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Optimal Steering of a Linear Stochastic System to a
Final Probability Distribution, Part I

Yongxin Chen, Student Member, IEEE, Tryphon T. Georgiou, Fellow, IEEE, and Michele Pavon

Abstract—We consider the problem of steering a linear dy-
namical system with complete state observation from an initial
Gaussian distribution in state-space to a final one with minimum
energy control. The system is stochastically driven through the
control channels; an example for such a system is that of an inertial
particle experiencing random “white noise” forcing. We show that
a target probability distribution can always be achieved in finite
time. The optimal control is given in state-feedback form and is
computed explicitly by solving a pair of differential Lyapunov
equations that are nonlinearly coupled through their boundary
values. This result, given its attractive algorithmic nature, appears
to have several potential applications such as to quality control,
control of industrial processes, as well as to active control of
nanomechanical systems and molecular cooling. The problem to
steer a diffusion process between end-point marginals has a long
history (Schrödinger bridges) and the present case of steering a
linear stochastic system constitutes such a Schrödinger bridge
for possibly degenerate diffusions. Our results provide the first
implementable form of the optimal control for a general Gauss–
Markov process. Illustrative examples are provided for steering
inertial particles and for “cooling” a stochastic oscillator. A final
result establishes directly the property of Schrödinger bridges as
the most likely random evolution between given marginals to the
present context of linear stochastic systems. A second part to this
work, that is to appear as part II, addresses the general situation
where the stochastic excitation enters through channels that may
differ from those used to control.

Index Terms—Linear stochastic system, Schrödinger bridge,
stochastic control.

I. INTRODUCTION

THE most basic paradigm in optimal control deals with the
steering of a dynamical system between two end-points in

time, while minimizing a suitable cost functional—here, the ex-
pected quadratic integral of the control input. The specifications
for the marginal conditions are either explicit, requiring that the
value of the state vector belongs to a specified set, or implicit,
penalizing the distance of the state vector from a target location.
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In the presence of a stochastic disturbance, in both cases,
the end-point conditions may be further modified accordingly.
For instance, a bound on the probability of failing to meet
explicit constraints may be specified or, in the second case, the
penalty on the distance to a target location averaged. Herein,
we consider a natural third alternative where the marginal end-
point probability densities for the state vector are explicitly
specified. This type of “soft conditioning” may be thought of
as a relaxed constraint with respect to the requirement that the
state vector belongs to a specified set. It leads to a problem
which is in a way similar, but also sharply different from
the classical LQG problem [1] as well as some of its more
recent variants such as the one with chance constraints, see,
e.g., [2], [3].

This problem is relevant in a wide spectrum of classical
as well as emerging control applications. First and foremost,
since it represents soft conditioning, it is of importance in
applications where a distribution rather than a set of values for
the state vector is a natural specification, e.g., in quality control,
industrial and manufacturing processes. Applications may also
be envisaged to control of aircrafts, UAVs, and autonomous
cars. It is also relevant in a host of other applications at the
forefront of modern technological developments such as in the
control at the molecular and even atomic scale, the shaping of
NMR pulse sequences, laser driven molecular reactions, quan-
tum metrology, atomic force microscopy (AFM), dynamic force
microscopy (DFM) and many others; see [4]–[9]. For example,
in surface topography using AFM, feedback control is used to
limit the fluctuations of the tip of the cantilever. Similarly, in
other applications, the distribution of particles in phase space is
shaped using a time-varying control potential, and the energy
profile of molecules and polymers is shaped using suitable
energy sources. Steering a thermodynamic system to a desired
steady state corresponding to a lower effective temperature
is referred to as “cooling.” Cooling via feedback control is
of great interest in both, microscopic as well as macroscopic
electro-mechanical systems. For instance, cooling to ultra-low
temperatures is indispensable to investigate decoherence—see
[10], [11] for a feedback cooling technique of a ton-scale
resonant-bar gravitational wave detector, and [12] for a survey
of cooling techniques for both meter-sized detectors as well
as nano-mechanical systems. For these diffusion-mediated de-
vices, which are often called Brownian motors since work can
be extracted from them [13], motor efficiency can be cast as
the optimal control problem of steering the distribution of a
diffusion process [14].

Interestingly, the special case of steering a Brownian diffu-
sion between an initial and a final distribution relates to a seem-
ingly disparate problem that was posed by Erwin Schrödinger
in 1931/1932 [15]. In his quest for a more classical formulation
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of quantum mechanics1 Schrödinger sought to identify the
“most likely” evolution that a cloud of Brownian particles may
have taken so as to give rise to observed initial and final-point
empirical marginal distributions. Schrödinger’s question, which
was rather unorthodox at the time, can be properly understood
in the modern language of large deviations.2 In essence, he
asked for a probability law on the space of sample paths of
the process, that is closest to the prior law (Wiener measure)
in the relative entropy sense and agrees with the two end-point
marginals. It turns out [19] that the sought probability law is
the law of another diffusion with a suitable drift term,3 and
the relative entropy between the two laws turns out to be the
quadratic integral of this drift! The new law/diffusion on path
spaces in known as a Schrödinger bridge (connecting the given
end-point marginals) [24]. The fact that the quadratic integral
of the drift is identical to the entropy between the prior and the
Schrödinger bridge is the link to the optimal control problems
that we consider in this paper.

In spite of the substantial literature on Schrödinger bridges
and related stochastic control problems, the situation is far
from satisfactory. One drawback is that the connection between
optimal control and the Schrödinger bridges has been devel-
oped for non-degenerate diffusions where the noise acts on
all components of the state vector, whereas in many control
applications, such as the Nyquist-Johnson model of a circuit
with noisy resistor in phase space, this is not the case. A
much more serious problem is that the solution, excepting
very special cases [14], [23], is in general not given in a
form amenable to computations. Indeed, computing the optimal
control requires solving a pair of partial differential equations
nonlinearly coupled through their boundary values [24].

The purpose of this paper is to partially remedy this situation.
In this and in the second part [25], we provide what can be
regarded as the first computable and implementable solution in
the important case of a Gauss–Markov process. Gauss–Markov
process have been discussed in the discrete-time setting in
[26]. However, the existence and an implementable form of the
optimal control are missing in [26] and, moreover, the noise
intensity is restricted to be nonsingular. Similarly, [27], [28]
consider continuous-time Gauss–Markov processes also with
nonsingular noise intensity. Another related line of research
in [29] sought to assign the asymptotic closed-loop state-
covariance with dynamic output feedback. In spite of the fact
that control takes place over an infinite time interval, here
too, computational aspects and conditions for “assignability”
of steady state covariance are non-trivial (see also [25]).

