marginal trans-

portation problem has been proved by Gangbo and Świȩch [85]. The characterization of the

optimal mapping can be found in [82]. To obtain the distribution of the mean x, one usually

needs to solve its dual problem which is an infinite-dimensional linear programming problem.

The case that xi’s are Gaussian distributions has been of great interest from the view point of
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optimal coupling, and the explicit expression for the optimal map has been obtained by various

researchers. In particular, Olkin [86], Knott and Smith [83] derived the optimal transportation

map between two multi-dimensional Gaussian distributions. This result was later generalized

to three Gaussian distributions in [87], [88]. Below we start with the transportation distance

between two zero-mean Gaussian distributions.

Let f1 and f2 be distributions of two zero-mean Gaussian random variables x1 and x2 with

covariance matrices T1 and T2 respectively, and let S=E(x1x′2) denote their correlation. Further,

assuming that their joint distribution is Gaussian we obtain

d2
W2

( f1, f2) = min
S

{
tr(T1 +T2−S−S′) |

[
T1 S

S′ T2

]
≥ 0

}
. (5.11)

A closed form solution is easy to obtain [86, 83]:

S0 = (T1]T−1
2 )T2, (5.12)

where
(
T1]T−1

2

)
denotes the geometric mean between T1 and T−1

2

T1]T−1
2 = T−

1
2

2 (T
1
2

2 T1T
1
2

2 )
1
2 T−

1
2

2 .

The transportation distance is given alternatively by

dW2( f1, f2) =

(
tr(T1 +T2−2(T

1
2

2 T1T
1
2

2 )
1
2 )

) 1
2

,

and the optimal transferring map from x2 to x1 is

x1 = (T1]T−1
2 )x2.

Since this is central to the rest of this subsection, we provide details as below.

Proof. Consider the Shur complement

P := T1−ST−1
2 S′

which is clearly nonnegative definite. Then, ST−
1
2

2 = (T1−P)
1
2 U , where UU ′ = I, and

S = (T1−P)
1
2 UT

1
2

2 . (5.13)
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Moreover,

tr(S) = tr((T1−P)
1
2 UT

1
2

2 ) = tr(T
1
2

2 (T1−P)
1
2 U). (5.14)

Since T1 and T2 are given, minimizing tr(T1 +T2−S−S′) is the same as maximizing tr(S). Let

USΛSV ′S be the singular value decomposition of T
1
2

2 (T1−P)
1
2 , and

U0 := argmax
U
{tr(T

1
2

2 (T1−P)
1
2 U) |UU ′ = I}.

Then, U0 must satisfy V ′SU0 =U ′S and

T
1
2

2 (T1−P)
1
2 U0 = (T

1
2

2 (T1−P)T
1
2

2 )
1
2 . (5.15)

From (5.14) we have tr(S) = tr((T
1
2

2 (T1−P)T
1
2

2 )
1
2 ). Since P≥ 0, tr(S) is maximal when P = 0.

Moreover, if P = 0,

rank

([
T1 S

S′ T2

])
≤ rank(T1),

and T2 = S′0T−1
1 S0. Thus, setting P = 0 into (5.15), we have

U0 = T−
1
2

1 T−
1
2

2 (T
1
2

2 T1T
1
2

2 )
1
2 ,

and consequently S0 = T−
1
2

2 (T
1
2

2 T1T
1
2

2 )
1
2 T

1
2

2 .

Comparing now with the corresponding expression for the Bures distance in (2.13), we

readily have the following.

Proposition 27. For f1 and f2 Gaussian zero mean distributions with covariances T1 and T2,

respectively,

dB(T1,T2) = dW2( f1, f2).

We are now ready to state the transportation mean of several Gaussian distributions.

Theorem 28. Given a set of Gaussian random variables {xi ∼ N(0,Ti), i = 1, · · · ,m}, there

exists a unique transportation mean x which is also a Gaussian with distribution x ∼ N(0,T ),

and T satisfies

T =
m

∑
i=1

wi(T
1
2 TiT

1
2 )

1
2 . (5.16)
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We refer the complete proof of this theorem to [81]. Below, we provide a different derivation

for the optimality condition in (5.16).

Proof. Let the transportation mean f̄ (x) be a zero-mean Gaussian with covariance T , then

m

∑
i=1

wid2
W2

( f̄ , fi) =
m

∑
i=1

wid2
B(T,Ti) =

m

∑
i=1

wi tr
{

T +Ti−2(T
1
2

i T T
1
2

i )
1
2

}
.

Small perturbations around the optimal T would not change the value of the objective function,

i.e.,
m

∑
i=1

wid2
B(T +∆,Ti)−

m

∑
i=1

wid2
B(T,Ti) = HOT(∆2)

where HOT(∆2) means the high order terms on ∆2. We first consider the derivative of X
1
2 for

a positive definite matrix X in terms of its Loewner matrix [35, p. 154]. Suppose X has the

eigen-decomposition X =UΛU∗. The Loewner matrix F(X) of X
1
2 is

[F(X)]i, j =


1
2 λ
− 1

2
i , i = j

λ

1
2

i −λ

1
2
j

λi−λ j
, i 6= j

Then the derivative of X
1
2 is ∂t(X + t∆)

1
2 |t=0 = U (F(X)◦ (U∗∆U))U∗ where ◦ denotes the

Schur product. As a result, for small perturbation ∆,

tr(X +∆)
1
2 − trX

1
2 = trU (F(X)◦ (U∗∆U))U∗+HOT(∆2)

= tr(F(X)◦ (U∗∆U))+HOT(∆2)

= ∑
i

1
2

λ
− 1

2
i (U∗i ∆Ui)+HOT(∆2)

= ∑
i

1
2

tr(Uiλ
− 1

2
i U∗i ∆)+HOT(∆2)

=
1
2

tr(X−
1
2 ∆)+HOT(∆2).

Substitute X with T
1
2

i T T
1
2

i and ∆ with T
1
2

i ∆T
1
2

i , we have

tr
(

T
1
2

i (T +∆)T
1
2

i

) 1
2

− tr
(

T
1
2

i T T
1
2

i

) 1
2

=
1
2

tr
(
(T

1
2

i T T
1
2

i )−
1
2 (T

1
2

i ∆T
1
2

i )

)
+HOT(∆2).



81

Consequently,

m

∑
i=1

wid2
B(T +∆,Ti)−

m

∑
i=1

wid2
B(T,Ti) = tr∆−

m

∑
i=1

wi tr
(
(T

1
2

i T T
1
2

i )−
1
2 (T

1
2

i ∆T
1
2

i )

)
+HOT(∆2)

= tr

((
I−

m

∑
i=1

wiT
1
2

i (T
1
2

i T T
1
2

i )−
1
2 T

1
2

i

)
∆

)
+HOT(∆2).

The optimality condition is

I =
m

∑
i=1

wiT
1
2

i (T
1
2

i T T
1
2

i )−
1
2 T

1
2

i .

Since

T
1
2

i (T
1
2

i T T
1
2

i )−
1
2 T

1
2

i = Ti](T−1) = T−
1
2 (T

1
2 TiT

1
2 )

1
2 T−

1
2 ,

the equivalent optimality condition is

I =
m

∑
i=1

wiT−
1
2 (T

1
2 TiT

1
2 )

1
2 T−

1
2

or

T =
m

∑
i=1

wi(T
1
2 TiT

1
2 )

1
2 .

Note that in the scalar case, T = (∑m
i=1 wiT

1
2

i )2 is the power mean of exponent 1/2. In the

matricial case, T can be seen as the unique power mean which has the minimum total squared

Frobenius distance between T
1
2 and all the possible square roots of the Ti’s.

The existence and uniqueness of solution to the equation (5.16) has been proven in [81]

by using the fixed-point theorem. The common way to solve this equation is by the iterative

method, i.e.,

T(k+1) =
m

∑
i=1

wi(T
1
2
(k)TiT

1
2
(k))

1
2 .

Although it works well in many numerical examples, it remains unknown whether this iterative

procedure converges.

In the case that there are only two Gaussian distributions f0 = N(0,T0) and f1 = N(0,T1),

the covariance matrix of their transportation mean can be easily obtained from a different per-

spective. Without loss of generality, let us assume w1 = w2 = 1/2. From Proposition 27, we

have

dW2( f0, f1) = dB(T0,T1),
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and the Bures distance corresponds to the straight line distance between T
1
2

0 and T
1
2

1 U , where

the unitary matrix U = T−
1
2

1 T−
1
2

0 (T
1
2

0 T1T
1
2

0 )
1
2 . Therefore, the geodesic between them is

Tτ =

(
(1− τ)T

1
2

0 + τT
1
2

1 U
)(

(1− τ)T
1
2

0 + τT
1
2

1 U
)∗

.

The mid point on the geodesic

T0.5 =
1
4
(
T0 +T1 +(T0]T−1

1 )T1 +T1(T0]T−1
1 )
)

has the property

dB(T0,T0.5) = dB(T0.5,T1) =
1
2

dB(T0,T1).

Let f0.5 = N(0,T0.5), equivalently we have

dW2( f0, f0.5) = dW2( f0.5, f1) =
1
2

dW2( f0, f1).

Thus f0.5 is the transportation mean between f0 and f1.

5.3 The Transportation Median in 1-D

Now let us consider geometric median which minimizes the sum of distance to each point:

x̄GM = argmin
x

m

∑
i=1

wid(x, xi) (5.17)

where d( , ) is the chosen distance function and {xi, i = 1, · · · , m} are given points. Compared

with the arithmetic mean, the geometric median is more robust to outliers, but it is in general

difficult to compute.

