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Signal Estimation via Selective Harmonic
Amplification: MUSIC, Redux

Tryphon T. Georgiou, Fellow, IEEE

Abstract—The technique known as multiple signal classification
(MUSIC) is a semi-empirical way to obtain pseudo-spectra that
highlight the spectral-energy distribution of a time series. It is
based on a certain canonical decomposition of a Toeplitz matrix
formed out of an estimated autocorrelation sequence. The purpose
of this paper is to present an analogous canonical decomposition
of the state-covariance matrix of a stable linear filter driven
by a given time-series. Accordingly, the paper concludes with a
modification of MUSIC. The new method starts with filtering
the time series and then estimating the covariance of the state
of the filter. This step in essence improves the signal-to-noise
ratio (SNR) by amplifying the contribution to the actual value
of the state-covariance of a selected harmonic interval where
spectral lines are expected to reside. Then, the method capitalizes
on the canonical decomposition of the filter state-covariance to
retrieve information on the location of possible spectral lines. The
framework requires uniformly spaced samples of the process.

Index Terms—Canonical decomposition of state covariances,
Carathéodory–Fejér–Pisarenko, harmonic decomposition.

I. INTRODUCTION

CONSIDER a discrete-time, wide-sense stationary, zero-
mean scalar stochastic process with

and denote by its power spectrum. The problem
of estimating the spectrum from an observed data record

of a finite length has been the focus of an enormous number
of studies over the past 40 years or so. The use of Fourier trans-
form, periodogram analysis, modern nonlinear techniques (e.g.,
maximum entropy method, maximum likelihood, etc.), and sub-
space methods that resulted from these studies are, by now, stan-
dard textbook material, e.g., see [17].

In this work, we are concerned with the so-called MUSIC
method [18], [19]. This method is intended for signals
consisting of a number of sinusoidal components in noise
(ideally not far from being white). It is based on a canonical
decomposition of a positive definite Toeplitz matrix, which
goes back to Carathéodory and Fejér [8] (cf. [14]) and, more
recently, to Pisarenko [18] (cf. [22]). The Toeplitz matrix is
formed out of a finite number of covariance lags, and the
decomposition suggests an admissible spectrum that consists
of a minimal number of spectral lines in white noise. MUSIC
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builds on the Carathéodory–Fejér–Pisarenko decomposition
and uses a singular value decomposition (SVD) of the Toeplitz
covariance matrix to generate a “pseudo-spectrum” with poles
close to the actual sinusoidal modes. Hence, the premise is that
the pseudo-spectrum inherits the peaks of the actual power
spectrum of the process. In many cases, this appears to work
quite effectively with minimal computation cost, and thus, the
method has become quite popular (e.g., see [15], [17], and
[22]).

The purpose of the present work is to give an analogous
canonical decomposition of the state-covariance matrix of a
stable linear filter driven by a stationary input (Theorem 1).
More specifically, the state covariance of such a filter can be
decomposed in a way consistent with the possibility that the
input is the superposition of sinusoids in white noise. We show
that there is a canonical such decomposition with aminimal
number of sinusoidal components, i.e., a minimal number of
spectral lines (Remark 3).

We then focus on the problem of estimating spectral lines
from time series data. The time series data are used to drive
a linear filter. The values of the state process of the filter are
then used to estimate the state covariance. We use the aforemen-
tioned decomposition of state covariances and a MUSIC-like
SVD analysis to construct a suitable pseudo-spectrum that in-
herits the peaks of the actual power spectrum for similar rea-
sons as in (spectral) MUSIC (cf. [17] and [22] and the refer-
ences therein). The standard (spectral) MUSIC corresponds to
the special case where ourinput-to-state filter(since as output
we take the state itself) is simply a cascade of unit time delays.