In this paper, we show that a linear dynamical system can
be optimally steered from any initial Gaussian distribution
for the initial state to any final one, over any finite interval
[0, T ]. In the present, we assume that the control input and

the stochastic disturbance share the same input channels (i.e.,
the same input matrix); the general case is treated in [25].
The unique minimum-energy state-feedback control is explic-

1The quest, in a sense, culminated in 1966/67 with Nelson’s Stochastic
Mechanics [16].

2Large deviations theory has various applications in hypothesis testing, rate
distortion theory, etc, see, e.g., [17, Ch.11], [18, Ch. 2,3,7].

3We note that the drift term of the corresponding process can be obtained
by the so called “logarithmic transformation” of stochastic control of Fleming,
Holland, Mitter et al., see [14], [19]–[22].

itly constructed by solving two linear Lyapunov differential
equations. These are nonlinearly coupled through boundary
conditions at the two end points of the interval. Moreover, we
show that the optimal choice for these boundary values can
be expressed in closed form as (nonlinear) functions of the
covariances for the initial and target Gaussian distributions.

The paper is structured as follows. The formulation of the
main problem and the variational analysis that shows the form
of the optimal control are given in Section II. The existence
and the explicit construction of the optimal control is given in
Section III. Although the state process may be a degenerate
diffusions (since, typically, the rank of the input matrix is
less than the dimension of the state vector), the law of the
controlled dynamics is closest in the relative entropy sense to
that of the uncontrolled dynamics, just as in the theory of the
Schrödinger bridges; this is shown in Section IV. Finally, in
Section V we present two illustrative examples. The first one is
on inertial particles experiencing random (white) acceleration,
and the second, on active damping of an oscillator driven by
Nyquist–Johnson thermal noise.

II. PROBLEM FORMULATION AND VARIATIONAL ANALYSIS

Consider a “prior” evolution given by the vector Gauss–
Markov process {x(t) | 0≤ t≤T} satisfying the n-
dimensional linear stochastic differential equation

dx(t) = A(t)x(t)dt + B(t)dw(t) with x(0) = ξ a.s. (1)

and ξ an n-dimensional random vector independent of {w(t) |
0 ≤ t ≤ T} with density

ρ0(x) = (2π)−n/2 det(Σ0)
−1/2 exp

(
−1

2
x′Σ−1

0 x

)
. (2)

Throughout, {w(t) | 0 ≤ t ≤ T} is a standard, m-dimensional
Wiener process and A(·) and B(·) are continuous matrix
functions taking values in Rn×n and Rn×m, respectively.
Consider also the controlled evolution

dxu(t) = A(t)xu(t)dt + B(t)u(t)dt + B(t)dw(t)

xu(0) = ξ a.s. (3)

and a “target” end-point distribution

ρT (x) = (2π)−n/2 det(ΣT )−1/2 exp

(
−1

2
x′Σ−1

T x

)
(4)

which is Gaussian with zero mean with covariance ΣT > 0. We
let U be the family of adapted, finite-energy control functions
such that (3) has a strong solution and xu(T ) is distributed
according to (4). More precisely, u ∈ U is such that u(t) only
depends on t and on {xu(s); 0 ≤ s ≤ t} for each t ∈ [0, T ],
satisfies

E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt

⎫
⎬

⎭ < ∞

and effects xu(T ) to be distributed according to (4). The
family U represents admissible control inputs which achieve
the desired probability density transfer from ρ0 to ρT . Thence
we formulate the following Schrödinger Bridge Problem:
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Problem 1: Determine whether U is non-empty and if so,
determine u∗ := arg minu∈U J(u) where

J(u) := E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt

⎫
⎬

⎭ .

In the next section we will prove that a minimizing control
u∗ always exists. The stochastic process {x∗(t) = xu∗

(t) | 0 ≤
t ≤ T} will be referred to as the Schrödinger bridge from ρ0

to ρT over the prior {x(t) = x0(t) | 0 ≤ t ≤ T}.
Notice that in the “controlled” (3) the control variables u(t)

act through the same input “channels” which are subject to
noise, i.e., both u(t) and dw(t) affect the state through the
same B(·) matrix. The theory that follows can accordingly be
relaxed to the case where the control has more “authority” (i.e.,
the range of the corresponding B-matrix contains the range
of the B-matrix for the noise). Evidently the case where the
control and noise enter through different channels is of great
importance as well, and in particular, the case where the control
authority is less than that of the stochastic noise. This is the
subject of a sister paper [25], presented as part II and following
the present one.

In the remaining of the section we identify a candidate
structure for the optimal controls and reduce the problem to
an algebraic condition involving two differential Lyapunov
equations that are nonlinearly coupled through split boundary
conditions.

Let us start by observing that this problem resembles a
standard stochastic linear quadratic regulator problem except
for the boundary conditions. The usual variational analysis can
in fact be carried out, up to a point, namely the expression for
the optimal control, in a similar fashion. Of the several ways
in which the form of the optimal control can be obtained, we
choose a most familiar one, namely the so-called “completion
of squares.”4 Let {Π(t) | 0 ≤ t ≤ T} be a differentiable func-
tion taking values in the set of symmetric, n × n matrices.
Observe that Problem 1 is equivalent to minimizing over U
the modified index

J̃(u)=E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt+x(T )′Π(T )x(T )−x(0)′Π(0)x(0)

⎫
⎬

⎭.

(5)

Indeed, as the two end-point marginals densities ρ0 and ρT are
fixed when u varies in U , the two boundary terms are constant
over U . We can now rewrite J̃(u) as follows:

J̃(u) = E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt +

T∫

0

d (x(t)′Π(t)x(t))

⎫
⎬

⎭ .

Assuming that on [0, T ] Π(t) satisfies the matrix Riccati
equation

Π̇(t) = −A(t)′Π(t) −Π(t)A(t) + Π(t)B(t)B(t)′Π(t) (6)

4Although it might be the most familiar to control engineers, the completion
of the square argument for stochastic linear quadratic regulator control is not
the most elementary. Indeed, a derivation which does not employ It ō’s rule
was presented in [30].

a standard argument using It ō’s rule (e.g., see [1]) shows that

J̃(u) = E

⎧
⎨

⎩

T∫

0

∥u(t) + B(t)′Π(t)x(t)∥2
dt

+

T∫

0

1

2
trace (Π(t)B(t)B(t)′) dt

⎫
⎬

⎭ .