When d is the Euclidean distance, it is well known that the geometric median is unique

when the given points are not collinear. In the case of collinear, at least one of given points is a

geometric median. For instance, when the number of given points is 2, these points always lie

on a straight line. As a result, when wi = 1/2, i = 1, 2, any point on the interval between these

two points is their geometric median. When w1 6= w2, then the point with the larger weight is

the median. If points are not collinear, some numerical algorithms have been proposed to solve

this convex optimization problem, such as Weiszfeld’s algorithm [89, 90, 91] and semidefinite

programming [92].
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We shall call the transportation-distance-based geometric median as the transportation me-

dian, while reserve the name“geometric median” for the one with Euclidean distance. By fol-

lowing the similar transformation as we did for the transportation mean and using the same

notation as in (5.6), we change the problem into the following one:

g∗(t) = argmin
g(t)

m

∑
i=1

wi

√∫ 1

0
|g(t)−F−1

i (t)|2dt (5.18)

s.t. g′(t)≥ 0, ∀ t ∈ [0, 1]

g(0) = a

g(1) = b.

If we discretize g(t) and F−1
i (t) along t, the resulting problem becomes obtaining the geometric

median of {F−1
i (t), i = 1, · · · ,m}. Thus we can use conventional algorithms for the geometric

median to solve the problem. In the case that the given points are Gaussian distributions, we

have the following lemma:

Lemma 29. Let { fi(θ)=N(µi,σ
2
i ), i= 1, · · · , m}, then their transportation median f̄T M(θ)=

N(µGM,σ2
GM) where [µGM σGM]T is the geometric median of {[µi σi]

T i = 1, · · · , m.}.

Proof. Let

f0(θ) = N(0,1),

then fi(θ) is obtained by translating and dilating f0(θ), that is

σi fi(σiθ +µi) = f0(θ), i = 1, · · · , m.

We use F(θ) to denote the cumulative distribution function of f (θ), then

Fi(σiθ +µi) = F0(θ), i = 1, · · · , m.

Now let us use g0(t) to denote F−1
0 (t), that is F0(g0(t)) = t. Then from the above equality, we

obtain

σig0(t)+µi = F−1
i (t).

Let g(t) = F−1(t), then the optimal g∗(t) corresponding to the optimal F∗ is obtained through
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the following optimization problem:

g∗(t) = argmin
g(t)

m

∑
i=1

wi

√∫ 1

0
|g(t)−σig0(t)−µi|2dt (5.19)

s.t. g′(t)≥ 0, ∀ t ∈ [0, 1]

g(0) =−∞

g(1) = ∞.

Let u(t) = 1, ∀ t ∈ [0, 1], then the above optimization problem is simplified to

g∗(t) = argmin
g(t)

m

∑
i=1

wi||g−σig0−µiu||2 (5.20)

s.t. g′(t)≥ 0, ∀ t ∈ [0, 1]

g(0) =−∞

g(1) = ∞

where || ||2 is the L2 norm. We can see that {σig0 + µiu, i = 1, · · · , m} are points on the

plane spanned by g0(t) and u(t). If we only consider the objective function and do not take the

constraints into account, then the optimal g(t) must lie in the same plane, that means

g(t) = σg0(t)+µu(t).

We can see that if σ > 0, g(t) above satisfies all the constraints. Since F(g(t)) = F(σg0(t)+

µu(t)) = t, the optimal f (θ) must be a Gaussian distribution with standard deviation σ and

mean µ . To obtain the optimal σ and µ , we need to solve the following optimization problem:

arg min
α>0,β

n

∑
i=1

wi||(α−σi)g0 +(β −µi)u||2

Since f0 is symmetric, we have

F0(θ) = 1−F0(−θ),

which leads to

g0(t) =−g0(1− t).

Thus ∫ 1

0
g(t)u(t)dt = 0
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which means g(t) and u(t) are orthogonal. It is easy to see that ||u||2 = 1. Now we need to

compute the norm of g0(t). Let us start from the variance of f0(t):∫
∞

−∞

θ
2dF0(θ) = 1

If we change the variable on the left side to t = F0(θ), and let θ = g0(t), we have∫ 1

0
g0(t)2dt = 1

which means

||g0||2 = 1.

Therefore, g(t) and u(t) are orthonormal. The optimal α and β can be obtained through

arg min
α>0,β

m

∑
i=1

wi

√
(α−σi)2 +(β −µi)2

which means [α∗ β ∗]T is the geometric median of {[αi βi]
T, i = 1, · · · , m}.

Note that since the points {µi, i = 1, · · · , m} are collinear, their geometric median may not

be unique. For example, let µi = i and wi = 1/4 for i = 1, · · · , 4, then it is easy to verify that

both µ2 and µ3 are geometric medians. As a consequence, the transportation median may not

be unique in contrast to the uniqueness of the transportation mean.

The connection between the transportation median and geodesic is established through the

following lemma:

Lemma 30. Let

fi(θ)≥ 0, ∀ θ ∈ [a, b], and
∫ b

a
fi(θ)dθ = 1, i = 1, 2,

then the transportation median f̄T M defined in (5.17) is

f̄T M(θ) =


f1(θ), w1 > w2;

f2(θ), w2 > w1;

fτ(θ), ∀τ ∈ [0, 1] w1 = w2;

where fτ(θ) is any point on the geodesic path between f1 and f2.
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Proof. Using (5.6), the optimal g∗(t) is the geometric median of F−1
1 (t) and F−1

2 (t). Since two

points are always collinear, it is easy to see that

g∗(t) =


F−1

1 (t), w1 > w2;

F−1
2 (t), w2 > w1;

(1− τ)F−1
1 (t)+ τF−1

2 (t), ∀τ ∈ [0, 1] w1 = w2.

Since the cumulative function of the transportation median satisfies

F̄T M(g∗(t)) = t,

using the condition on the transportation geodesic in (5.2) which is equivalent to

Fτ((1− τ)θ + τψ(θ)) = F1(θ) = F2(ψ(θ)),

we have

f̄T M(θ) =


f1(θ), w1 > w2;

f2(θ), w2 > w1;

fτ(θ), ∀τ ∈ [0, 1] w1 = w2.

5.4 The Kullback-Leibler Mean

The transportation mean is not unique in preserving Gaussianity. Below we shall provide an

alternative with the same property, e.g. the Kullback-Leibler (KL) mean.

Recall that the KL divergence is defined as

dKL( f0|| f1) :=
∫

θ

f0 log
f0

f1
dθ ,

where f0 and f1 are two normalized density functions with total integrals 1. We define the

KL mean in a way similar to the transportation mean. For a set of given density functions

fi’s, i = 1, · · · , m, we seek the density function f̄ such that the sum of the Kullback-Leibler

distances between f̄ and fi is minimized, that is

f̄ =

{
argmin

f

1
m

m

∑
i=1

dKL( f || fi), such that
∫

f = 1

}
.
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Theorem 31. The KL mean of { fi, i = 1, · · · , m} is the scaled geometric mean, i.e.,

f̄ = m

√
m

∏
i=1

fi

/∫
m

√
m

∏
i=1

fi.

Proof. Consider the Lagrangian

L( f ,λ ) =
1
m

m

∑
i=1

dKL( f || fi)+λ (
∫

f −1),

which is equivalent to

L( f ,λ ) =
∫

f log f −
∫

f (
1
m

m

∑
i=1

log fi)+λ (
∫

f −1).

To minimize L( f ,λ ) with respect to f , we use the calculus of variation, that is to consider

L( f +δ ,λ ) = L( f ,λ )+
∫

δ (1+λ + log f − 1
m

m

∑
i=1

log fi)+HOT (δ ).

Then the optimal f must satisfy the condition that

1+λ + log f − 1
m

m

∑
i=1

log fi = 0,

which means

f = m

√
m

∏
i=1

fi · e−1−λ .

The Lagrangian multiplier λ is chosen such that the integration of f is 1. Therefore, the KL

mean is

f̄ = m

√
m

∏
i=1

fi

/∫
m

√
m

∏
i=1

fi.

When fi’s are Gaussian distributions, the KL mean is again a Gaussian distribution accord-

ing to the following corollary.

Corollary 32. Let each given density function fi ∼ N(µi,Ti), then the KL mean

f̄ ∼ N(µ,T ),



88

where

T = (
1
m

m

∑
i=1

T−1
i )−1,

and

µ = T (
1
m

m

∑
i=1

T−1
i µi).

Proof. Since each density function is

fi =
1

(2π)
n
2 |Ti|

1
2

e−
1
2 (x−µi)

T T−1
i (x−µi),

we have

m

√
m

∏
i=1

fi =
1

(2π)
n
2 m

√
m
∏
i=1
|Ti|

1
2

e
− 1

2

(
1
m

m
∑

i=1
(x−µi)

T T−1
i (x−µi)

)

=
1

(2π)
n
2 m

√
m
∏
i=1
|Ti|

1
2

e−
1
2 (x−µ)T T−1(x−µ)e

− 1
2 (

1
m

m
∑

i=1
µT

i T−1
i µi−µT T−1µ)

,

where

T = (
1
m

m

∑
i=1

T−1
i )−1,

and

µ = T (
1
m

m

∑
i=1

T−1
i µi).

Therefore, the KL mean

f̄ = ce−
1
2 (x−µ)T T−1(x−µ),

where c is the constant such that the integration of f̄ is 1. Equivalently, we obtain

f̄ ∼ N(µ,T ).

Note that since the Kullback-Leibler distance is asymmetrical, an alternative of the KL mean

could be

f̄ =

{
argmin

f

1
m

m

∑
i=1

dKL( fi|| f ), such that
∫

f = 1

}
.