Filtering time-series data and using the state covariance of
the filter allows certain control over the contribution of dif-
ferent harmonic intervals on the derived state covariance. Thus,
by emphasizing the contribution of a selected frequency band,
we can effectively improve resolution over this segment of the
spectrum. The use of input-to-state filters originates in Byrnes
et al. [3], [4], where a bank of first- and second-order filters
were used to filter time-series data. The covariances of the indi-
vidual outputs were shown to give interpolation conditions for
the spectrum of the input process at the location of the filter
poles. Given such interpolation data, classical Nevanlinna-Pick
theory [24] can be used to characterize admissible spectra. Yet,
Byrneset al. [3], [4] went on to explore an important subclass
of low-dimension regular spectra and developed a new set of
tunable high resolution estimators. The relevant mathematical
theory for low-dimension interpolants has been developed in
[3]–[7] and [9]–[11]. Finally, in [3] and [4], it was argued and
supported by case studies that proximity of the filter bank poles
to a chosen frequency band leads to improved resolution.
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The input-to-state filters in the present work are a general-
ization of the filter banks considered in [3] and [4], whereas
the state covariances of these filters provide generalized inter-
polation conditions for power spectra of the input process (i.e.,
values as well as higher order derivatives; cf. proof of Lemma
5). The frequency plot of the largest singular value of asuit-
ably normalizedinput-to-state map (see Section VIII) appears
to provide a more accurate picture of the harmonic selectivity
properties of the filters (as compared with the concept of “prox-
imity” of the filterbank poles to the interval of interest proposed
in [3] and [4]). Recent work in [12] and [13] expands on the
observation (see proof of Lemma 5) that state covariances pro-
vide generalized interpolation conditions on the input spectrum
and presents a collection of methods that offer improved reso-
lution as compared with their Toeplitz-based counterparts (e.g.,
for methods of ESPRIT, Capon, and those in [20]).

Section II gives a brief outline of the main technical results
underlying traditional MUSIC. Sections III and IV develop
technical background related to the algebraic and analytical
structure of the states of a linear system. Sections V through
VII deal with the structure of state-covariance matrices. The
main result (Theorem 1) on the decomposition of state covari-
ance matrices is given in Section VII. This result suggests,
accordingly, a generalization of MUSIC, which is discussed
in Section VIII. Section IX gives examples to demonstrate the
potential of the new method. The method is suitable in cases
where prior information allows the selection of a harmonic
range of interest. A suitably defined filtering stage improves
the signal-to-noise ratio (SNR), and the decomposition theorem
suggest ways to identify spectral lines. The new method
compares quite favorably with traditional MUSIC.

II. TRADITIONAL MUSIC

The key idea behind the methodology of MUSIC is a cer-
tain mathematical fact about Toeplitz matrices. This fact can be
traced to the work of Carathéodory–Fejér in the early part of the
century (see [14]). In modern times, analogous results were re-
discovered, and their relevance in signal processing recognized,
by Pisarenko, Schmidt, and others (see [22]).

The result we are referring to states that if a positive semi-
definite Hermitian Toeplitz matrix

...
...

...
...

happens to be singular and of rank then it is necessarily
of the form

where

...
for

if , and * denotes the “complex
conjugate transpose.” Further, has a unique (left) zero-
eigenvector of the form

i.e., This eigenvector satisfies

for

i.e., the modes are precisely the roots of the polynomial

An elegant and useful reformulation of this result makes use
of the elements in the singular value decomposition

diag

of , where is a unitary matrix, and
If

and represents the matrix formed out of the last
columns of that span the (right) null space of (which is
denoted by ( ), then the non-negative trigonometric
polynomial

...
(1)

has roots precisely at Note that may
have additional roots off the unit circle but has no root on the
circle other than the above. A proof of this result can be found
in [22].

The significance in the context of signal processing stems
from the fact that if denotes the autocorre-
lation function of , that is

and if contains sinusoidal components of interest, then
the frequencies ’s of such components can be identified as
above via a singular value decomposition of the corresponding
Toeplitz matrix formed out of the autocorrelation function.
In case there is background noise (assumed white or close to
being white), the columns or are taken to span the
subspace of the lowest eigenvalue(s) of (see [22] as well
as Section VII below).