Observe that the second integral is finite and invariant over
U . Hence, we obtain a candidate for the optimal control in the
familiar form

u∗(t) = −B(t)′Π(t)x(t). (7)

Such a choice of control will be possible provided we can find
a solution Π(t) of (6) such that the process

dx∗(t) = (A(t) − B(t)B(t)′Π(t)) x∗(t)dt + B(t)dw(t)

with x∗(0) = ξ a.s. (8)

leads to x∗(T ) with density ρT . If this is indeed possible,
then we have solved Problem 1. It is important to observe that
the optimal control, if it exists, is in a state feedback form.
Consequently, the new optimal evolution is a Gauss–Markov
process just as the prior evolution.

Finding the solution of the Riccati equation which achieves
the density transfer is nontrivial. In the classical linear quadratic
regulator theory, the terminal cost of the index would provide
the boundary value Π(T ) for (6). However, here there is
no boundary value and the two analyses sharply bifurcate.
Therefore, we need to resort to something quite different as
we have information concerning both initial and final densities,
namely Σ0 and ΣT .

Let Σ(t) := E{x∗(t)x∗(t)′} be the state covariance of the
sought optimal evolution. From (8) we have that Σ(t) satisfies

Σ̇(t) = (A(t) − B(t)B(t)′Π(t))Σ(t)

+ Σ(t) (A(t) − B(t)B(t)′Π(t))
′
+ B(t)B(t)′. (9)

It must also satisfy the two boundary conditions

Σ(0) = Σ0, Σ(T ) = ΣT (10)

and, provided (A(t), B(t)) is controllable (see Section III),
Σ(t) is positive definite on [0, T ]. Thus, we seek a solution pair
(Π(t),Σ(t)) of the coupled system of these two equations (6)

and (9) with split boundary conditions (10).
Interestingly, if we define the new matrix-valued function

H(t) := Σ(t)−1 −Π(t)

then a direct calculation using (9) and (6) shows that H(t)
satisfies the homogeneous Riccati equation

Ḣ(t)=−A(t)′H(t)−H(t)A(t)−H(t)B(t)B(t)′H(t). (11)

This equation is dual to (6) and the system of the two coupled
matrix equations (6) and (9) can be replaced by (6) and (9). The
new system is decoupled, except for the coupling through their
boundary conditions

Σ−1
0 =Π(0) + H(0) (12a)

Σ−1
T =Π(T ) + H(T ). (12b)
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These boundary conditions (12) are sufficient for meeting the
two end-point marginals ρ0 and ρT provided of course that
Π(t) remains finite. We have therefore established the following
result.

Proposition 2: Suppose Π(t) and H(t) satisfy equations
(6)–(11) on [0, T ] with boundary conditions (12). Then the
feedback control u∗ given in (7) is optimal for Problem 1 and
the optimal evolution of the Schrödinger bridge is given by (8).

Since (6) and (11) are homogeneous, they always admit the
zero solution. The case Π(t) ≡ 0 corresponds to the situation
where the prior evolution satisfies the boundary marginals
conditions and, in that case, H(t)−1 is simply the prior state
covariance. In addition, it is also possible that Π(t) vanishes in
certain directions. Clearly, such directions remain invariant in
that, if Π(t)v = 0 for a value of t ∈ [0, T ], then Π(t)v = 0
for all t ∈ [0, T ] as well. In such cases, it suffices to consider
(6) and (11) in the orthogonal complement of null directions.

Thus, in general, Problem 1 reduces to the atypical situation
of two Riccati equations (6) and (11) coupled through their
boundary values. This might still at first glance appear to be a
formidable problem. However, (6)–(11) are homogeneous and,
as far as their non singular solutions, they reduce to linear
differential Lyapunov equations. The latter, however, are still
coupled through their boundary values in a nonlinear way.
Indeed, suppose Π(t) exists on the time interval [0, T ] and
is invertible. Then Q(t) = Π(t)−1 satisfies the linear equation

Q̇(t) = A(t)Q(t) + Q(t)A(t)′ − B(t)B(t)′. (13a)

Likewise, if H(t) exists on the time interval [0, T ] and is
invertible, P (t) = H(t)−1 satisfies the linear equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ + B(t)B(t)′. (13b)

The boundary conditions (12) for this new pair (P (t), Q(t))
now read

Σ−1
0 = P (0)−1 + Q(0)−1 (14a)

Σ−1
T = P (T )−1 + Q(T )−1. (14b)

Conversely, if Q(t) solves (13a) and is nonsingular on [0, T ],
then Q(t)−1 is a solution of (6), and similarly for P (t). We
record the following immediate consequence of Proposition 2.

Corollary 3: Suppose P (t) and Q(t) are nonsingular on
[0, T ] and satisfy the equations (13a), (13b) with boundary

conditions (12). Then the feedback control

u∗(t) = −B(t)′Q(t)−1x(t). (15)

is optimal for Problem 1. The evolution of the optimal
Gauss–Markov process is given by

dx∗(t) =
(
A(t) − B(t)B(t)′Q(t)−1

)
x∗(t)dt + B(t)dw(t)

with x∗(0) = ξ a.s. (16)

Thus, the system (13), (14) or, equivalently, the system (6), (11),
and (12), appears as the bottleneck of the Schrödinger bridge
problem. In the next section, we prove that this Schrödinger
system always has solution (Π(t), H(t)), with both Π(t) and
H(t) bounded on [0, T ], that satisfies (6), (11), and (12) and

that this solution is unique.

III. EXISTENCE AND UNIQUENESS OF OPTIMAL CONTROL

FOR THE LINEAR GAUSSIAN BRIDGE

We assume throughout that the system (1) (or equivalently
the pair (A(t), B(t))) is controllable in the sense that the
reachability Gramian

M(t1, t0) :=

t1∫

t0

Φ(t1, τ)B(τ)B(τ)′Φ(t1, τ)′dτ

is nonsingular for all t0 < t1 (with t0, t1 ∈ [0, T ]). As usual,
Φ(t, s) denotes the state-transition matrix of (1) determined via

∂

∂t
Φ(t, s) = A(t)Φ(t, s) and Φ(t, t) = I

and this is nonsingular for all t, s ∈ [0, T ]. It is worth noting
that for t1 > 0 the reachability Gramian M(t1, 0) = P (t1) >
0 satisfies the differential Lyapunov equation (13b) with
P (0) = 0. The controllability Gramianmian

N(t1, t0) :=

t1∫

t0

Φ(t0, τ)B(τ)B(τ)′Φ(t0, τ)′dτ

is necessarily also nonsingular for all t0 < t1 (t0, t1 ∈ [0, T ])
and if, we similarly set Q(t0) = N(T, t0), then Q(t) satisfies
(13a) with Q(T ) = 0.