It is easy to verify that the resulting f̄ is nothing but the arithmetic mean of fi. In this case, the

mean of Gaussian distributions is no longer Gaussian.
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5.5 Means of Positive Definite Matrices

Thus far we have focused on the means of distributions. In the case of multivariate Gaussian

distributions, we equivalently obtain the means of covariance matrices. The problem of con-

structing means of several positive matrices has received much attention in recent years. In

particular, generalizing the geometric mean to more than two positive matrices is mathemati-

cally highly non-trivial [35]. In [93], Ando, Li and Mathias proposed to define the geometric

mean of more than two matrices as the limit of a sequence. This work motivated Petz and

Temesi to generalize other types of means through a similar limit procedure [94]. Although

such definitions of means are conceptually simple, they are in general very demanding from a

computational standpoint.

The optimization-problem-based definition of means can be readily extended to positive

matrices. To be more specific, given a (finite) set of positive semi-definite matrices {Ti, i =

1, · · · ,m}, we can define the mean

T ∗ := argmin
T≥0

1
m

m

∑
i=1

d2(T,Ti) (5.21)

associated with a suitable distance d(T,Ti), provided that such a unique minimizer exists. For

example, Moahker [59], Bhatia and Holbrook [42] defined a notion of geometric mean as the

unique minimizer with respect to the log-deviation distance. To reduce the computational

burden, a third type of geometric mean was proposed in [95] where the distance d(T,Ti) =

‖ logT − logTi‖F was used. The latter has the closed-form expression

T ∗ = exp(
1
m

m

∑
i=1

logTi).

Note that unlike the geometric mean defined by Ando, Li and Mathias, the above mean can be

extended to the case of a countably infinite set or even a continuum of matrices (e.g., in the form

exp(
∫

logT (θ)dθ)).

In this section, we are particularly interested in the structured mean estimation problems,

such as estimating a structured covariance matrices from multiple sample covariance matrices,

where the corresponding time series share certain characteristics. This is the case when we

collect multiple time series from different sensors and seek to estimate a common component.

This problem arises in several areas such as computer vision [96, 70, 71] and financial data

analysis [97]. Below, we consider the concept of means as a way to fuse together sampled
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statistics and the relevant information from different sources. Accordingly, we modify (5.21)

into

T ∗ := arg min
T∈T

1
m

m

∑
i=1

d2(T,Ti), (5.22)

for a metric d(T,Ti), or a divergence d(T ||Ti) in its place (and a suitable choice of exponent),

while T represents a class based on priors and the structure of the problem at hand. Below, we

consider each of the distances/divergences mentioned earlier.

Mean based on KL divergence

The optimization problem based on dKL is

min
T∈T

{
1
m

m

∑
i=1

(
log |Ti|− log |T |+ tr(T T−1

i )−n
)}

,

which is equivalent to

min
T∈T

{
− log |T |+ tr(T T̂−1)

}
, (5.23)

where T̂ =
( 1

m ∑
m
i=1 T−1

i

)−1
is the harmonic mean of the Ti’s. On the other hand, if the likelihood

divergence dKL(Ti||T ) is used, the optimization problem

min
T∈T

{
1
m

m

∑
i=1

(
− log |Ti|+ log |T |+ tr(TiT−1)−n

)}

is equivalent to

min
T∈T

{
log |T |+ tr(T̂ T−1)

}
, (5.24)

where T̂ = 1
m ∑

m
i=1 Ti is the arithmetic mean of Ti’s.

Mean based on log-deviation

Using the log-deviation distance

dLog(T,Ti) = ‖ log(T−1/2
i T T−1/2

i )‖F , (5.25)
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which is a geodesic distance on the manifold of positive definite matrices, the optimization

problem

min
T∈T

{
1
m

m

∑
i=1
‖ log(T−1/2

i T T−1/2
i )‖2

F

}

is not convex in T . If the admissible set T is relaxed to the set of positive definite matrices, the

minimizer is precisely the geometric mean considered by Moakher [59], Bhatia and Holbrook

[42], and it is the unique positive definite solution to the following equation

m

∑
i=1

log(T−1
i T ) = 0. (5.26)

When N = 2, T is the unique geometric mean between two positive definite matrices

T = T1]T2 = T
1
2

1 (T−
1
2

1 T2T−
1
2

1 )
1
2 T

1
2

1 .

This notion of mean has been used in the area of computer vision and pattern recognition to

detect e.g., humans in still images and the covariance matrices are used as object descriptors

[70]. One may consider instead the linearized optimization problem

min
T∈T

{
m

∑
i=1
‖T−1/2

i T T−1/2
i − I‖2

F

}

which is clearly convex in T .

Mean based on transportation/Bures distance

The transportation mean problem with only the positive semi-definite constraints has been dis-

cussed in great details in Section 5.2.2. Considering the admissible set T , the optimization

problem becomes

min
T∈T , Si

{
1
m

m

∑
i=1

tr(T +Ti−Si−S′i) |

[
T Si

S′i Ti

]
≥ 0, ∀ i = 1, · · · ,m

}
. (5.27)

Although the result in (5.16) is no longer valid when T is further constrained, the problem

(5.27) is a semi-definite program and thus computational advantageous when compared with

the other options.
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5.6 Extensions

So far we have discussed various notions of means for scalar-valued distributions and positive

definite matrices. It would be interesting to apply these means to the clustering and classification

problems. It is also fascinating to consider classification problems on a Riemannian manifold.

Simple concepts in the Euclidean geometry may not have analogies on a manifold. For example,

we know that a straight line divides a plane into two. However on a torus, one geodesic can not

divide the torus into halves. Computations, such as the shortest distance of a point to a geodesic,

may not be trivial tasks either.



Chapter 6

Applications

The geometric properties of spectral densities provide a variety of tools for spectral analysis.

By looking at each spectral density as a point on a manifold, we can apply our intuition from

the Euclidean geometry to develop a viewpoint for spectral analysis. For example, we may

model the deformation between two given density functions by using a geodesic between them.

We can automatically separate the phonemes of speech data based on the distance between two

estimated spectral densities. These ideas will be developed in more details in the following

sections.

6.1 Speech Morphing

Modeling and synthesizing speech is a well studied subject driven by the availability of cheap,

high speed processors and by a wide range of applications; these include wireless communica-

tions, voice mail, data compression, speech recognition, speaker identification, text-to-speech

translation, altering or synthesizing voice with particular characteristics as well as a multitude

of applications in the entertainment industry [98]. The purpose of this work is to consider and

study geodesic paths between power spectral density functions as a means to morph voice of

one individual to the voice of another. Despite great strides in the theory and technology of

speech processing, speech morphing is still in an early phase and far from being a standard

application [99]. We first provide a rudimentary exposition of certain standard techniques and

practices in modeling speech and then we discuss our experimental results.

Speech sounds are produced by acoustic excitation of cavities—the vocal and nasal tracts,

93



94

manipulated by the position and stiffness of the tongue, lips, jaw, etc. The excitation is produced

by the vocal chords in the larynx, or by turbulence at other parts of the vocal system (as with

fricatives f, sh or affricates j, etc., where the tongue and lips create suitable constrictions that

generate turbulence). Typically, the shape of the vocal tract results in certain resonances called

formants. These dominate the character of voiced sounds. However, coupling of the oral and

nasal tracts, as in nasal sounds, causes the power spectra to have deep “valleys” as well. This

is also the case when the excitation originates in the interior of the vocal tract, instead of the

glottis. Typical models for speech suggest ∼ 25 [ms] intervals of “quasi-stationarity”. Each

∼ 25 [ms] fragment is represented by a linear filter driven by an excitation signal. Typically, the

latter is either a periodic excitation, e.g., a train of pulses, which creates a pitch, or white noise.

Voiced sounds typically require the filter to be autoregressive (AR) since the formant-structure

is mainly responsible for their character. However, in general, pole-zero models are appropriate.

Thus, common practice for speech analysis and synthesis is mainly based on either construction

of detailed models or on linear time-frequency techniques which identify/generate the spectral

content over sufficiently small time-intervals.

Speech morphing is the process of transforming one person’s speech pattern (e.g., Alice’s)

into another’s (Bob’s), gradually, creating a new pattern with a distinct identity, while preserv-

ing the speech-like quality and content of the spoken sentence. In practice, there are several

technical issues that need to be dealt with depending on the application. A typical experiment

requires first that A (i.e., Alice) and B (i.e., Bob) recite the same sentence. These sentences

need to be segmented appropriately and an exact correspondence be drawn between the be-

ginning and end of the various quasi-stationary intervals that correspond to similar sounds.

Time-frequency analysis can be used to automate marking of such intervals. Then, a suitable

algorithm is required to interpolate the spectral qualities of the sounds produced by A and B.

Earlier attempts can be roughly classified in two groups, those who use direct time-frequency

models and those who use linear predictive and other nonlinear methods for identifying suitable

models. For instance, Abe [100] modified spectra by stitching together the low frequency part of

Alice’s spectrum, below a pre-specified frequency, with the part of Bob’s power spectrum above

the given frequency. This pre-specified frequency is then used as the control parameter that reg-

ulates the mixing. Ye [101] proposed a “perceptually weighted” linear transformation method

based on a Gaussian mixture model for the power spectra of the two subjects. Kawahara [102]
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manually selected anchor points to define correspondence between two time-frequency repre-

sentations for Alice and Bob. Based on these anchor points, a piecewise bilinear transformation

was used to map the target time-frequency coordinate onto the reference coordinate. Others

focus on the modification of the excitation signal and AR spectral parameter; Goncharoff [103]

interpolated the AR-spectra by pole shifting. He first applied a perceptually-based pole pair-

ing algorithm, then generated a path between the pole pairs to achieve linear changes in pole’s

frequency and bandwidth. Pfitzinger [99] on the other hand applied a dynamic programming

technique to align the residuals and power spectra of AR models of the respective speech sig-

nals.