III. I NPUT-TO-STATE FILTERS

Consider a single-input/-output dynamical system, where
the output is the -state vector itself:

where
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The nontraditional indexing of the input is intended to sim-
plify notation. The pair where is an matrix and
an vector, is assumed to be controllable, andis assumed
to be a stable matrix. That is

is assumed to have full rank, and the eigenvalues ofto have
modulus less than one. Our analysis applies tocomplex, but
it is carried out in a way that requires only real arithmetic when

and are real.
We use to designate the transform of the delay operator

The transfer function of the above system, which is referred to
as aninput-to-state filteror apolyfilter, is

...
(2)

We mention two special cases (see also [3] and [4]). First, we
have the case where is adiagonalmatrix

...
...

...
...

...

and
...

(3)

In this case

for

are the standard Cauchy kernels, and a bank of parallel
first-order filters. The next interesting special case is whenis
the companionmatrix

...
...

...
...

...

and
...

(4)

This case corresponds to

for

The terminologypolyfilter suggests the general case where
has an arbitrary Jordan structure (subject to the controllability
requirement), and thereby, is a filterbank with higher order
subcomponents of possibly different dimension.

The entries of a polyfilter, as we will see below, form
a basis for a certain subspace of (where is the space of
analytic functions in the unit disc with square-integrable radial
limits). Further, these functions are generalized Cauchy kernels

whose inner product “evaluates” functions in at the eigen-
values of More specifically, if , then

where

with a 1 in the th spot.

The expression depends either on the value of
at , as in the case of (3), or on the value of theth derivative
of at 0, as in the case of (4) or, in general, on the values
of and its derivatives (up to the multiplicity minus one) at the
eigenvalues of in a way prescribed by the eigenstructure of

and its relation to the chosen vectorConversely, the values
of on the spectrum of , which appear in , can be
calculated from , as shown in the following lemma.

Lemma 1: If is a controllable pair and func-
tions defined on the spectrum of, then

Proof: Clearly, is obvious. To show the other way,
note that

since commutes with and Thus

This completes the proof since is invertible.

IV. COINVARIANT SUBSPACE

The subspace of -functions that vanish on the spec-
trum of , i.e., for which , is given by ,
where

is an all-pass function (which is otherwise known as finite inner
or Blaschke product). Its orthogonal complement

plays a key role in interpolation theory.
The standard (right) shift operator defined on is

The subspace is called “co-invariant” because it is invariant
under the adjoint operator
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Note that by , we denote the orthogonal projection from
onto Similarly, for

Lemma 2: The entries of form a basis of
Proof: The statement of the lemma follows from the fol-

lowing.

i) The entries of are linearly independent.
ii) The dimension of is and coincides with the number

of entries in
iii) span remains invariant under

Claim i) follows from the controllability of Claim ii) is
standard [23]. Claim iii) is easily verified since

(5)

It is interesting to note from the above proof thatis a matrix
representation of the left shift with respect to the basis
Hence, for any functions defined on the spectrum of, we
have that

V. POWER SPECTRA AND STATE-COVARIANCES

Let the process pass through , and let the state process
be denoted by The covariance of is given by

(6)

Since is a bounded positive (non-negative) measure,
then is a positive (semi-) definite matrix.

Two simple cases of special interest are as follows. First, if
is a companion matrix as in (4) andis the corresponding input
vector, then the state process is

...

and the covariance coincides with the Toeplitz matrix
given earlier. Second, if is a diagonal matrix as in (3) and

is the corresponding input vector, then the covariance of the
state-space process is in the usual Pick-matrix form

(7)

In this case, the values for relate to the covari-
ance of the individual entries of the vector-process(see [4]
for details). In general, the state-covarianceis characterized
by

for some and a suitable vector However, this last fact
will not be further exploited.

VI. SINGULAR SPECTRA

We now consider power spectra of the form

(8)

where denotes the Dirac impulse function. These contain
both a regular part as well as a singular part. The singular part,
which is the sum containing the Dirac functions, represents
spectral lines that we typically want to identify. The residues

represent the energy density contained in the corresponding
sinusoidal components of , whereas is the spectral
density function that is defined a.e. and is non-negative.