However, as suggested in the previous section, we need
to consider solutions P (·), Q(·) of these two differential
Lyapunov equations (13) that satisfy boundary conditions that
are coupled through (14). In general, P (t) and Q(t) do not
need to be sign definite, but in order for

Σ(t)−1 = P (t)−1 + Q(t)−1. (17)

to qualify as a covariance of the controlled process (3) P (t) and
Q(t) need to be invertible. This condition is also sufficient and
Σ(t) satisfies the corresponding differential Lyapunov equation
for the covariance of the controlled process (16)

Σ̇(t) = AQ(t)Σ(t) + Σ(t)AQ(t)′ + B(t)B(t)′ (18)

with

AQ(t) := (A(t) − B(t)B(t)′Q(t)−1). (19)

Next, we present our main technical result on the existence
and uniqueness of an admissible pair (P−(t), Q−(t)) of solu-
tions to (13), (14) that are invertible on [0, T ]. Interstingly, there
is always a second solution (P+(t), Q+(t)) to the nonlinear
problem (13), (14) which is not admissible as it fails to be
invertible on [0, T ].

Proposition 4: Consider Σ0,ΣT > 0 and a controllable pair
(A(t), B(t)) as before. The system of the two differential

Lyapunov equations (13) has two sets of solutions (P±(·),
Q±(·)) over [0, T ] that simultaneously satisfy the coupling
boundary conditions (14). These two solutions are specified by

Q±(0) =N(T, 0)
1
2 S

1
2
0

(
S0+

1

2
I±

(
S

1
2
0 ST S

1
2
0 +

1

4
I

) 1
2

)−1

× S
1
2
0 N(T, 0)

1
2

P±(0) =
(
Σ−1

0 − Q±(0)−1
)−1
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and the two differential equations (13), where

S0 = N(T, 0)−1/2Σ0N(T, 0)−1/2,

ST = N(T, 0)−1/2Φ(0, T )ΣTΦ(0, T )N(T, 0)−1/2.

The two pairs (P±(t), Q±(t)) with subscript − and +,
respectively, are distinguished by the following:

i) Q−(t) and P−(t) are both nonsingular on [0, T ], whereas
ii) Q+(t) and P+(t) become singular for some t ∈ [0, T ],

possibly not for the same value of t.
Proof: Apply the time-varying change of coordinates

ξ(t) = N(T, 0)−1/2Φ(0, t)x(t).

Then, in this new coordinates the dynamical system (1)
becomes

dξ(t) = N(T, 0)−1/2Φ(0, t)B(t)︸ ︷︷ ︸
Bnew(t)

dw(t).

We will prove the statement in this new set of coordinates
for the state, where the state matrix Anew = 0 and the state
equation is simply dξ(t) = Bnew(t)dw(t), and then revert back
to the original set of coordinates at the end. Accordingly

Ṗnew(t) = Bnew(t)Bnew(t)′

Q̇new(t) = − Bnew(t)Bnew(t)′

along with

Mnew(T, 0) = Nnew(T, 0) = I

Σ0,new = N(T, 0)−1/2Σ0N(T, 0)−1/2 (20a)

while

ΣT,new = N(T, 0)−1/2Φ(0, T )ΣTΦ(0, T )′N(T, 0)−1/2.
(20b)

The relation between Qnew(t) and Q(t) is given by

Qnew(t) = N(T, 0)−1/2Φ(0, t)Q(t)Φ(0, t)′N(T, 0)−1/2.

This can be seen by taking the derivative of both sides

Q̇new(t)=−N(T, 0)−1/2Φ(0, t)A(t)Q(t)Φ(0, t)′N(T, 0)−1/2

− N(T, 0)−1/2Φ(0, t)Q(t)A(t)′Φ(0, t)′N(T, 0)−1/2

+ N(T, 0)−1/2Φ(0, t)Q̇(t)Φ(0, t)′N(T, 0)−1/2

=−N(T, 0)−1/2Φ(0, t)B(t)B(t)′Φ(0, t)′N(T, 0)−1/2

= − Bnew(t)Bnew(t)′.

In the next paragraph, for notational convenience, we drop
the subscript “new” and prove the statement assuming that
A(t) = 0 as well as N(T, 0) = I . We will return to the notation
that distinguishes the two sets of coordinates with the subscript
“new” and relate back to the original ones at the end of the
proof.

Since A(t) = 0, then Φ(t, x) = I for all s, t ∈ [0, T ].
Further, M(T, 0) = N(T, 0) = I . Thus

P (T ) = P (0) + I

Q(T ) = Q(0) − I.

Substituting in (14), we obtain that

Q(0)−1 + P (0)−1 =Σ−1
0

(Q(0) − I)−1 + (P (0) + I)−1 =Σ−1
T .

Solving the first for P (0) as a function of Q(0) and substitut-
ing in the second, we have

Σ−1
T =

((
Σ−1

0 − Q(0)−1
)−1

+ I
)−1

+ (Q(0) − I)−1

=
((

Σ−1
0 − Q(0)−1

)−1
+ I

)−1

×
(
Q(0) +

(
Σ−1

0 − Q(0)−1
)−1

)
)

(Q(0) − I)−1

=
((

Σ−1
0 − Q(0)−1

)−1
+ I

)−1

×
(
Σ−1

0 − Q(0)−1
)−1

Σ−1
0 Q(0) (Q(0) − I)−1

=
(
Σ−1

0 + I − Q(0)−1
)−1Σ−1

0

(
I − Q(0)−1

)−1
.

After inverting both terms, simple algebra leads to

(I − Q(0)−1)Σ0(I − Q(0)−1) + (I − Q(0)−1) = ΣT .

This is a quadratic expression and has two Hermitian solutions

I − Q(0)−1 = Σ−1/2
0

(
−1

2
I ∓

(
Σ

1
2
0 ΣTΣ

1
2
0 +

1

4
I

) 1
2

)
Σ−1/2

0 .

(21)
This gives that

Q(0) = Σ
1
2
0

(
Σ0 +

1

2
I ±

(
Σ

1
2
0 ΣTΣ

1
2
0 +

1

4
I

) 1
2

)−1

Σ
1
2
0 .