The approach taken in our work shares a number of basic steps with those earlier attempts,

such as marking and processing separately quasi-stationary segments over 25 [ms] time inter-

vals, etc. The key difference is in the algorithm for interpolating the resulting power spectra—in

our work we suggest that this can be most conveniently, and perhaps naturally, effected by fol-

lowing geodesics in suitable metrics (such as those discussed in Chapter 2 ). Below, we briefly

discuss the steps taken for analyzing a voiced phoneme for A and B, generating the respective

spectra, and then generating the morphed sound. Examples of geodesics of complete words and

sentences are posted at [104] in an audible format.

For analyzing a voiced phoneme we use linear prediction techniques. The basic framework

is shown in Figure 6.1. Linear prediction analysis is followed by generation of a power spectrum

at τ ∈ [0,1] on the geodesic path, and then followed by synthesis. Linear prediction is used to

obtain the coefficients for a modeling filter as well as to estimate the pitch. The voiced sound

that is being analyzed (an “a”) is shown as two superimposed time-waveforms in Figure 6.2

(one for speaker A and one for B); it was sampled at 8KHz. For modeling, we choose an AR

model of order 14. The frame size is 25 [ms], and the frame interval is 12 [ms]. A standard “pre-

emphasis” filter is used to reduce the low-frequency content in the signal. The filtered data is

weighted using a Hamming window. For modeling, we choose to use standard methods; we use

the autocorrelation method for estimating the covariance lags and then the Levinson-Durbin

method for obtaining the coefficients of the AR model. The AR model of the phoneme, for

each of the two speakers, provides a corresponding power spectral density. A power spectrum

at a point τ ∈ [0,1] on the geodesic path is then determined. We estimate the pitch period for

speakers A and B, using either residual-based estimation or Harmonic sinusoidal wave-based

estimation. These periods are linearly interpolated along the path. The synthesized power
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Figure 6.1: Linear prediction analysis and synthesis framework

spectral densities are approximated as AR-spectra and, finally, a pulse train with the interpolated

pitch period is used to drive the synthesized AR-filter (at τ ∈ [0,1] on the geodesic) in order to

produce the synthesized sound. A post-emphasis filter is used to compensate the effect of the

pre-emphasis filter–a standard practice.

In synthesizing complete sentences, a number of issues are critical but relatively standard.

For instance, dynamic time warping is needed for an automatic alignment between two persons’

speech, which may have different durations for the same phoneme and detecting voiced and

unvoiced parts within a sentence. More complicated methods have been suggested to further

improve the voice quality and some of these could be incorporated in the above framework. For

example, Wong et al. [105] suggest that the AR coefficients be estimated when the glottis is

closed. This requires further processing and, for high-pitch speakers, it becomes challenging.

Others suggest a glottal-flow-like excitation [106], such as in the Liljencrants-Fant (LF) model,

instead of simple pulse trains. For the purpose of illustrating the idea of spectral morphing, we

just used the simple Linear Prediction model and did not involve ourselves with these advanced

techniques.
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Figure 6.2: Time signals corresponding to the phoneme “a” for A (female) and B (male)

The spectral deformations by the three alternative geodesics (2.2), (2.6), and (2.11) are

shown in Figures 6.4, 6.5 and 6.6 respectively. Though the effect on the acoustic quality is very

subjective, we find that geodesic (2.6) has surprisingly good acoustic qualities, in spite of the

fact that visually, in Figures 6.4 and 6.5, there is an apparent “fade in” and “fade out” of the

respective formants in the two power spectra. The voice quality by geodesic (2.8) has some

artifacts, which may due to the gradually transport of formant locations and our ears may be

very sensitive to it.

6.2 Phoneme Separation

We consider the classic problem of segmenting speech signals into individual phonemes. This

is a key step in current-day speech recognition applications, but can be equally well motivated

based on speech coding and data compression. The mathematical problem is that of identifying

time instances where a non-stationary waveform undergoes significant changes. It is customary

to identify and employ a variety of features and cues for knowledge-based recognition and,

accordingly, classification of sounds. There is a substantial literature on the subject for which
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Figure 6.3: Power spectra for subjects A (female) and B (male)

we refer to [107, 108, 109, 110, 111] and the references therein. We want to explore the potential

of certain natural metrics for comparing power spectra. Thus, we consider signals as consisting

of “stationary segments” where second-order statistics contain most useful information. We

estimate the power spectra based on sliding windows, and base our segmentation process on

the relative distance between power spectra of neighboring windows. We utilize a (new) metric

which quantifies differences in predictive qualities of two power spectra, and compare this with

two other natural notions of distance (which can be motivated by analogous rationale). We

also compare these with the well-known Itakura-Saito distance which has similarities with the

aforementioned metric. We present results on a particular voice signal which has been marked

by a human specialist (“expert”). These data come from the American-English DARPA-TIMIT

database of [112]. Interestingly, the result of our, rather direct usage of metrics, is very similar

to the marking by the “expert.”

For the experimental component of this work, we apply the prediction based geodesic dis-

tance to speech signal analysis. We compare neighboring sliding windows and compute the

distance between the corresponding power spectra. We use the following four distances:
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Figure 6.4: Geodesic path between the two spectra following Ł1 distance

prediction geodesic dist.

√∫
π

−π

(
log f1(θ)

f0(θ)

)2
dθ

2π
−
(∫

π

−π
log f1(θ)

f0(θ)
dθ

2π

)2

L2-log ‖ log( f0)− log( f1)‖2

L1-log ‖ log( f0)− log( f1)‖1

Itakura-Saito ‖ f0
f1
−1− log( f0

f1
)‖1

The demarkation corresponding to maximal distance is taken as the separation between nearby

phonemes. The segmentation is compared with that drawn by an “expert”, and it was often

found to be remarkably accurate. The speech signal and phoneme segmentation results are

shown in Figure 6.7.

The speech segment corresponds to the precise sentence “She has your dark suit in greasy

wash water all year”. In the top sub-figure, diamonds mark phoneme boundaries as decided

by a human “expert”. Asterisks, circles, squares and crosses indicate the boundaries between
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Figure 6.5: Geodesic path between the two spectra following prediction metric

phonemes that were obtained by comparing the prediction-based geodesic distance, L2-log dis-

tance, L1-log distance and the Itakura-Saito distance, respectively, between spectra of neigh-

boring windows. Sub-figures 2, 3, and 4, are plots of the distance between such neighboring

windows obtained by the respective metrics, as a function of the border between neighboring

windows. Local maxima suggest boundaries between phonemes. Because the Itakura-Saito

distance fluctuates considerably, we plot this on a logarithmic scale. Figure 6.8 shows more

clearly the detail about a part of the sentence that corresponds to “she has”. We can see that

the segmentation markers by all these methods are consistent with those drawn by the “expert”.

The segmentation in this last figure sparates phonemes corresponding to the sounds S, i, h, a, s,

e.

6.3 Spectral Averaging

The idea of the transportation mean developed in Chapter 5 can be applied to the smoothing of

spectral densities. For a slowly time-varying signal, the spectral densities are estimated by short

time Fourier transformation (STFT). At each “frozen” time, we use the transportation mean of
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Figure 6.6: Geodesic path between the two spectra following transportation metric

its spectral density and its neighbors to represent the smoothed spectral estimation.

As an example, we generated a chirp signal corrupted by additive noise with variance 1.

The instantaneous frequency at time t is given by (10+290t) Hz with the sampling rate 1KHz.

The STFT is computed over a window of 256 points with an overlap of 128 points between

successive windows. At each time, transportation mean is calculated based on two neighbors

from the past, the present, and two neighbors from the future with weights

[0.1250 0.2188 0.3125 0.2188 0.1250].

Table 6.1 compares the estimation performance by the STFT and the spectral averaging over

5000 simulations, where the instantaneous frequency is estimated as the peak location of the

corresponding power spectral density. It is rather evident that the transportation-mean-based

spectral averaging leads to much smaller variance.
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Figure 6.7: Speech sentence and phoneme segmentation. In the top sub-figure, diamonds desig-

nate segmentation by an “expert”. Asterisks, circles, squares and crosses correspond to segmen-

tation based on prediction geodesic distance, L2-log distance, L1-log distance and the Itakura-

Saito distance respectively.

6.4 The Gaussian Particle Filter

Let x be an n-dimensional Gaussian random variable with mean x̄ and variance Px, and y = h(x)

be a nonlinear transformation of x. We are interested in how the mean and variance of x are

propagated through the nonlinear filter h and how to estimate them.

To evaluate the mean and variance of y, we can expand y in a Taylor series around x̄, that is

y = h(x̄)+Dx̃h+
1
2!

D2
x̃h+

1
3!

D3
x̃h+ · · · ,

where x̃ = x− x̄, and the operator Dk
x̃h is a compact format of

Dk
x̃h = (

n

∑
i=1

x̃i
∂

∂xi
)kh.

As shown in [113, pp 436-439], the mean of y can be expanded as

ȳ = h(x̄)+
1
2!

E(D2
x̃h)+

1
4!

E(D4
x̃h)+ · · · , (6.1)
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Figure 6.8: Part of the sentence and phoneme segmentation results. In the top sub-figure, di-

amonds indicate markings by an “expert”. Asterisks, circles, squares and crosses are marked

based on prediction geodesic distance, L2-log distance, L1-log distance and the Itakura-Saito

distance respectively.

and the variance of y as

Py = HPxHT +E
[

Dx̃h(D3
x̃h)T

3!
+

D2
x̃h(D2

x̃h)T

2!2!
+

D3
x̃h(Dx̃h)T

3!

