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Signal Estimation via Selective Harmonic
Amplification: MUSIC, Redux

Tryphon T. GeorgiouFellow, IEEE

Abstract—The technique known as multiple signal classification builds on the Carathéodory—Fejér—Pisarenko decomposition
(MUSIC) is a semi-empirical way to obtain pseudo-spectra that and uses a singular value decomposition (SVD) of the Toeplitz
highlight the spectral-energy distribution of a time series. It is covariance matrix to generate a “pseudo-spectrum” with poles

based on a certain canonical decomposition of a Toeplitz matrix | to th tual si ‘dal modes. H h ise is that
formed out of an estimated autocorrelation sequence. The purpose close fo the actual sinusoldal modes. Rence, the premise IS tha

of this paper is to present an analogous canonical decomposition the pseudo-spectrum inherits the peaks of the actual power
of the state-covariance matrix of a stable linear filter driven spectrum of the process. In many cases, this appears to work

by a given time-series. Accordingly, the paper concludes with a quite effectively with minimal computation cost, and thus, the

modification of MUSIC. The new method starts with filtering 1 ,athod h m i lar 1 171. an
the time series and then estimating the covariance of the state [2(23;) od has become quite popular (e.g., see [15], [17], and

of the filter. This step in essence improves the signal-to-noise . .
ratio (SNR) by amplifying the contribution to the actual value The purpose of the present work is to give an analogous
of the state-covariance of a selected harmonic interval where canonical decomposition of the state-covariance matrix of a

spectral lines are expected to reside. Then, the method capitalizesstable linear filter driven by a stationary input (Theorem 1).
on the canonical decomposition of the filter state-covariance to More specifically, the state covariance of such a filter can be
retrieve information on the location of possible spectral lines. The d di ’ istent with th ibility that th
framework requires uniformly spaced samples of the process. ) ecompose Ina We_‘){ 00n3|§ en y\ll . e .pOSSI. ity that the

input is the superposition of sinusoids in white noise. We show
that there is a canonical such decomposition witmiaimal
number of sinusoidal components, i.e., a minimal number of
spectral lines (Remark 3).

Index Terms—Canonical decomposition of state covariances,
Carathéodory—Fejér—Pisarenko, harmonic decomposition.

. INTRODUCTION We then focus on the problem of estimating spectral lines
ONSIDER a discrete-time, wide-sense stationary, zersom time series data. The time series data are used to drive
mean scalar stochastic processwith ¢+ = -..,—1, @& linear filter. The values of the state process of the filter are

0,1, --and denote byo,(6) its power spectrum. The problemthe” used to estima}te the state covari_ance. We use the aforemen—
of estimating the spectrum from an observed data record tioned decomposition of state covariances and a MUSIC-like
SVD analysis to construct a suitable pseudo-spectrum that in-
Y i={yo,v1,v2, -, un—1} herits the peaks of the actual power spectrum for similar rea-
sons as in (spectral) MUSIC (cf. [17] and [22] and the refer-

of a finite lengthV has been the focus of an enormous numb hces therein). The standard (spectral) MUSIC corresponds to

of studies over the past 40 years or so. The use of Fourier trans: special case where omput-to-state filter(since as output

form_, perlodotgram antar:yzls, mo_dern nlf?(nl;.r;]eardtecthmqueds (eb\ge take the state itself) is simply a cascade of unit time delays.
maximum entropy method, maximum likelihood, etc.), and sub- Filtering time-series data and using the state covariance of

space methods that r_esulted from these studies are, by now, S{ﬁlg_filter allows certain control over the contribution of dif-
dard textbook material, e.g., see [17].

’ i ferent harmonic intervals on the derived state covariance. Thus,
In this work, we are concerned with the so-called MUSIG, o mphasizing the contribution of a selected frequency band,
method [18], [19]. This method is intended for signalg e can effectively improve resolution over this segment of the
consisting of a number of sinusoidal components in NOISGeym. The use of input-to-state filters originates in Byrnes
(ideally not far from being white). It is based on a canonic t al. [3], [4], where a bank of first- and second-order fiters
decomposition of a positive definite Toeplitz matrix, which L]

were used to filter time-series data. The covariances of the indi-

goes back to Caratheodory and Fejer [8] (cf. [14]) and, MOlfual outputs were shown to give interpolation conditions for

recently, to Pisarenko [18] (cf. [22]). The Toeplitz matrix 'She spectrum of the input process at the location of the filter

formed out of a finite number of covariance lags, and the . . . . . :
- o les. Given such interpolation data, classical Nevanlinna-Pick
decomposition suggests an admissible spectrum that cons?ﬁ S