To see that i) holds evaluate (in these simplified coordinates
where there is no drift and M(T, 0) = I)

Q−(t)−1 = (Q−(0) − M(t, 0))−1

= − M(t, 0)−1 − M(t, 0)−1

×
(
Q−(0)−1 − M(t, 0)−1

)−1
M(t, 0)−1

= − M(t, 0)−1 − M(t, 0)−1Σ
1
2
0

×
(
Σ0 +

1

2
I −

(
Σ

1
2
0 ΣTΣ

1
2
0 +

1

4
I

) 1
2

−Σ
1
2
0 M(t, 0)−1Σ

1
2
0

)−1
Σ

1
2
0 M(t, 0)−1

for t > 0. For t ∈ (0, T ], the expression in parenthesis

Σ0 +
1

2
I −

(
Σ

1
2
0 ΣTΣ

1
2
0 +

1

4
I

) 1
2

− Σ
1
2
0 M(t, 0)−1Σ

1
2
0

is clearly maximal when t = T . However, for t = T when
M(T, 0) = I , this expression is seen to be

1

2
I −

(
Σ

1
2
0 ΣTΣ

1
2
0 +

1

4
I

) 1
2

< 0.



CHEN et al.: OPTIMAL STEERING OF A LINEAR STOCHASTIC SYSTEM TO A FINAL PROBABILITY DISTRIBUTION, PART I 1163

Therefore, the expression in parenthesis is never singular and
we deduce that Q−(t)−1 remains bounded for all t ∈ (0, T ],
i.e., Q−(t) remains non-singular. For t = 0, Q(0)−1 is seen
to be finite from (21). The argument for P−(t) is similar.
Regarding ii), it suffices to notice that 0 < Q+(0) < I while
Q+(T ) = Q+(0) − I < 0. The statement ii) follows by conti-

nuity of Q+(t), and similarly for P+(t).
We now revert back to the set of coordinates where the drift is

not necessarily zero and where N(T, 0) may not be the identity.
We see that

Q±(0) =N(T, 0)
1
2 (Q±(0))newN(T, 0)

1
2

= N(T, 0)
1
2Σ

1
2
0,new

×
(
Σ0,new+

1

2
I±

(
Σ

1
2
0,newΣT,newΣ

1
2
0,new+

1

4
I

) 1
2

)−1

Σ
1
2
0,newN(T, 0)

1
2

where Σ0,new,ΣT,new as in (20a) and (20b), which for com-
pactness of notation in the statement of the proposition we
rename S0 and ST , respectively. !

Remark 5: We have numerically observed that the iteration

P (0)

↓

P (T ) = Φ(T, 0)P (0)Φ(T, 0)′ + M(T, 0)

↓

Q(T ) =
(
Σ−1

T − P (T )−1
)−1

↓

Q(0) = Φ(0, T ) (Q(T ) + M(T, 0))Φ(0, T )′

↓

P (0) = (Σ−1
0 − Q(0)−1)−1

using (14), converges to Q−(0), P−(0), Q−(T ), P−(T ),
starting from a generic choice for Q(0). The choice with a “ −”
is the one that generates the Schrödinger bridge as explained
below. It is interesting to compare this property with similar
properties of iterations that lead to solutions of Schrödinger
systems in [31] and [32]. A proof of convergence is, at present,
not available.

Remark 6: Besides the expression in the proposition, another
equivalent “closed form” formula for Q±(0) is

Q±(0) =Σ
1
2
0

(
1

2
I + Σ

1
2
0 Φ(T, 0)′M(T, 0)−1Φ(T, 0)Σ

1
2
0

±
(

1

4
I + Σ

1
2
0 Φ(T, 0)′M(T, 0)−1ΣT M

(T, 0)−1Φ(T, 0)Σ
1
2
0

) 1
2

)−1

Σ
1
2
0

Remark 7: Interestingly, the solution Π+(t) = Q+(t)−1 of
the Riccati (6) corresponding to the choice “ +” in Q± has a
finite escape time.

We are now in a position to state the full solution to the
Schrödinger Bridge Problem 1.

Theorem 8: Assuming that the pair (A(t), B(t)) is control-
lable and that Σ0,ΣT > 0, Problem 1 has a unique optimal
solution

u⋆(t) = −B(t)′Q−(t)−1x(t) (22)

where Q−(·) [together with a corresponding matrix function
P−(·)] solves to the pair of coupled Lyapunov differential

equations in Proposition 4.
Proof: Since Proposition 4 has established existence and

uniqueness of nonsingular solutions (P−(·), Q−(·)) to the
system (13), the result now follows from Corollary 3. !

Thus, the controlled process (16) with Π(t) = Q−(t)−1

dx∗ = (A(t) − B(t)B(t)′Q−(t)−1)x∗(t)dt + B(t)dw(t)
(23)

steers the beginning density ρ0 to the final one, ρT , with the
least cost. Alternatively, it forms a least-effort bridge between
the two given marginals. It turns out that this controlled stochas-
tic differential equation specifies the random evolution which
is closest to the prior in the sense of relative entropy among
those with the two given marginal distributions. This will be
explained in the next section.

Remark 9: The variant of Problem 1 where the two
marginals have a non-zero mean is of great practical signifi-
cance. The formulae for the optimal control easily extend to
this case as follows. Assuming that the Gaussian marginals ρ0

and ρT have mean m0 and mT , respectively, a deterministic
term is needed in (23) for the bridge to satisfy the means. The
controlled process becomes

dx∗=(A(t) − B(t)B(t)′Q−(t)−1)x∗(t)dt + B(t)B(t)′m(t)dt

+ B(t)dw(t) (24)

where

m(t) = Φ̂(0, t)′M̂(T, 0)−1(mT − Φ̂(T, 0)m0)

and Φ̂(t, s), M̂(t, s) satisfy

∂Φ̂(t, s)

∂t
= (A(t) − B(t)B(t)′Q−(t)−1)Φ̂(t, s), Φ̂(t, t) = I

M̂(t, s) =

t∫

s

Φ̂(t, τ)B(t)B(t)′Φ̂(t, τ)′dτ.

It is easy to verify that (24) meets the condition on the two
marginal distributions. To see (24) is in fact optimal, observe
that Problem 1 is equivalent to minimizing over U the aug-
mented cost functional

J̃(u) = E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt + x(T )′Q−(T )−1x(T )

− 2m(T )′x(T ) − x(0)′Q−(0)−1x(0) + 2m(0)′x(0)

⎫
⎬

⎭ .
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But

J̃(u) = E

⎧
⎨

⎩

T∫

0

u(t)′u(t)dt

+

T∫

0

d
(
x(t)′Q−(t)−1x(t) − 2m(t)′x(t)

)
⎫
⎬

⎭

= E
{ T∫

0

∥∥u(t) + B(t)′Q−(t)−1x(t) − B(t)′m(t)
∥∥2

dt

+

T∫

0

[
1

2
trace

(
Q−(t)−1B(t)B(t)′

)

− m(t)′B(t)B(t)′m(t)

]
dt

}
.

Hence

u(t) = −B(t)′Q−(t)−1x(t) + B(t)′m(t)

is indeed the optimal control law and (24) is the sought bridge.