]
+E(

D2
x̃h

2!
)E(

D2
x̃h

2!
)T + · · · , (6.2)

where

H =
∂h
∂x
|x=x̄ .
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Time Instant (s) 0.384 0.512 0.640 0.7680

Instantaneous Frequency (Hz) 121.36 158.48 195.60 232.72

STFT
Mean 122.08 159.04 195.90 232.58

Variance 282.24 331.60 359.48 183.87

Spectral Mean 120.18 157.29 194.62 231.59

Averaging Variance 27.56 29.05 30.80 29.70

Table 6.1: Instantaneous Frequency Estimation

6.4.1 Linearized transformation and unscented transformation

A simple way to approximate the mean and variance of y is through the linearization of h(x)

around x̄, as adopted by the Extended Kalman Filter (EKF). Let ȳl and Pl denote the approxi-

mated mean and variance respectively, then

ȳl = h(x̄) (6.3)

Pl = HPxHT. (6.4)

However this type of approximation does not take the higher order terms into consideration. A

more sophisticated method is through the unscented transformation. The unscented transforma-

tion requires a set of deterministic sigma points x(i)u ’s whose ensemble mean and covariance are

equal to x̄ and Px respectively, and then passes these points through the nonlinear function. The

ensemble mean and covariance of the resulting y(i)u ’s give the estimation of ȳ and Py. To be more

specific, the 2n+1 sigma points x(i) and their weights w(i) are commonly chosen as

x(0) = x̄ , w(0) = κ/(n+κ),

x(i) = x̄+(
√

(n+κ)Px)
T
i , w(i) = 1/2(n+κ),

x(n+i) = x̄− (
√
(n+κ)Px)

T
i , w(n+i) = 1/2(n+κ),

for i = 1, · · · , n, and κ ∈ R, and (
√

Px)
T
i being the transpose of the i-th row of

√
Px. The

transformed sigma points are calculated as

y(i)u = h(x(i)u ),
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and the mean and covariance of y are estimated as

ȳu =
2n

∑
i=0

w(i)y(i)u (6.5)

Pu =
2n

∑
i=1

w(i)(y(i)u − ȳu)(y
(i)
u − ȳu)

T. (6.6)

It is shown in [114] that ȳu and Pu match ȳ and Py up to the third order of Taylor series, and the

sign of the fourth order of Pu matches that of Py.

6.4.2 The Gaussian particle transformation

The unscented transformation uses pulses at sigma points to approximate a Gaussian distribu-

tion. To take one step further, we propose to approximate it with several Gaussian particles

x(i)G . Each of them is a Gaussian distribution with mean x̄(i)G and variance P(i)
xG , such that their

transportation mean is the original distribution of x. After passing the nonlinear filter h(x), we

have

y(i)G = h(x(i)G ).

Linearizing h(x(i)G ) around x̄(i)G , the resulting y(i)G ’s are approximated as Gaussian distributions

with means and covariances being

ȳ(i)G = h(x̄(i)G ) (6.7)

P(i)
G = HGP(i)

xGHT
G, (6.8)

where

HG =
∂h
∂x
|
x=x̄(i)G

.

We shall call the transportation mean of N(ȳ(i)G , P(i)
G )’s as the Gaussian particle (GP) estimation

of y. The detailed procedure is as follows. First, choose Gaussian particles as x(i)G ∼N(x̄(i)G ,P(i)
xG),

such that

x̄ =
1
2n

2n

∑
i=1

x̄(i)G ,

and

Px =
1

2n

2n

∑
i=1

(P
1
2

x P(i)
xGPx

1
2 )

1
2 .
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A practical choice could be

x̄(i)G = x̄+ ε(
√

nPx)
T
i ,

x̄(n+i)
G = x̄− ε(

√
nPx)

T
i , i = 1, · · · , n,

and

P(i)
xG = Px.

Then compute the estimated mean and covariance of y(i)G as in (6.7). The GP estimation of

y is their transportation mean, which is calculated as

ȳG =
1
2n

2n

∑
i=1

ȳ(i)G ,

PG =
1
2n

2n

∑
i=1

(P
1
2

G P(i)
G P

1
2

G )
1
2 .

Proposition 33. For the linear system y = Ax where x, y ∈Rn and x∼ N(0,P), the LT, UT, and

GPT give the same estimation on the mean and covariance of y.

Proof. Since the system is linear, the estimation of the LT method is

ȳl = Ax̄ = 0,

Pl = APAT.

For the unscented transform, the sigma points are selected as:

x(i)u = (
√

nPx)
T
i ,

x(n+i)
u =−(

√
nPx)

T
i , i = 1, · · · , n,

where (
√

nPx)
T
i is again the transpose of the i-th row of

√
nPx. The transformed sigma points

are

y(i)u = Ax(i)u .

Thus the estimated mean and covariance of y are calculated as

ȳu =
1

2n

2n

∑
i=1

y(i)u = 0

Pu =
1

2n

2n

∑
i=1

(Ax(i)u )(Ax(i)u )T = APAT.
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For the GPT, we choose the mean and covariance of Gaussian particles x(i)G as

x̄(i)G = ε(
√

nPx)
T
i ,

x̄(n+i)
G =−ε(

√
nPx)

T
i , i = 1, · · · , n,

and

P(i)
xG = P.

Then compute the estimated mean and covariance of y(i)G as

ȳ(i)G = Ax̄(i)G (6.9)

P(i)
G = APAT, (6.10)

The GP estimation of y is their transportation mean, which is calculated as

ȳG =
1

2n

2n

∑
i=1

ȳ(i)G = 0,

PG = (
1
2n

2n

∑
i=1

√
P(i)

G )2 = APAT.

Thus for the linear system, the LT, UT, and GPT yield the same estimation.

6.4.3 Examples

We shall use a simple nonlinear function y = xq to compare the estimations of linearized trans-

formation (LT), unscented transformation (UT), and Gaussian particle transformation (GPT).

Let x∼ N(0,σ2) and q be a nonzero natural number. First, we shall provide the theoretic mean

and variance of y:

ȳ = E(xq) =

{
0, q odd

c1σq, q even
(6.11)

Py = E(x2q)− ȳ2 =

{
c2σ2q, q odd

(c2− c2
1)σ

2q, q even
, (6.12)

where

c1 = (q−1)!!,

and

c2 = (2q−1)!!,
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with n!! denoting the double factorial.

Using the LT, we obtain

y' x̄q +qx̄q−1(x− x̄),

therefore

ȳl = 0 (6.13)

Pl =

{
σ2, q = 1

0, q > 1.
(6.14)

On the other hand, for the UT, we choose sigma points and their corresponding weights as

x(0)u = 0, w(0)
u = κ/(1+κ)

x(1)u =
√

(1+κ)σ , w(1)
u = 1/2(1+κ)

x(2)u =−
√

(1+κ)σ , w(2)
u = 1/2(1+κ)

The resulting

y(0)u = 0,

y(1)u = (1+κ)q/2
σ

q,

y(2)u = (1+κ)q/2(−σ)q.

Therefore,

ȳu =
2

∑
i=0

w(i)
u y(i)u =

{
0, q odd

(1+κ)(q−2)/2σq, q even
(6.15)

Pu =
2

∑
i=0

w(i)
u (y(i)u − ȳu)

2 =

{
(1+κ)q−1σ2q, q odd

κ(1+κ)q−2σ2q, q even
(6.16)

When q is odd, we can choose κ to satisfy

(1+κ)q−1 = (c2− c2
1).

In the case that q is even, κ can be chosen as

(1+κ)(q−2)/2 = c1

so that the estimation is unbiased. The corresponding variance becomes c2
1(c

2/(q−2)
1 −1)σ2q.
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For the GPT, the Gaussian particles are chosen to be x̄(1)G = εσ , x̄(2)G = −εσ , and P(1)
xG =

P(2)
xG = σ2. The linearized filters for these Gaussian particles are:

y(i)G ' (x̄(i)G )q +q(x̄(i)G )q−1(x(i)G − x̄(i)G ), i = 1, 2.

Consequently,

ȳ(1)G = (εσ)q,

ȳ(2)G = (−εσ)q,

and

P(1)
G = P(2)

G = q2
ε

2(q−1)
σ

2q.

Thus we have

ȳG =
1
2
(ȳ(1)G + ȳ(2)G ) =

{
0, q odd

εqσq, q even
(6.17)

PG =

(
1
2
(

√
P(1)

G +

√
P(2)

G )

)2

= q2
ε

2(q−1)
σ

2q. (6.18)

When q is odd, we can choose q2ε2(q−1) = c2 so that both mean and variance match the theoretic

values. When q is even, we can choose εq = c1 so that the estimation is unbiased. In this case,

the estimated variance becomes q2( q
√

c1)
2q−2.

The following table shows the comparison among the above three methods.

theoretic LT UT GPT

x2 mean σ2 0 σ2 σ2

variance 2σ4 0 2σ4 4σ4

x3 mean 0 0 0 0

variance 15σ6 0 15σ6 15σ6

x4 mean 3σ4 0 3σ4 3σ4

variance 96σ8 0 18σ8 83.1384σ8

x5 mean 0 0 0 0

variance 945σ10 0 945σ10 945σ10

x6 mean 15σ6 0 15σ6 15σ6

variance 10170σ12 0 646.4213σ12 3284.4σ12

Follow the same procedure, we can consider the nonlinear system to be

y = x+ xq.
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The following table shows the comparison among the above three methods.

theoretic LT UT GPT

x+ x2 mean σ2 0 σ2 σ2

variance σ2 +2σ4 σ2 σ2 +2σ4

{
σ2, σ < 0.5;

4σ4, σ > 0.5.

x+ x3 mean 0 0 0 0

variance σ2 +6σ4 +15σ6 σ2 σ2 +6σ4 +9σ6 σ2 +6σ4 +9σ6

x+ x4 mean 3σ4 0 3σ4 3σ4

variance σ2 +96σ8 0 σ2 +18σ8

{
σ2, σ < 0.4787;

83.1384σ8, σ > 0.4787.

x+ x5 mean 0 0 0 0

variance σ2 +30σ6 +945σ10 σ2 σ2 +30σ6 +225σ10 σ2 +30σ6 +225σ10

x+ x6 mean 15σ6 0 15σ6 15σ6

variance σ2 +10170σ12 0 σ2 +646.4213σ12

{
σ2, σ < 0.445;

3284.4σ12, σ > 0.445.