We wish to study the eigenstructure of the corresponding state
covariance when is fed as input to a polyfilter To this
end, consider a vector

and the quadratic form

where Since is positive al-
most everywhere (provided ), the quadratic form is sin-
gular only if both the regular spectrum is identically
zero, and

for

Note that is a rational function that can be written as

with the denominator of degree and
the numerator of degree It follows that the numerator
has to vanish at the points , i.e.,

for (9)

Hence, assuming the ’s are distinct, We summarize
these conclusions in the following proposition.

Proposition 1: The state-covariance matrix defined in
(6) is singular of rank if and only if it is of the form

(10)

for a selection of distinct with
Proof: The “if” part is obvious. The “only if” was shown

by the arguments leading to the proposition.
We now study the correspondence between the elements in

the above decomposition and the zero-eigenvectors ofThere-
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fore, let be singular of rank , and define the (left) null
space of

and the space of polynomials

polynomial of degree

such that (9) holds

These two spaces are both of dimension , and in fact, they
are in bijective correspondence via

(11)

Due to controllability of , is already a bijection between
vectors and polynomials of degree Then, is

equivalent , which, in turn, is equivalent to (9) as it
follows from the earlier arguments.

A basis for can be easily identified from a singular
value decomposition of More specifically, let

diag (12)

with unitary and , and let

with representing the matrix formed out of the last
columns of Then, the rows of span

Since the range of is spanned by for ,
it follows that the non-negative trigonometric polynomial

(13)

has roots at It should be noted that just as in the
case of Section II, may have additional roots off the
unit circle, but it has no root on the circle other than the above.
This is a direct consequence of the following lemma.

Lemma 3: If and for are pair-
wise distinct, then the columns of

are linearly independent.
Proof: It suffices to prove the claim for There-

fore, let , and consider the determinant of the
matrix function

(14)

Clearly, is an element of since all non-constant
entries of the first column belong to Thus

and it can have at most roots. From (14), these roots
are precisely Thus, is nonsingular.

We summarize our conclusions in the following key proposi-
tion.

Proposition 2: If given by (6) is singular and is of rank
and if is obtained as above from a singular

value decomposition of , then the spectrum of is discrete
and of the form

where are distinct roots of

on the unit circle. Moreover, has no root on the circle
other than the ones above, i.e., other than

Proof: The proof was shown by the argument leading to
the proposition.

VII. SINUSOIDS IN WHITE NOISE

The typical assumption underlying MUSIC is that the signals
are corrupted by white noise. The spectrum ofin this case is

(15)

and the corresponding state covariance is of the form

(16)

Note that the term

is a familiar object. It is precisely a controllability Grammian
that satisfies the Lyapunov equation Con-
versely, given a state-covariance and the filter parameters

, then we compute as above and then the eigenvalues of
the matrix pencil

(17)

We denote by the smallest eigenvalue (which is positive by
virtue of the fact that both and are Hermitian and positive
definite). Regardless of the statistics of, this value is a can-
didate for white noise level in Indeed, we will show that the
decomposition (16) always holds, with no need for any specific
requirement on the spectrum of A key step is to prove that

(18)

is again a state covariance of the form given in (6), with a non-
negative measure , in order to take advantage of the sin-
gularity of and apply our earlier results in Proposition 1. To
prove existence of such a , we need to use certain results
from interpolation theory. The first lemma below is a version of
the standard commutant lifting theorem, which is due to Sarason
and, in the most general form, due to Sz.-Nagy and Foias.