IV. MINIMUM RELATIVE ENTROPY INTERPRETATION

OF OPTIMAL CONTROL

As noted earlier, there is a close relationship between the
theory of large deviations, maximum entropy problems for
random evolutions and stochastic optimal control [19], [21],
[22], [33], [34]. In particular, classical Schrödinger bridges can
be interpreted as both, a solution to a stochastic optimal control
problem, as well as one inducing a probability law on path
space that is consistent with given marginals and closest to
the prior in the sense of relative entropy. In other words, in
effect, they answer the question of what the most likely path
distribution is after “conditioning” the stochastic evolution on
the two end-point marginals. Below we show that the same
property holds for the present case of general stochastic linear
system, i.e., of possibly degenerate linear diffusions.

For the purposes of this section we denote by X =
C([0, T ]; Rn) the space of continuous, n-dimensional sample
paths of a linear diffusion as in (1) and by P(·) the induced
probability measure on X . One can describe P(·) as a mixture
of measures pinned at the two ends of the interval [0, T ], that is

P(·) =

∫
P(· | x(0) = x0, x(T ) = xT )P0,T (dx0dxT )

where P(· | x(0) = x0, x(T ) = xT ) is the conditional proba-
bility and P0,T (·) is the joint probability of (x(0), x(T )). The
two end-point joint measure P0,T (·), which is Gaussian, has
a (zero-mean) probability density function gS0,T (x0, xT ) with
covariance

S0,T =

[
S0 S0Φ(T, 0)′

Φ(T, 0)S0 ST

]
(25)

where

S0 = E{x0x
′
0}

St =Φ(t, 0)S0Φ(t, 0)′ +

t∫

0

Φ(t, τ)B(τ)B(τ)′Φ(t, τ)′dτ.

In view of Sanov’s theorem, see [24, Section 3], Schrödinger’s
question reduces to identifying a probability law P̃(·) on X
that minimizes the relative entropy

S(P̃, P) :=

∫

X

log

(
dP̃
dP

)
dP̃

among those that have the prescribed marginals. Evidently,
this is an abstract problem on an infinite-dimensional space.
However, since

P̃(·) =

∫
P̃(· | x(0) = x0, x(T ) = xT )P̃0,T (dx0dxT )

the relative entropy can be readily written as the sum of two
nonnegative terms, the relative entropy between the two end-
point joint measures

∫
log

(
dP̃0,T

dP0,T

)
P̃0,T

plus
∫

log

(
dP̃(· | x(0) = x0, x(T ) = xT )

dP(· | x(0) = x0, x(T ) = xT )

)
P̃.

The second term becomes zero (and therefore minimal) when
the conditional probability P̃(· | x(0) = x0, x(T ) = xT ) is
taken to be the same as P(· | x(0) = x0, x(T ) = xT ). Thus,
the solution is in the same reciprocal class [35] as the prior
evolution and, as already observed by Schrödinger [15] in a
simpler context, the problem reduces to the finite-dimensional
problem of minimizing relative entropy of the joint initial-final
distribution among those that have the prescribed marginals.

It turns out that the probability law induced by (23), is the
closest in the relative entropy sense to the law of (1), that agrees
with the two end-point marginal distributions at t = 0 and t =
T . Below we show this by verifying directly that the densities
between the two are identical when conditioned at the two end
points, i.e., they share the same bridges, and that the end-point
joint marginal for (23) is indeed closest to the corresponding
joint marginal for (1).

In order to show that two linear systems share the same
bridges, we need the following lemma which is based on [36].

Lemma 10: The probability law of the SDE (1), when con-
ditioned on x(0) = x0, x(T ) = xT , for any x0, xT , reduces to
the probability law induced by the SDE

dx = (A − BB′R(t)−1)xdt + BB′R(t)−1Φ(t, T )xT dt + Bdw

where R(t) satisfies

Ṙ(t) = AR(t) + R(t)A′ − BB′

with R(T ) = 0.
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The stochastic process specified by this conditioning, or the
latter SDE, will be referred to as the pinned process associated
to (1). Thus, in order to establish that the probability laws of (1)
and (23) conditioned on x(0) = x0, x(T ) = xT are identical,
it suffices to show that they have the same pinned processes for
any x0, xT . This is done next.

Theorem 11: The probability law induced by (23) represents
the minimum of the relative entropy with respect to the law of
(1) over all probability laws on X that have Gaussian marginals
with zero mean and covariances Σ0 and ΣT , respectively, at
the two end-points of the interval [0, T ].

Proof: We show that i) the joint distribution between the
two end-points of [0, T ] for (23) is the minimizer of the
relative entropy, with respect to the corresponding two-end-
point joint distribution of (1), over distributions that satisfy
the end-point constraint that the marginals are Gaussian with
specified covariances, and ii) the probability laws of these two
SDEs on sample paths, conditioned on x(0) = x0, x(T ) = xT

for any x0, xT , are identical by showing that they have the same
pinned processes. We use the notation

gS(x) := (2π)−n/2 det(S)−1/2 exp

[
−1

2
x′S−1x

]

to denote the standard Gaussian probability density function
with mean zero and covariance S.

We start with i). In general, the relative entropy between two
Gaussian distributions gS(x) and gΣ(x) is
∫

Rn

gΣ(x) log

(
gΣ
gS

)
dx =

∫

Rn

gΣ log

(
det(S)

1
2

det(Σ)
1
2

)
dx

+
1

2

∫

Rn

gΣ(x)
(
x′S−1x − xΣx

)
dx

=
1

2
log (det(S)) − 1

2
log (det(Σ))

+
1

2
trace(S−1Σ) − 1

2
trace(I).

(26)

If pΣ is a probability density function, not necessarily
Gaussian, having covariance Σ, then
∫

Rn

pΣ(x) log

(
pΣ
gS

)
dx =

∫

Rn

pΣ(x) log

(
pΣ
gS

gΣ
gΣ

)
dx

=

∫

Rn

pΣ(x) log

(
pΣ
gΣ

)
dx +

∫

Rn

pΣ(x) log

(
gΣ
gS

)
dx (27)

where we multiplied and divided by gΣ and then partitioned
accordingly. We observe that

∫

Rn

pΣ(x) log

(
gΣ
gS

)
dx =

∫

Rn

gΣ(x) log

(
gΣ
gS

)
dx.

since log(gΣ/gS) is a quadratic form in x. Thus, the minimizer
of relative entropy to gS among probability density functions
with covariance Σ is Gaussian since the first term in (27) is
positive unless pΣ = gΣ, in which case it is zero.