6.4.4 Extensions

Compared with EKF and UKF, the Gaussian particle filter is computationally more demanding.

Further work is needed before this becomes a liable alternative by substantially reducing the

computational cost. Another interesting alternative is to consider an area/volumn filter. More

specifically, let y = h(x) be a nonlinear system where x is Gaussian distributed. To estimate the

distribution of the output y, we select several points x(i)’s on the σ -curve of the input Gaussian

distribution. We postulate that the output of those points y(i)’s are still on the σ -curve of the

output distribution, i.e., the mass is conserved. We then estimate the mean and variance of the

output distribution through minimizing the volume or area of the ellipse so that those points

stay close to the ellipsoidal.

Figure 6.9: Illustration of the area/volumn filter
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[59] M. Moakher. A differential geometric approach to the geometric mean of symmet-

ric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications,

26(3):735–747, 2005.

[60] A. N. Kolmogorov and S. V. Fomin. Elements of the theory of functions and functional

analysis, Volume 2. Graylock Press, 1961.

[61] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University press,

1994.

[62] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University press, 2005.



116
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Appendix A

Review of Differential Geometry and
Fibre Bundles

This appendix provides some background on fibre bundles and connections in the differential

geometry in order to appreciate the Bures metric. We refer to the book by Kobayashi and

Nomizu [115] for more details on this subject.

Let Mn denote the set of n× n matrices, and let Hn be the set of Hermitian matrices. The

set of skew Hermitian matrices un is identified with the Lie algebra of the unitary group Un. Let

GLn be the general linear group, i.e.,

GLn = {X ∈Mn : det(X) 6= 0},

and Pn be the set of positive definite matrices

Pn = {X ∈ GLn∩Hn : X > 0}.

There is an action of GLn acting on Pn

GLn×Pn→ Pn : (g,g+)→ gg+g∗.

This action is transitive since for any x1, x2 ∈ Pn, there exists g = x1/2
2 x−1/2

1 which maps x1 to

x2. Thus Pn is a homogeneous space of GLn.

In addition, every g ∈ GLn has a polar decomposition g = g+u where g+ ∈ Pn and u ∈ Un.

The projection π

π : GLn→ Pn, π(g) = g+(=
√

gg∗).
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maps GLn into Pn, where we have used
√

X to denote the positive square root of matrix X .

Thus we have a trivial fibre bundle with Pn being the base manifold, GLn the total space and

Un the structure group. The fibre through g+ ∈ Pn is the set {g+u : u ∈ Un}. The tangent space

(T GLn)g of GLn at g is identified with Mn. Likewise, the tangent space (TPn)g+ is Hn, and

the tangent space (TUn)u is identified with uun. For any tangent vector ġ at g ∈ GLn, we can

express it as a mapping from (TPn)g+ and (TUn)u

ġ = ˙(g+u) = ġ+u+g+u̇.

The following lemma establishes the existence and the uniqueness of this map.

Lemma 34. Given any ġ ∈ Mn, g+ ∈ Pn, and u ∈ Un, there exists unique ġ+ ∈ Hn and u̇

satisfying u∗u̇ ∈ un, such that

ġ = ġ+u+g+u̇. (A.1)

Proof. We first rewrite (A.1) as

ġ = ġ+u+g+uu∗u̇ = ġ+u+gu∗u̇.

We want to prove that there exist unique ah = ġ+ ∈Hn and aah = u∗u̇ ∈ un such that

ġ = ahu+gaah.

To do so, we first multiply g∗ on the right

ġg∗ = ahug∗+gaahg∗ = ahg++gaahg∗,

where we have used the fact that g = g+u to reach the second equality. Therefore, ġg∗−ahg+ ∈
un, i.e.,

ġg∗+gġ∗ = ahg++g+ah.

Since g+ > 0, the above equation has a unique solution [38]

ah =
∫

∞

0
exp−τg+(ġg∗+gġ∗)exp−τg+ dτ.

Consequently,

aah = g−1(ġ−ahu).
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Thus we have obtained the unique solution for (A.1)

ġ+ =
∫

∞

0
exp−τg+(ġg∗+gġ∗)exp−τg+ dτ,

and

u̇ = ug−1(ġ−ahu) = g−1
+ (ġ− ġ+u).

A connection in GLn splits the tangent space (T GLn)g into a vertical space Vg and a hor-

izontal space Hg, such that (T GLn)g is a direct sum of Vg and Hg. In addition, Hg has to be

differentiable on g, and Hg is invariant by the group Un, i.e., Hgu = Hgu. The vertical space Vg

consists of vectors tangent to the fibre at g. More specifically, let g moves along the fibre over

g+, ġ+ = 0 which implies ġ ∈ gun. Thus the vertical subspace is

Vg = {X ∈Mn : X = gaah for aah ∈ un}= {X ∈Mn : Xg∗+gX∗ = 0}.

The construction of a horizontal space Hg is not unique. One way is to take Hg = gHn as in

[116], i.e.,

Hg = gHn = {X ∈Mn : Xg∗ = gX∗}, (A.2)

which corresponds to the range space of the projection map

φg(X) =
1
2
(X +gX∗g∗−1),

while Vg is identified with its null space.

Another way of constructing a horizontal space is to define the inner product in (T GLn)g.

That is for X1, X2 ∈ (T GLn)g,

〈X1,X2〉=
1
2

tr(X∗1 X2 +X∗2 X1).

The horizontal space consists of vectors which are orthogonal to the vertical space Vg with

respect to the metric defined above. Some simple calculations yield

Hg =Hng = {Y ∈Mn : Y ∗g = g∗Y}. (A.3)

To distinguish them, we shall call (A.2) the horizontal condition and (A.3) the parallel condition.

For a curve γ(t) ∈ Pn, a smooth curve Γ(t) ∈ GLn is called a lift of γ(t) if γ(t) = Γ(t)Γ(t)∗. If
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γ(t) is a curve of density matrices, then Γ(t) is also called a standard purification which lies on

the sphere Sn defined by the Frobenius norm

Sn = {g ∈ GLn : tr(g∗g) = 1}.

A purification satisfying the parallel condition (A.3) is also called a parallel purification [37][117,

p. 239-241]. The Bures metric defines the length of the tangent vector dρ as the Frobenius norm

of the corresponding tangent vector in the horizontal space:

gρ,Bures(dρ) := {< dW,dW >, s.t. dρ = dWW ∗+WdW ∗, dW ∗W =W ∗dW},

or equivalently using dW = HW for some Hermitian matrix H,

gρ,Bures(dρ) = {1
2

tr Hdρ, s.t. dρ = Hρ +ρH}.



Appendix B

An Example of Using Christoffel
Symbols to Compute Geodesics

The purpose of this example is to go through the standard procedure of using Christoffel sym-

bols to compute geodesics. Though it is conceptually simple, the computation can be rather

complicated and tedious. We start with the Fisher information metric, which defines an inner

product for two tangent vectors δ1 and δ2 at a point p:

< δ1,δ2 >p=
∫

δ1δ2

p
.

We shall consider discrete probability distributions on the simplex

S = {(x1,x2,x3) ∈ R3 : x1,x2,x3 ≥ 0, x1 + x2 + x3 = 1}.

Each probability distribution can be parameterized by the mapping

x : U ⊂ R2→ S : x(u1,u2) = (u1, u2, 1−u1−u2)

where

U = {(u1,u2) ∈ R2 : u1 ≥ 0, u2 ≥ 0, u1 +u2 ≤ 1}.

This parametrization determines a basis {X1,X2} of the tangent plane TpS to S at p:

X1 = ∂x/∂u1 = (1, 0, −1)T ,

and

X2 = ∂x/∂u2 = (0, 1, −1)T .
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The local representation (gi j) of the Fisher metric in the above coordinate system is

g11 =< X1,X1 >p=
1
u1

+
1

1−u1−u2

g12 = g21 =< X1,X2 >p=
1

1−u1−u2

g22 =< X2,X2 >p=
1
u2

+
1

1−u1−u2
.

Its inverse (gkm) is

(gkm) =

(
(1−u1)u1 −u1u2

−u1u2 (1−u2)u2

)
.

According to the Levi-Civita theorem [118], there exists a unique affine connection on S which

is symmetric and compatible with the Fisher metric. The compatibility property of this connec-

tion ensures that the inner product of two parallel vector fields along a curve being constant.

The Christoffel symbols of this Levi-Civita connection can be computed as follows:

Γ
i
jk =

1
2 ∑

m

{
∂gm j

∂uk
+

∂gmk

∂u j
−

∂g jk

∂um

}
gim.

Below are the full expressions of the Christoffel symbols in our setting:

Γ
1
11 =

1+u1(−2+u2)−u2

2u1(−1+u1 +u2)

Γ
1
12 = Γ

1
21 =

−u1

2(−1+u1 +u2)

Γ
1
22 =

(−1+u1)u1

2u2(−1+u1 +u2)

Γ
2
11 =

(−1+u2)u2

2u1(−1+u1 +u2)

Γ
2
12 = Γ

2
21 =

−u2

2(−1+u1 +u2)

Γ
2
22 =

1+u1(−1+u2)−2u2

2u2(−1+u1 +u2)
.

