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ABSTRACT

In this paper, we describe a methodology for com-
paring networks represented as weighted graphs. The
key idea is to associate a probability density function
derived from the graph Laplacian, and then compute the
Wasserstein distance between the derived densities of the
respective graphs. This has wide applications to various
networks including biological and financial.

I. INTRODUCTION

Understanding and classifying the behavior of complex
systems, which can often be represented as an intercon-
nected network, is a problem of paramount importance
that arises in biology, physics, finance, and social sys-
tems [1], [2]. Such systems are rarely static and often
display strong fluctuations that signify extremal events.
These events, which may include cascade failures in
banking ecosystems, delay propagation due to conges-
tion in air transportation, a mutated cellular cancerous
state, to even specific differentiation cellular states (e.g.,
muscle, bone, fat cells) derived from their parental
stem cells, are usually observed through a change of
topology and geometry of the underlying network. This
motivates the need to view the above as dynamical
system for which characterizations may elucidate certain
key system-level attributes. For example, recent attempts
have shown that by treating a graph as a statistical man-
ifold, one can utilize varying geometric notions of graph
curvature [3]–[5] as well as graph entropy [2], [6], [7]
to understand the functional robustness of the system at
hand with recent implications in uncovering mechanisms
of drug resistance [8]. While such quantities provide
valuable information in varying application settings,
they are by definition, local attributes with a resolution
instrinically linked at the edge and nodal scale of the
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network. Here, we are interested in a more global mea-
sure as seen in Figure 1. In particular, we are concerned
with statistically characterizing aforementioned catalytic
events based on the metric geometry comparing a family
of networks as opposed to an individual network.

II. BACKGROUND AND EXAMPLES

This work focuses on first treating the eigenvalue spec-
trum of the normalized graph Laplacian as a prob-
ability distribution, then utilizes theory from optimal
mass transport [9]–[12] to place a metric to measure
distances across a family of time-varying networks. It
is well-known that eigenvalue spectrum of the Lapla-
cian provides intrinsic information of the graph. An
example of a few areas that have garnered attention
have included construction of expander graphs [14]
to Cheeger’s inequality [15] with increasing attention
on connections between spectral graph theory and its
respective geometry. That is, as opposed to working
with the underlying discrete space alone, one can begin
by placing a probability structure on a graph for which
associated probability measures can be endowed with a
Riemannian structure. Geodesic paths (shortest distance)
ensue and convexity properties of the entropy along
paths reflect on geometric qualities of the graph. It has
been noted that entropy is closely related to network
topology and that entropy is a selective criterion that
may account for the robustness and heterogeneity of
both man-made and biological networks. In particular,
authors [16] previously employed a notion of quantum
entropy based on the graph Laplacian as a measure of
regularity for graphs placing it in the scope of other
measures that utilize the entire spectrum (e.g., Estrada
index [17]). This is in contrast to characterizing the
graph towards a specific eigenvalue or its spectral gap.
Following this, our work similarly takes into account
the entire spectrum yet employs the L2-Wasserstein
distance as a measure of similarity across networks and
as discussed below, its intimately related to notions of
entropy.

The theory of optimal mass transport and its relationship
to Riemannian geometry as well as entropy is at the
core of this work. In particular, it has been recently



shown [13] that the lower bounds of Ricci curvature
(from geometry) are instrinically linked to Boltzmann
entropy with respect L2-Wasserstein metric (i.e., Ricci
curvature and entropy are positively correlated). Given
this, our previous work utilized a discrete notion of Ricci
[3] and scalar curvature to illustrate that graph curvature
may serve as a proxy for network robustness [2], [18]
with distinct advantages to that network entropy [6],
[7]. In the same manner, this work can be analogous
viewed to that of graph quantum entropy [16]. While
these parallels are briefly mentioned here (for the sake
of brevity), we will revisit and note the interesting rela-
tionship between such quantities in the full manuscript.

In closing, much of this paper sets the foundation of
devising various statistical methods focused on a family
of networks. This can be seen in Figure 2 for which
we analyze three classical graphs to illustrate the usage
of our method in classifying their structure in a more
global manner.
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Fig. 1: There exists varying ways one can characterize a particular network. (A) Ricci curvature provides an edge
measure of robustness and congestion between any two nodes . (B) Scalar curvature (via contraction of Ricci
curvature) provides a nodal measure of robustness and congestion. (C) The question remains of how to properly
compare two regional signaling cascades and more importantly, a family of networks characterizing a particular
dynamical system.

Fig. 2: We compare three classical networks and measure the L2 Wasserstein distance any two given networks to
illustrate a degree of similarity. Note: To avoid bias, the number of nodes (100) and edges (200) remain fixed and
only the topology was allowed to change.
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