of a minimal number of spectral lines in white noise. MUSICI eory [24] can be used to characterize ad.mISSIble spectra. Yet,
Byrneset al.[3], [4] went on to explore an important subclass
of low-dimension regular spectra and developed a new set of
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The input-to-state filters in the present work are a generd#, # 6, if £ # k, j := /—1, and * denotes the “complex
ization of the filter banks considered in [3] and [4], whereasonjugate transpose.” Furthér,_; has a unique (left) zero-
the state covariances of these filters provide generalized inteigenvector of the form
polation conditions for power spectra of the input process (i.e.,
values as well as higher order derivatives; cf. proof of Lemma ¢p=la -+ am 0 - 0O
5). The frequency plot of the largest singular value «fuit- . L -
a)bly norma(llizedn)él?t—to—state ma?) (see Sgection VI appear's‘e" ¢+ Tn-1 = 0. This eigenvector satisfies
to provide a more accurate picture of the harmonic selectivity ¢-v;i=0, fori=1,2,---,m
properties of the filters (as compared with the concept of “prox-
imity” of the filterbank poles to the interval of interest proposedle., the modes’?: are precisely the roots of the polynomial
in [3] and [4]). Recent work in [12] and [13] expands on the .
observation (see proof of Lemma 5) that state covariances pro- a(\) = Z ap >,
vide generalized interpolation conditions on the input spectrum
and presents a collection of methods that offer improved reso-
lution as compared with their Toeplitz-based counterparts (e.g.An elegant and useful reformulation of this result makes use
for methods of ESPRIT, Capon, and those in [20]). of the elements in the singular value decomposition

Section Il gives a brief outline of the main technical results
underlying traditional MUSIC. Sections Ill and IV develop
technical background relateq to the algebraic.and analytiegl T, ., where U is a unitary matrix, ands; > 0
structure of the states of a linear system. Sections V through_ 1, ,m). If
VIl deal with the structure of state-covariance matrices. The
main result (Theorem 1) on the decomposition of state covari- U = [ULm, Upni1:n]
ance matrices is given in Section VII. This result suggests,
accordingly, a generalization of MUSIC, which is discusse@NdUp.+1:, represents the matrix formed out of the last m
in Section VIII. Section IX gives examples to demonstrate tHolumns ofU that span the (right) null space®f,; (which is
potential of the new method. The method is suitable in caséenoted byVq1.: (75, -1)), then the non-negative trigonometric
where prior information allows the selection of a harmonigolynomial
range of interest. A suitably defined filtering stage improves

k=0

1,1 =Udiag{o1,02, - ,0m,,0, -, 0}U"

je —jey ._ -8 . —j(n—1)8
the signal-to-noise ratio (SNR), and the decomposition theorem de’”, e ") =1 e e’ |
suggest ways to identify spectral lines. The new method }g
; . L c
compares quite favorably with traditional MUSIC. Vst Uiy 1o (1)
Il. TRADITIONAL MUSIC ein—1)6

The key idea behind the methodology of MUSIC is a cetasy, roots precisely affs , - - -, 6, }. Note thatd(A, A=1) may
tain mathematical fact about Toeplitz matrices. This fact can Rgye additional roots off the unit circle but has no root on the
traced to the work of Carathéodory—Fejér in the early part of thcle other than the above. A proof of this result can be found
century (see [14]). In modern times, analogous results were €{22].
discovered, and their relevance in signal processing recognizedrhe significance in the context of signal processing stems

by Pisarenko, Schmidt, and others (see [22]). from the fact that ifc;, (k = 0,1, ---) denotes the autocorre-
The result we are referring to states that if a positive sengion function ofy:, that is

definiten x n Hermitian Toeplitz matrix

Co c1 c2 R Ck = E{Yty;}k} = % / eIke doy(8)
c1 co c1 Cre Cpe2 -
Th1= : . . . and if y, contains sinusoidal components of interest, then
' ' ' ' the frequencie®;’s of such components can be identified as
Contl C-nt2 Cny3 70 €O above via a singular value decomposition of the corresponding
happens to be singular and of rank < ») then it is necessarily Toeplitz matrix formed out of the autocorrelation function.
of the form In case there is background noise (assumed white or close to
m being white), the columns o/, 1., are taken to span the
T, , = Z pivivt subspace of the lowest eigenvalue(s)pf ; (see [22] as well
P as Section VII below).
where [ll. I NPUT-TO-STATE FILTERS
],197_ Consider a single-inputfoutput dynamical system, where
v; = < , pi >0, fori=12--.m the output is the:-state vector itself:

eI(n—1)8; xp = Azgp_1 + byx, wherek=...,—-1,0,1,---.



782 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2000

The nontraditional indexing of the inpyj, is intended to sim- whose inner product “evaluates” functionsify at the eigen-
plify notation. The paitd, b, whereA is ann x n matrix andb ~ values ofA*. More specifically, if f()\) € Ho, then
ann x 1 vector, is assumed to be controllable, ahis assumed