Lemma 4 [23, Th. 1]: If is an operator on that commutes
with and the real part of is positive semidefinite, then there
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exists a function that is analytic in the open disc and has
positive real part there such that

Proof: The statement is isomorphic to that in [23], except
that it is phrased in terms of a positive-real property as opposed
to contractiveness. To make the correspondence, it suffices to
combine the following well-known facts.

i) has positive real part if and only if

is strictly contractive, i.e., its norm is
ii) commutes with if and only if does.
iii) A function , which is analytic in the disc, has posi-

tive real part if and only if the function

is also analytic and has norm bounded by one, i.e.,
inside the disc.

iv) interpolates , i.e., iff ψ(λ) interpolates

Lemma 5: If and are as defined ear-
lier, then is a state-covariance matrix for and a suitable
stochastic input, i.e., that

(19)

for some bounded non-negative measure
Proof: Power spectra, like , are characterized by

the property that is a nondecreasing function of bounded
variation or that is a bounded non-negative measure. It is
a well-known fact (e.g., see [1]) that if is as above, then

(20)

is analytic in the open disc with positive real part. Conversely,
any suchpositive-real function admits a representation as
in (20) with a suitable non-negative measure.

To prove the claim in the lemma, begin with , define
as above, and then define the operator

where In the present context, it is easier to work with
adjoint operators. Thus, with regard to the basis cor-
responds to the matrix , whereas corresponds to a matrix

, i.e.,

Since and commute, and also commute. The real part
of is

Since Re (see e.g., [1]), the state-co-
variance matrix is precisely the matrix that defines the above
quadratic form; hence

The first part of the argument is fairly standard. To complete
the proof, we only need to trace the above steps backwards for

In this way, we will establish that is given by (19) with
a suitable First, we note that

with and that it is non-negative definite.
Then, define the operator on through its adjoint by

Since differs from only by , commutes with
as well. Hence, commutes with Since the real part of

is , it follows from Lemma 4 that can be interpolated
by a positive-real function . Invoking the existence of an
integral representation for as in (20) gives us the required
measure in (19).

We now can apply our earlier analysis of singular state-co-
variance matrices to and deduce our main theorem.

Theorem 1: Consider the state-covariance of a linear
filter having parameters with controllable and input

having power spectrum any general bounded non-negative
measure There is a unique decomposition of in the
form

(21)

where and where we have the following.

i) The matrix

is the solution of the Lyapunov equation

ii) is the smallest eigenvalue of the matrix pencil

iii) rank
iv) for are roots of the trigonometric

polynomial

(22)

on the unit circle, where is a basis for
Further, has no other root on the unit

circle.
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Finally, the residues above are given by

diag

where

(23)

Proof: The proof follows from Lemma 5, Propositions 1
and 2, and the discussion leading to Lemmas 4 and 5.

We wish to emphasize that the theorem makes no particular
assumption on the spectrum of the input process. Yet, it states
that the state-covariance can always be decomposed in a way
consistent with the possibility that the input was the superposi-
tion of sinusoids in white noise.

Remark 1: The special case that corresponds to as in (4)
reduces to the Carathéodory–Fejér results and is the basis of the
method introduced by Pisarenko (cf. [14] and [22]).

Remark 2: Consider the case where is a general
transfer function, i.e., when , and is
the output covariance. If the input consists of sinusoids in white
noise, then the output covariance is easily seen to be, again,
in the form (21). Thus, we might be led to conjecture that a
statement analogous to Theorem 1 holds in this case as well. In
general, this conjecture is false. This is shown in the following
simple counterexample. (Note thathas to have more than one
row for the conjecture to be nontrivial and false.)

Counterexample: Let be as in (4) with , and let

Assume that the input process is real with covariance sequence
Then, the state-covariance matrix is

the output covariance is

and the contribution of unit variance white noise to the output
covariance is

Take and Then, , and hence,
Now, take The difference

is still positive definite, yet no input process could have gener-
ated such an output covariance matrix (because
To see this more explicitly, solve

for the covariance sequence of such a hypothetical input. This,
of course, gives and , which is inad-
missible.

Thus, Theorem 1 is valid in general only for input-to-state
filters.

Remark 3: The decomposition (21) in Theorem 1 contains
a minimal number of dyads , i.e., any other
decomposition

(24)

with positive coefficients is either iden-
tical to (21) or The minimality justifies our use of the
termcanonicalfor the decomposition of Theorem 1 as it is cus-
tomary in the theory of the moment problem (see [2], [16], and
[21]).