Let V = v1X1 + v2X2 be a vector field along a curve c(t) = (x1(t),x2(t),x3(t)) on S, then the

covariant derivative of V along c(t) is

DV
dt

= ∑
i

{
dvi

dt
+∑

j,k
Γ

i
jkv j

dxk

dt

}
Xi.
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For a curve γ(t) to be a geodesic, its field of tangent vectors γ̇(t) has covariant derivative being

0, i.e. Dγ̇/dt = 0. For our parameterized curve γ(t) = x(u1(t),u2(t)), its tangent vectors are

γ̇ = u̇1X1 + u̇2X2. The geodesic equations are computed as

ü1 =−
(−1+u1)u2

2u̇2
1 +(−1+u1)u2

1u̇2
2 +u2u̇1(u̇1−2u1u̇1−2u2

1u̇2)

2u1u2(−1+u1 +u2)
, (B.1)

ü2 =
−u3

2u̇2
1 +(−1+u1)u1u̇2

2− (−2+u1)u1u2u̇2
2 +u2

2u̇1(u̇1 +2u1u̇2)

2u1u2(−1+u1 +u2)
. (B.2)

We have followed the routine in [119] for computing the Christoffel symbols and the geodesic

equation using Mathematica.

The easier way to construct the geodesic in this example is to map the probability distribu-

tions on the simplex to the unit sphere by taking the square root. Then the geodesic between p1

and p2 on the simplex corresponds to the arc on the unit sphere. The geodesic has a closed form√
γ(t) =

sin(1− t)ϑ
sinϑ

√
p1 +

sin tϑ
sinϑ

√
p2 (B.3)

for τ ∈ [0, 1], and ϑ denotes the angle between
√

p1 and
√

p2, i.e.,

cosϑ = p1 · p2,

where · denotes the dot product.

We verify the geodesic equation (B.1) obtained through covariant derivative by comparing

with the closed form (B.3). We first set the starting point to be p(1) = (0.1,0.2,0.7) and the

initial velocity to be u̇1(0) = u̇2(0) = 0.01. A geodesic path is generated according to (B.1),

where the Matlab toolbox ode45 is used to solve the differential equation. Figure B.1 shows

geodesics by two methods.
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Figure B.1: The red curve is the geodesic path by using the Christoffel symbols. The green

curve is based on the closed-form expression (B.3), whose corresponding arc on the unit sphere

is plotted in black.



Appendix C

Probability and Measure Review

This appendix provides a brief review of some key concepts and theorems in the probability and

measure theory. For more details and derivations of theorems, we refer to classic books in this

area, such as [120, 121, 122].

C.1 Topology and Topological Space

Given a set X , a topology in X is a collection T of subsets of X such that the following properties

hold:

1. The set X and empty set /0 are in T.

2. The intersection of any finite collection of sets in T is still in T.

3. The union of any collection of sets (finite, countable, or uncountable) in T is also in T.

The set X together with its topology T is called a topological space. The most familiar

topological spaces arise from metric spaces. A metric space is a set X with a distance function

(metric) d defined in it, such that:

1. 0≤ d(x,y)≤ ∞ for all x, y in X .

2. d(x,y) = 0 if and only if x = y.

3. d(x,y) = d(y,x) for all x, y ∈ X .
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Figure C.1: Topological spaces

4. d(x,y)≤ d(x,z)+d(z,y) for all x, y, and z ∈ X .

A subset in a metric space is said to be open if it is a union of open balls. Let (X ,d) be a

metric space, and T be a collection of open sets in X , then (X ,T) is called the topological space

associated with the metric space (X ,d).

Given a topological space (X ,T), members of T are called open sets in X . When this

topological space arises from a metric space, the open sets associated with the topological space

are the open sets in the associated metric space. However there are topological spaces which

do not associate with metric spaces. For example, let Y be a set of all positive integers, and T

be a collection of subsets {n, n+ 1, · · ·}, then (Y,T) is a topological space. In this case, the

open sets in (Y,T) are not the familiar open sets in the metric spaces. The sub-collection of

topological spaces associated with metric spaces is called the metrizable topological spaces.

If any pair of distinct points x and y in a topological space (X ,T) has open sets Vx and Vy

containing x and y respectively, and Vx
⋂

Vy = /0, then (X ,T) is called a Hausdorff space. A

metric space is obviously a Hausdorff space, but a topological space is not necessary a Hausdorff

space as indicated in Figure C.1. For example, let X be {1, 2}, and T be { /0,{1},{1, 2}}, then

T is a topology in X . But the open sets containing 1 are {1} and {1,2}, and the only open set

containing 2 is {1,2}, thus the intersection of open sets containing 1 and 2 respectively is not

empty.

Let X , Y be two topological spaces, a function f mapping X into Y is called continuous if

for every open set V in Y , f−1(V ) is an open set in X .

Let f be a mapping from a topological space X to the real line, then f is said to be lower
semicontinuous if the set {x| f (x) > a} is open for any real a. The function f is upper semi-
continuous if the set {x| f (x)< a} is open for any real a. The real function f is continuous if it
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is both lower and upper semicontinuous.

Let {an} be a sequence in [−∞,∞], and bk = sup{ak, ak+1, · · ·}, for k = 1, 2, · · · , then

β = limk→∞ bk is called the upper limit of {an}, and it is denoted as

β = limsup
n→∞

an.

In a similar way, the lower limit of {an} is defined to be

liminf
n→∞

an =− limsup
n→∞

−an.

The set {an} converges if

liminf
n→∞

an = limsup
n→∞

an = lim
n→∞

an.

Let X be a topological space, an open covering of a subset B in X is a covering of B

consisting of only open sets of X . The space X is said to be compact if for every open covering

of X , there is a finite sub-covering. A subset of Rn is compact if and only if it is closed and

bounded. A metric space is said to be compact if its associated topological space is compact. A

metric space X is compact if and only if every infinite subset A of X has at least an “accumulation

point”, which is a point in X such that its neighborhood contains infinitely many distinct points

of A.

In a metric space (X ,d), a sequence an is said to be a Cauchy sequence if ∀ ε > 0, ∃ M,

such that for any i, j > M, d(ai, a j)< ε . If any Cauchy sequence in (X ,d) converges to a point

in X , then X is said to be a complete metric space. A compact metric space is complete.

A subset A of a topological space X is dense in X if Ā = X , where Ā is the closure of A such

that every neighborhood of points in Ā contains points in A. If for any nonempty open set V in

X , A
⋂

V 6= /0, then A is dense in X . As an example, the set of all rational numbers in the real

line is dense. A topological space is said to be separable if it contains a countable dense subset.

The real line is a separable space.

C.2 Measure and Measurable Space

As an analogy to topology, a collection F of subsets of X is said to be a field if the following

properties hold:

1. X ∈ F.
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2. For any A ∈ F, its complement Ac ∈ F.

3. The union of finite subsets in F is also in F.

A field M is said to be a σ -field or σ -algebra if it is also closed under the countable unions:

4. The union of countable subsets in M is also in M.

Each member of M is called a measurable set in X , and such a set X is called a measurable
space. In a topological space X , a set is called a Borel set if it can be formed by countable

union, countable intersection, or complement of open sets in X . The collection B of all Borel

sets on X is called a Borel σ -algebra. A function f from a measurable space X to a topological

space Y is said to be measurable if for any open set V in Y , f−1(V ) is measurable. It is easy to

see that any continuous function mapping a topological space into another topological space is

also a measurable function.

Given a non-empty set X and its σ -field M, a measure µ on M is a non-negative extended

real-valued set function, such that for countable unions of pair-wise disjoint sets An,

µ(
⋃
n

An) = ∑
n

µ(An).

A measure is called a probability measure if µ(X) = 1. The triple (X ,M,µ) is said to be a

measure space if M is a σ -field of the set X , and µ is a measure on M. If µ is a probability

measure, then (X ,M,µ) is called a probability space.

In particular, let us consider the spaceRn. The volume of the closed n-dimensional intervals

I = {x : ai ≤ xi ≤ bi} is

ν(I) =
n

∏
i=1

(bi−ai).

For an arbitrary set E in Rn, we can find a countable collection S of intervals {Ik} to cover E.

Considering all such coverings S, the Lebesgue outer measure of E is defined to be

µ
∗(E) = inf

S
∑
Ik∈S

ν(Ik).

If E =
⋃
k

Ek, then the Lebesgue outer measure µ∗(E) ≤ ∑
k

µ∗(Ek). If E1 ⊂ E2, then µ∗(E1) ≤

µ∗(E2). Any countable subset of Rn has outer measure 0. A set E ⊂Rn is said to be Lebesgue

measurable if for any ε > 0, there exists an open set G, such that E ⊂ G and µ∗(G−E) < ε .
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The outer measure of a measurable set is called its Lebesgue measure. The union of countable

number of measurable sets is measurable. The complement of a measurable set is measurable.

There exist sets that are nonmeasurable. The nonmeasurable Vitali set constructed as fol-

lows is based on the axiom of choice, which states that for a family of arbitrary nonempty sets

indexed by a set A, {Ea, a ∈ A}, there exists one set consisting of exactly one element from

each set Ea. For x, y ∈ (0, 1], we use x⊕y to denote x+y or x+y−1 so that x⊕y lies in (0, 1].

x and y are called equivalent if x⊕ r = y for some rational number r in (0, 1]. Let H be a subset

in (0, 1] formed by taking exactly one represent from each equivalent class according to the ax-

iom of choice. Now let us consider the countably many sets Gk = H⊕ rk for all rational rk’s in

(0, 1]. These sets Gk’s are disjoint. ( Otherwise if hi+ri = h j +r j, then hi and h j are equivalent.

But each member of H is not equivalent, which means hi = h j. Consequently we have ri = r j. )

Since each point in (0,1] is included in {Gk, k = 1, 2, · · ·}, we have (0, 1] =
⋃

k Gk. If the set

H has measure 0, then (0, 1] has measure 0, which is impossible. If H has a positive measure,

then (0, 1] has measure infinite. Thus the Vitali set constructed above is nonmeasurable.