We consider two-point joint Gaussian distributions with co-
variances S0,T as in (25) with S0 = Σ0, and

Σ0,T :=

[
Σ0 Y ′

Y ΣT

]

and evaluate Y that minimizes the relative entropy. To this end
we focus on

trace(S−1
0,TΣ0,T ) − log det(Σ0,T ). (28)

Since

S0,T =

[
I

Φ(T, 0)

]
Σ0 [ I, Φ(T, 0)′ ] +

[
0 0
0 M(T, 0)

]

it follows that:

S−1
0,T =

[
Σ−1

0 + Φ′M−1Φ −Φ′M−1

−M−1Φ M−1

]

where we simplified notation by setting Φ := Φ(T, 0) and
M := M(T, 0). Then, the expression in (28) becomes

trace
(
(Σ−1

0 +Φ′M−1Φ)Σ0−Φ′M−1Y −Y ′M−1Φ+M−1ΣT

)

− log det(Σ0) − log det(ΣT − Y Σ−1
0 Y ′).

Retaining only the terms that involve Y leads us to seek a
maximizing choice for Y in

f(Y ) := log det(ΣT − Y Σ−1
0 Y ′) + 2 trace(Φ′M−1Y ).

Equating the differential of this last expression as a function of
Y to zero gives

−2Σ−1
0 Y ′(ΣT − Y Σ−1

0 Y ′)−1 + 2Φ′M−1 = 0. (29)

To see this, denote by ∆ a small perturbation of Y and retain
the linear terms in ∆ in

f(Y + ∆) − f(Y )

= log det(I−(ΣT − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′+Y Σ−1
0 ∆′))

+ 2 trace(Φ′M−1∆)

≃ −trace((ΣT − Y Σ−1
0 Y ′)−1(∆Σ−1

0 Y ′ + Y Σ−1
0 ∆′))

+ 2 trace(Φ′M−1∆)

= −2 trace(Σ−1
0 Y ′(ΣT − Y Σ−1

0 Y ′)−1∆)

+ 2 trace(Φ′M−1∆).

Let now

Σ0,T =

[
Σ0 Σ0ΦQ−(T, 0)′

ΦQ−(T, 0)Σ0 ΣT

]

where ΦQ−(T, 0) is the state-transition matrix of AQ−(t), i.e.,
it satisfies

∂

∂t
ΦQ−(t, s) = AQ−(t)ΦQ−(t, s)

− ∂

∂s
ΦQ−(t, s) =ΦQ−(t, s)AQ−(s)
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with ΦQ−(s, s) = I . We need to show that Σ0,T here is the so-
lution of the relative entropy minimization problem above. By
concavity of f(Y ), it suffices to show that Y = ΦQ−(T, 0)Σ0

satisfies the first-order condition (29), that is

ΦQ−(T, 0)′(ΣT − ΦQ−(T, 0)Σ0ΦQ−(T, 0)′)−1

= Φ(T, 0)′M(T, 0)−1

= Φ(T, 0)′(ST − Φ(T, 0)S0Φ(T, 0)′)−1

where St is as in (25) with S0 = Σ0. By taking inverse of both
sides we obtain an equivalent formula

ΣTΦQ−(0, T )′ − ΦQ−(T, 0)Σ0 = STΦ(0, T )′ − Φ(T, 0)Σ0.
(30)

We claim

ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0 = StΦ(0, t)′ − Φ(t, 0)Σ0

then (30) follows by taking t = T . We now prove our claim.
For convenience, denote

F1(t) =ΣtΦQ−(0, t)′ − ΦQ−(t, 0)Σ0

F2(t) = StΦ(0, t)′ − Φ(t, 0)Σ0

F3(t) = Q−(t)
(
ΦQ−(0, t)′ − Φ(0, t)′

)
.

We will show that F1(t) = F2(t) = F3(t). First we show
F2(t) = F3(t). Since F2(0) = F3(0) = 0, we only need to
show that they satisfy the same differential equation. To this
end, compare

Ḟ2(t) = ṠtΦ(0, t)′ − StA
′Φ(0, t)′ − AΦ(t, 0)Σ0

= (ASt + StA
′ + BB′)Φ(0, t)′ − StA

′Φ(0, t)′

− AΦ(t, 0)Σ0

= AF2(t) + BB′Φ(0, t)′

with

Ḟ3(t) = Q̇−(t)(ΦQ−(0, t)′ − Φ(0, t)′)

+ Q−(t)(−AQ−(t)′ΦQ−(0, t)′ + A′Φ(0, t)′)

= (AQ−(t)+Q−(t)A′−BB′)(ΦQ−(0, t)′ − Φ(0, t)′)

−Q−(t)A′(ΦQ−(0, t)′−Φ(0, t)′)+BB′ΦQ−(0, t)′

= AF3(t) + BB′Φ(0, t)′

which proves the claim F2(t) = F3(t). We next show that
F1(t) = F3(t). Let

H(t) = Q−(t)−1(F3(t) − F1(t))

= − (Q−(t)−1 − Σ−1
t )ΣtΦQ−(0, t)′

+ Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′

= P (t)−1ΣtΦQ−(0, t)′

+ Q−(t)−1ΦQ−(t, 0)Σ0 − Φ(0, t)′

then

Ḣ(t) = Ṗ (t)−1ΣtΦQ−(0, t)′ + P (t)−1Σ̇tΦQ−(0, t)′

− P (t)−1ΣtAQ−(t)′ΦQ−(0, t)′+Q̇−(t)−1ΦQ−(t, 0)

× Σ0 + Q−(t)−1AQ−(t)ΦQ−(t, 0)Σ0 + A′Φ(0, t)′

= − A′H(t).

Since H(0) = Q−(0)−1(F3(0) − F1(0)) = 0, it follows that
H(t) = 0 for all t, and therefore, F1(t) = F3(t). This com-
pletes the proof of the first part.

We now prove ii). According to Lemma 10, the pinned
process corresponding to (1) satisfies

dx=(A−BB′R1(t)
−1)xdt+BB′R1(t)

−1Φ(t, T )xT dt+Bdw
(31)

where R1(t) satisfies

Ṙ1(t) = AR1(t) + R1(t)A
′ − BB′

with R1(T ) = 0, while the pinned process corresponding to
(23) satisfies

dx = (AQ−(t) − BB′R2(t)
−1)xdt

+BB′R2(t)
−1ΦQ−(t, T )xT dt + Bdw (32)

where R2(t) satisfies

Ṙ2(t) = AQ−(t)R2(t) + R2(t)AQ−(t)′ − BB′

with R2(T ) = 0. We next show (31) and (32) are identical. It
suffices to prove that

A − BB′R1(t)
−1 = AQ−(t) − BB′R2(t)

−1 (33)

R1(t)
−1Φ(t, T ) = R2(t)

−1ΦQ−(t, T ). (34)

Equation (33) is equivalent to

R1(t)
−1 = R2(t)

−1 + Q−(t)−1.