To show our claim of minimality, we first note that
from Theorem 1 iii), whereas from Theorem 1 ii). We
now consider two cases: If , then

Hence, we have the matrix

and its counterpart with the hats ought to have the same range
(which coincides with the range of Therefore, we
can deduce from Lemma 3 that the set and its
counterpart with the hats are identical. It now follows easily that
decomposition (24) is identical to the one in Theorem 1, modulo
re-ordering the indices. If, on the other hand, , then by
comparing the two decompositions, we get that

(Here, designates that is positive definite.) It
follows that

has full row rank. Hence, and the decomposition with
the hats cannot be minimal.

VIII. MUSIC VIA SELECTIVE HARMONIC AMPLIFICATION

We now come to the point of integrating the above conclu-
sions into the analog of MUSIC for general state-covariance sta-
tistics.

A. Choice of

We first observe that there is a natural group action on the pa-
rameters of Theorem 1, namely the similarity trans-
formation on and the corresponding congruence transfor-
mation on These transformations leave the frequencies
and the weights in decomposition (21) invariant. Indeed, if

, , and
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with square and invertible, then (21)
holds for the new parameters and the same fre-
quencies and weights as before, i.e.,

where In order to capture the selec-
tivity properties of input-to-state filters, we need a frequency-re-
sponse-like function that is invariant under similarity transfor-
mation. A suitable such object can be obtained by normalizing
the parameters so that the state-covariance due to the input
noise is the identity matrix. Hence, we define theselectivity
measureof an input-to-state filter with parameters (con-
trollable and stable) as the function

s (25)

where denotes the Hermitian square-root of the solution
to the Lyapunov equation An alternative

justification can be argued based on the formula

trace (26)

where s weighs the contribution of the spectrum across
frequencies on the “size” of the resulting state-covariance.

The filter parameters can now be specified so that the selec-
tivity measure has passband characteristic over a range of in-
terest, i.e., the range of frequencies where the sinusoidal com-
ponents are expected to reside. A simple approach is to select
in a Jordan form

...
...

...
... (27)

and in the interval or, in , depending
on whether a lowpass or a highpass characteristic is desired,
respectively, whereas the choice can be used.
Similarly, a block Jordan structure

...
...

...
... (28)

where

and

with and generates bandpass charac-
teristics. Accordingly, the same choice of can
be used again.

The selectivity measure is shown for two representative cases
in Figs. 1 and 2. The first is generated according to (27) with

and the second according to (28) with and
In both cases, was chosen 30 30. These filters

will be used in the examples below.

B. State-Covariance Estimates

Having decided on the filter parameters and having the
observation record

available, we generate the state vector-processfrom the equa-
tion for (Depending on
the dynamics of the filter, we might choose to go even a little
beyond , but this will not be followed up in here.) Initial
conditions can be taken as zero. Then, the time series

can be used to estimate the sample state-covariance matrix
via

Here, could either be 0 or equal to a value that gives a level of
stationarity for the state time-series after

C. New MUSIC

1) We need to specify the integer It is advisable to chose
slightly larger than the expected number, say, of sinu-
soidal components in the spectrum of The method pro-
duces candidate frequencies, and then a subset offre-
quencies that are closest to the expected range can be se-
lected.

2) After selecting , we construct to span the (right)
eigensubspace corresponding to the smallest eigen-
values of the matrix pencil This can be done by
standard eigenvalue decomposition of the pencil.

3) Finally, the following two options can be followed.
Root MUSIC: As an estimate for the frequencies

of potential sinusoidal components take the angle
of roots of in (22), which are closest to the unit
circle and of modulus

Spectral MUSIC: As an estimate for the frequencies of
potential sinusoidal components take the frequencies where
the pseudo-spectrum

has its peaks.
Remark 4: In case the lowest eigenvalue of the pencil

has multiplicity , then we can compute an exact candidate
spectrum (as opposed to only a pseudo spectrum). This follows
from Theorem 1 since, besides and for , we
can also identify for from (23). Generically,
this is the case only when This corresponds to the
method of Pisarenko [cf. (22)].
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Fig. 1. Selectivity measure for a lowpass input-to-state filter.