A real-valued function f defined on a set E ⊂Rn is said to be Lebesgue measurable if for

any finite a, the set {x ∈ E : f (x)> a} is measurable.

Now we shall introduce the Lebesgue integral. Let f be a nonnegative real-valued function

defined on a set E ⊂Rn. The region under f over E is

R( f ,E) ={(x,y) ∈R(n+1) : x ∈ E,0≤ y≤ f (x) if f (x)<+∞

and 0≤ y <+∞ if f (x) = +∞}.

Then the Lebesgue measure of the region R( f ,E) is called the Lebesgue integral of f over the

set E: ∫
E

f (x)dx = µ
∗(R( f , E)).

For an arbitrary measurable function f over a set E, it can be written as f = f+− f−, where

both f+ and f− are two measurable nonnegative functions over E. The Lebesgue integral of f

over E is ∫
E

f (x)dx =
∫

E
f+(x)dx−

∫
E

f−(x)dx.

A function f is called Lebesgue integrable if its Lebesgue integral exists and finite. The set of

all Lebesgue integrable functions is denoted as L(E) = { f : |
∫

E f |<+∞}.
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The difference between the Riemann and Lebesgue integrals is that the Riemann integral

starts from the partition of the domain of f , while the Lebesgue integral partitions the range of

the function f .

Below we shall state some important theorems regarding the Lebesgue integral.

Theorem 35 (Monotone Convergence Theorem). Let { fk} be a sequence of Lebesgue inte-

grable functions on the set E,

1. If fk increases to f a.e., and there exists a Lebesgue integrable function g, such that fk > g

a.e., then
∫

E fk→
∫

E f .

2. If fk decreases to f a.e., and there exists a Lebesgue integrable function g, such that

fk < g a.e., then
∫

E fk→
∫

E f .

Theorem 36 (Uniform Convergence Theorem). If a sequence of Lebesgue integrable functions

{ fk} converges uniformly to f on a set E and E has a finite Lebesgue measure, then f is

Lebesgue integrable and
∫

E fk→
∫

E f .

Theorem 37 (Fatou’s Lemma). Let { fk} be a sequence of Lebesgue integrable functions on the

set E, and there exists a Lebesgue integrable function g, such that fk > g a.e. on E for all k,

then ∫
E
(liminf

k→∞

fk)≤ liminf
k→∞

∫
E

fk

Theorem 38 (Lebesgue’s Dominated Convergence Theorem). Let { fk} be a sequence of Lebesgue

integrable functions on the set E and fk → f a.e. in E. If there exists a Lebesgue integrable

function g, such that | fk| ≤ g a.e. in E for all k, then
∫

E fk→
∫

E f .

C.3 Convergence

There are several notions of convergence in functional analysis and probability measures.

• Convergence in measure

Let (X ,M,µ) be a measure space. If a sequence of functions { fk} and f are measurable

and finite a.e. in a set E ∈M, then fk converges to f in µ-measure if

∀ε > 0, µ{x ∈ E : | fk(x)− f (x)|> ε}→ 0.
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• Convergence in probability

Let {µk} be a sequence of probability measures and {Yk} be their associated random

variables, Yk is said to converge in probability to Y if µk converges to µ in measure.

• Strong convergence

In a metric space (X ,d), a sequence {xn} in X is said to converge strongly to x if

d(xn,x)→ 0.

• Weak convergence in functional analysis

From the functional analysis viewpoint, the sequence {xn} converges weakly to x in a

normed linear space X if

∀ f ∈ X∗, f (xn)→ f (x),

where X∗ is the dual space of X consisting of continuous linear functionals on X . Strong

convergence implies weak convergence. They are equivalent if the metric space X is finite

dimensional.

• Weak convergence of probability measures

Let X be a metric space, and B its Borel σ -algebra. A sequence of probability measures

{µk} on B is said to converge weakly in measure to µ if

∀ A ∈B,µk(A)→ µ(A),

which is equivalent to

∀ bounded continuous f : X →R,
∫

f dµk→
∫

f dµ.

If {µk} are finite measures on B(R) , and let {Fk} be their corresponding distribution

functions, then µk converges weakly to µ is equivalent to Fk(a,b]→ F(a,b] for all a, b ∈
R.

• Convergence in distribution

Let {µk} be a sequence of probability measures and {Yk} be their associated random vari-

ables, Yk is said to converge in distribution to Y if µk converges weakly to µ . Convergence

in probability implies convergence in distribution.
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• Almost sure convergence (or convergence with probability 1)

A sequence of random variables {Yn} is said to converge almost surely to Y if

Pr( lim
n→∞

Yn = Y ) = 1.

Almost sure convergence implies convergence in probability.



Appendix D

Another Interpretation of KL
Divergence and Fisher Metric

The Kullback-Leibler divergence between two probability distributions p and q of discrete ran-

dom variables is defined as

dKL(p||q) = ∑
i

pi log
pi

qi
.

From the information theory point of view, the KL divergence measures the average extra bits

needed to code a random signal with the incorrect knowledge of distribution q, while the true

distribution is p. The KL divergence also arises from the hypothesis testing [43, 123], which

we explain as follows.

Assume that you are given a coin, without knowledge of whether the coin is fair. If it is

biased, you know that Pro(head) = q1 and Pro(tail) = q2 with q1 + q2 = 1. If the coin is fair,

then Pro(head) = p1 = 1/2 and Pro(tail) = p2 = 1/2. Now you need to toss the coin several

times to decide whether the coin is fair or not. This is a hypothesis testing problem. Let two

hypotheses be H0: the coin is distributed as p, and H1: the coin is distributed as q. We start with

Pro(H0) = Pro(H1) =
1
2
.

After tossing the coin n times, we find that the outcome En = {m heads, (n−m) tails}. Then
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we can computer the posterior as:

Pro(H0|En) =
Pro(En|H0)Pro(H0)

Pro(En)

=

(
n

m

)
pm

1 pn−m
2

1
2

Pro(En)

and

Pro(H1|En) =

(
n

m

)
qm

1 qn−m
2

1
2

Pro(En)
.

Their likelihood ratio is
Pro(H0|En)

Pro(H1|En)
=

(
p1

q1

)m( p2

q2

)n−m

.

The average log likelihood ratio is

1
n

log
(

Pro(H0|En)

Pro(H1|En)

)
=

m
n
(log p1− logq1)+

n−m
n

(log p2− logq2) .

If the coin is distributed as p, then m
n → p1, and n−m

n → p2 as n becomes large. Consequently,

1
n

log
(

Pro(H0|En)

Pro(H1|En)

)
→ p1 (log p1− logq1)+ p2 (log p2− logq2) ,

where the right hand side is dKL(p||q). Therefore, the likelihood ratio

Pro(H0|En)

Pro(H1|En)
→ endKL(p||q).

On the other hand, if the coin is distributed as q, then

Pro(H0|En)

Pro(H1|En)
→ e−ndKL(q||p).

If the KL divergence between p and q is large, then from the likelihood ratio of posteriors, one

can easily tell the true distribution of the coin.

The small perturbation of the KL divergence gives rise to the Fisher metric. The same metric

arises as the uncertainty region of the distribution of histograms.

Let us consider Bernoulli trials, where the outcome of each trial is independent. Assume

there are possibly k mutually exclusive outcomes in each experiment, and each with probability
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p1, · · · , pk. After n experiments, we can count the number of each possible outcome to form a

histogram, say En = {m1, · · · ,mk} where n = ∑
k
i mi. Since each experiment is independent, the

histogram En has a multinomial distribution

Pro(En) =
n!

m1!m2! · · ·mk!
pm1

1 pm2
2 · · · p

mk
k .

According to the Local DeMoivre-Laplace Theorem for multinomial distributions [124, pg. 70],

for large n,

Pro(En)→
1

(2πn)
k−1

2 (p1 p2 · · · pk)
1
2

e
− 1

2

k
∑
i

(mi/n−pi)
2

pi/n
,

or equivalently by introducing the frequency of occurrence {ξi = mi/n, i = 1, · · · ,k},

Pro({ξi})→
√

2πn(−2k+1)
k

∏
i=1

N(pi, pi/n).

The proof is essentially based on the Stirling’s formula

n! =
√

2πnnne−necn

where

|cn| ≤
1

12n
.

Therefore, as n increases, {ξi} is more and more concentrated around p. We can define the

uncertainty region of {ξi} as
k

∑
i

(ξi− pi)
2

pi/n
≤ 1

or
k

∑
i

(ξi− pi)
2

pi
≤ 1

n
.

Let ξi = pi +δpi , the left hand side of the above expression becomes

k

∑
i

δ 2
pi

pi
,

which is exactly the Fisher metric. Furthermore, the transformation p→√p maps the simplex

to the unit sphere, and for large n, the ellipsoid uncertainty region is mapped to a disc on the

unit sphere
k

∑
i
(
√

ξi−
√

pi)
2 ≤ 1

4n
,
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which can be easily verified by expanding
√

ξi in Taylor series around pi. Figure D.1 (original

from [104]) shows the ellipsoid uncertainty region on the simplex ( in red ) and the correspond-

ing disc on the sphere ( in blue ). When the uncertainty regions of two distributions overlap

Figure D.1: The ellipsoid uncertainty region on the simplex ( in red ) and the corresponding

disc on the sphere ( in blue ).

with each other, it is hard to distinguish them. For two distributions p and q far apart, one can

find paths connecting them such that locally it is hard to distinguish the point on the path with

its neighbors. The one with the minimum length defines a geodesic:

min
∫

t
(

k

∑
i

ṗi(t)2

pi(t)
)

1
2 dt,

which is exactly the geodesic of the Fisher metric. The same idea has been used to define the

distance between two preparations of the same quantum system [125].
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