Multiply R1(t) and R2(t) on both sides to obtain

R2(t) = R1(t) + R1(t)Q−(t)−1R2(t).

Now let

J(t) = R1(t) + R1(t)Q−(t)−1R2(t) − R2(t).

Then

J̇(t) = Ṙ1(t) + Ṙ1(t)Q−(t)−1R2(t) + R1(t)Q̇−(t)−1R2(t)

+ R1(t)Q−(t)−1Ṙ2(t) − Ṙ2(t)

= AJ + JAQ−(t)′.

Since

J(T ) = R1(T ) + R1(T )Q−(T )−1R2(T ) − R2(T ) = 0
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Fig. 1. Inertial particles: state trajectories without control.

it follows that J(t) = 0. This completes the proof of (33).
Equation (34) is equivalent to

Φ(T, t)R1(t) = ΦQ−(T, t)R2(t).

Let

K(t) = Φ(T, t)R1(t) − ΦQ−(T, t)R2(t)

and then

K̇(t) = − Φ(T, t)AR1(t) + Φ(T, t)Ṙ1(t)

+ ΦQ−(T, t)AQ−(t)R2(t) − ΦQ−(T, t)Ṙ2(t)

= K(t)(A′ − R1(t)
−1BB′).

Since

K(T ) = Φ(T, T )R1(T ) − ΦQ−(T, T )R2(T ) = 0

it follows that K(t) = 0 as well for all t. This completes the
proof. !

V. ILLUSTRATIVE EXAMPLES

We present two examples that illustrate the effect of optimal
probability density steering. The first is based on inertial par-
ticles experiencing random accelerations and the second on an
electrical circuit experiencing Nyquist-Johnson thermal noise
from a resistor.

A. Inertial Particles

Consider inertial particles experiencing random acceleration
according to the model

dx(t) = v(t)dt

dv(t) = u(t)dt + dw(t)

where u(t) is a control force at our disposal, x(t) represents
position and v(t) represents velocity. We want to squeeze the
spread of the particles from an initial Gaussian distribution with
Σ0 = I at t = 0 to a terminal marginal Σ = (1/4)I at t = 1.
Figs. 1 and 2 show sample paths in the phase space of (x, v) as
functions of time in two cases, first in Fig. 1 when no control
is being applied and the sample paths diverge and, second, in
Fig. 2 when using the optimal strategy for feedback control that

Fig. 2. Inertial particles: state trajectories for Σ1 = (1/4)I .

Fig. 3. Inertial particles: control inputs for Σ1 = (1/4)I .

Fig. 4. Inertial particles: state trajectories for Σ1 = diag(.05, 1).

was explained earlier (Theorem 8). For the latter case, Fig. 3
displays the corresponding control action for each trajectory.

We provide two additional situations where the final distribu-
tion is localized in space and in velocity, respectively. The limit
may be thought to approximate singular marginals, in each case,
and it is of interest to compare the two since in one case the
stochastic excitation affects directly the component of interest
(velocity) whereas in the other after integration. Thus, we again
take Σ0 = I while we take Σ1 to equal to diag(.05, 1) and
diag(1, .05), respectively, for the two cases. Sample paths in
phase space under the optimal control law are shown in Figs. 4
and 5, respectively.

In all phase plots in Figs. 1, 2, 4, and 5, the transparent blue
“tube” represents the “ 3σ” tolerance interval. More specifi-
cally, the intersection ellipsoid between the tube and the slice
plane t is the set

[ x v ]Σ−1
t

[
x
v

]
≤ 32.
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Fig. 5. Inertial particles: state trajectories for Σ1 = diag(1, .05).

Fig. 6. Circuit.

B. Nyquist–Johnson Resistor Noise

Consider the circuit in Fig. 6 that includes a resistor with a
Nyquist–Johnson thermal noise voltage source. A model for the
circuit is

LdiL(t) = vC(t)dt

RCdvC(t) = − vC(t)dt − RiL(t)dt + u(t)dt + dw(t)

with all parameters R = L = C = 1 in compatible units. With-
out any active control, i.e., when u(t) ≡ 0, the RLC circuit is
driven by the thermal noise and reaches a steady state where the
covariance matrix of the state vector (iL, vC)′ is (1/2)I . Thus,
we begin with random initial conditions for the state having an
initial Gaussian distribution with Σ0 = (1/2)I at t = 0. Our
aim is to specify the control voltage input u(t) so as to reduce
the effect of the thermal noise on the oscillator. As before, our
target covariance at the end of a pre-specified interval [0,1] is
set to to a terminal value; here this is Σ1 = (1/16)I . Fig. 7
shows the evolution of (iL, vC) as a function of time under the
effect of the least energy regulating input voltage u(t) that aims
to actively “cool” the resonator to its target final distribution. As
before, Fig. 8 displays the corresponding control inputs. Once
again, in Fig. 7, the transparent blue “tube” represents the “ 3σ”
tolerance interval.

VI. CONCLUSION

The problem to steer linear stochastic systems from a starting
probability Gaussian density to a target one with minimum
effort has an explicit solution in feedback form. The minimum-
energy control is computed by solving a pair of Lyapunov equa-
tions which are coupled through their boundary values at the
two end-points of the interval. The optimal stochastic process
turns out to coincide with a solution to a seemingly different
problem, that of seeking the most likely random evolution that

Fig. 7. Nyquist–Johnson noise: trajectories for Σ1 = (1/16)I .

Fig. 8. Nyquist–Johnson noise: controls for Σ1 = (1/16)I .

connects the two marginals given a prior law in the form of the
uncontrolled diffusion. Both of these properties, the minimum
energy and minimum relative entropy distance to the prior,
generalize corresponding properties of classical Schrödinger
bridges for nondegenerate diffusions.

Optimal steering of a stochastic system to a final distribution
and, in particular, the explicit form of solution in the present set-
ting, appears quite attractive for applications in quality control,
process control, manufacturing, vehicle control, etc. It can also
be effectively applied to active damping of nano- and macro-
mechanical systems. In a follow-up work [37], we studied
cooling of nonlinear oscillators while in [38] we considered the
steering of a cloud of particles diffusing anisotropically with
losses. Finally, we note that our control problem of “probability
density transfer” resembles that of resource allocation and
optimal mass transport [39]–[41]. Thereby, it has the potential
to provide well-conditioned numerical schemes for optimal
transport problems, a subject that is taken up in [42].
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