IX. CASE STUDIES

We now compare MUSIC in the standard implementation
(Method I) versus the implementation suggested in Section VIII
(Method II).

A. Example 1: Lowpass Filter

We simulated numerically a random signal

for

where [rad], [rad], and
, whereas were generated as unit

variance independent Gaussian random variables and as
random variables uniformly distributed on

We used and Note that was taken larger
than the known number of sinusoidal components, which in this
case is Thus, among the frequencies that
MUSIC produces, only the two most “dominant” ones, or the
two “closest to the expected frequency range,” should be taken
as the estimated values for and . We first present one sim-
ulation in some detail and then summarize the results of addi-
tional runs.

Method I represents the standard implementation of MUSIC,
e.g., as described in [22]. This corresponds to the case where
all poles are chosen at the origin, and the filter data are
chosen according to (4). For this case, the frequency response
is not shown since it is constant across frequencies. Hence, the
standard implementation shows no preference for any particular
frequency band.

Method II represents the implementation of Section VIII. In
this case, since the sinusoidal frequencies are (known to be) at
the low-frequency part of the spectrum, we make use of a low-
pass filter. The parameters for were chosen according to
(27) with The normalized frequency response is plotted
in Fig. 1.

The time series of a typical simulation is shown in Fig. 3. The
(normalized) pseudo-spectra produced bySpectral-MUSICare

Fig. 2. Selectivity measure for a bandpass input-to-state filter.

Fig. 3. Time series realization.

shown with dashed lines in Fig. 4. The solid line and the solid
arrows represent the spectrum of the white noise with the two
sinusoids. This is superimposed on the pseudo-spectra in the two
graphs of Fig. 4. It is apparent that Method II produces a more
accurate pseudo-spectrum than Method I.

On the other hand,Root-MUSICfollowing these two different
methods produced the estimates as in the following.

Method I
Method II

Thus, the two values that are selected as estimates forand
are as follows.

Method I and
Method II and
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Fig. 4. Estimated pseudo-spectra.

B. Additional Simulation Runs

We tabulate the results produced of six additional runs ob-
tained byRoot-MUSICimplemented by the two methods. We
only list the two frequencies that each method identified closest
to the expected frequency range (i.e., closest to the interval [0.4,
0.5]) as follows.

Simulation Method I Method II

It is seen that Method II performs consistently better. In fact, the
standard implementation of MUSIC in Method I often missed
completely in identifying a second component in the vicinity of
[0.4, 0.5].

C. Example 2: Bandpass Filter

Again, with

for and all parameters as in Example 1,
except for

rad and rad

we simulated and compared the performance of MUSIC in the
two different implementations. Method I refers again to the stan-
dard implementation, whereas Method II now refers to using a
bandpass filter with in block-Jordan form as described in Sec-
tion VIII-A. The parameters are chosen and ,
and the frequency response is the same one shown in Fig. 2.

Fig. 5. Estimated pseudo-spectra.

The results from a typical simulation, when we applySpec-
tral-MUSICin the two implementations, are shown in Fig. 5. On
the other hand,Root-MUSICproduced the following estimates.

Method I
Method II

Thus, again, the two values selected as estimates forand
are

Method I and
Method II and

It is seen that the method proposed in this paper produced
consistently more accurate estimates and that it has the potential
to give better resolution and accuracy than the standard imple-
mentation of MUSIC. It is our expectation that more detailed
analysis will reveal a quantitative assessment of the improve-
ment in performance.

X. RECAP

The effectiveness of MUSIC in locating sinusoids in noise
can be enhanced by using state-covariance statistics of an
input-to-statefilter driven by the given time series. The filter
can be chosen to amplify the effect of a specific harmonic
interval where sinusoids are expected to reside. A general
canonical decomposition theorem is presented for state-co-
variance matrices (Theorem 1). The method takes advantage
of the canonical decomposition and applies it to the estimated
covariance matrices to retrieve information on the frequency of
embedded sinusoids. Simulation studies show that the method
is capable of significantly higher resolution than traditional
MUSIC. The current framework requires uniformly spaced
samples of the process.
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