. . 1 7 —
to be a stable matrix. That is 4 — J0N 0 (030
(O =50 [ s
— PP n—1 & T S o3 i~ a4
Cap:=[b,Ab,--- A"770] _ 2i FYe(l = P A)-1b db
™ -7
is assumed to have full rank, and the eigenvalued &6 have 1T o et .
modulus less than one. Our analysis applies tbcomplex, but =b <% () — 77 AY) d9) e
it is carried out in a way that requires only real arithmetic when N o
=0"f(A%)e]
A, b andy, are real. *
We use to designate the transform of the delay operator \yhere
Tk — Th-1- e; :=1[0,---,0,1,0,---,0] with a 1 in theith spot.
The transfer function of the above system, which is referred The expressioh* f(A*)e} depends either on the value HfA)
as aninput-to-state filteror apolyfilter, is atp;, as in the case of (3), or on the value of tile derivative
of f(\) at 0, as in the case of (4) or, in general, on the values
g1 (A) of f and its derivatives (up to the multiplicity minus one) at the
92(A) -1 5 eigenvalues ofA* in a way prescribed by the eigenstructure of
GA) = : = =247, @ A and its relation to the chosen vectoConversely, the values
g O\) of f on the spectrum ofA*, which appear inf(A*), can be

calculated front* f(A*), as shown in the following lemma.
We mention two special cases (see also [3] and [4]). First, weLemma 1: If A, b is a controllable pair andl(s), w(s) func-

have the case whet# is adiagonalmatrix tions defined on the spectrum df, then
pr 0 0 -~ 0 O 1 f(A) = w(A) & f(A)b=w(A)b.
0 pp 0 --- 0 0 1 _ .
1 3 Proof: Clearly, (=) is obvious. To show the other way,
(3) note that

A=|0 0 ps -~ 0 0| and b=

[ER—

0 0 0 -+ 0 pp

f(AD = w(A)b = F(A)A*D = w(A)A*D
In this case sinceA commutes withf (A4) andw(A). Thus
6N = - L C fori=1,m FA)b = w( )b = f(A)Cap = 9(A)Cap
— D

This completes the proof sincg, ; is invertible. [ ]
are the standard Cauchy kernels, &#dh) a bank of parallel

first-order filters. The next interesting special case is wHds IV. COINVARIANT SUBSPACEX

then x n companiormatrix ; )
The subspace dif,-functionsf(\) that vanish on the spec-

000 --- 00 1 trum of A*, i.e., for whichf(A*) = 0, is given by B(\) H,,
100 --- 00 0 where
A={0 1 0 --- 0 0| and b= |0 4) det(A] — A*
Do : : B(\) = det(Al — A7)
Do : det({ — AA)
0 00 --- 10 0 ) ) o ) o
is an all-pass function (which is otherwise known as finite inner
This case corresponds to or Blaschke product). Its orthogonal complement
g(N) = X1 fori=1,2,--- n. K:=Hs© B(A\)Ha

plays a key role in interpolation theory.

The terminologypolyfilter suggests the general case where ; ! ) )
The standard (right) shift operator defined Hg is

has an arbitrary Jordan structure (subject to the controllability
requirement), and thereb#( ) is a filterbank with higher order S: 2()) — Az(\).
subcomponents of possibly different dimension.

The entriesy;(A) of a polyfilter, as we will see below, form The subspaci is called “co-invariant” because it is invariant
a basis for a certain subspacef®f (whereH; is the space of ynder the adjoint operator
analytic functions in the unit disc with square-integrable radial
limits). Further, these functions are generalized Cauchy kernels S*: x(N) — I, X z()).
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Note that bylI 57, , we denote the orthogonal projection frdm
onto H,. Similarly, for II x.
Lemma 2: The entries of7(A) form a basis ofC.

Proof: The statement of the lemma follows from the fol-

lowing.
i) The entries of7(\) are linearly independent.

783

VI. SINGULAR SPECTRA
We now consider power spectra of the form

doy(0) =6, do+ > 2rpr6(6 — 6x) db

k=1

(8)

if) The dimension of is » and coincides with the numberwhereé(-) denotes the Dirac impulse function. These contain

of entries inG(\).
i) span{g;(\): i =1,---,n} remains invariant unde§*.
Claim i) follows from the controllability of A, b). Claim ii) is
standard [23]. Claim iii) is easily verified since

S*:c- (I =AY o =y e (I—2A) L)
=cA-(I XAt (5)

Itis interesting to note from the above proof this a matrix
representation of the left shift* with respect to the bas@E( ).
Hence, for any functiong, w defined on the spectrum of, we
have thatf(5*) = w(S*) & f(A4) = w(A).

V. POWER SPECTRA AND STATE-COVARIANCES

Letthe procesg; pass througkiz(\), and let the state process

be denoted bx;. The covariance of; is given by

1 U

" on

(G(e'%) doy ()G(*)"). (6)

—T

both a regular part as well as a singular part. The singular part,
which is the sum containing the Dirac functions, represents
spectral lines that we typically want to identify. The residues
pr represent the energy density contained in the corresponding
sinusoidal components qf;, whereass, () is the spectral
density function that is defined a.e. and is non-negative.

We wish to study the eigenstructure of the corresponding state
covariance whet, is fed as input to a polyfilte&(A). To this
end, consider a vector

62[617627"'7671]

and the quadratic form

1 ™
5 .
pu— 1 "
T 2% .

1 ™

T or

cPc* (cG(e?®) do, (0)G(e®)*c)

[H ()| dory(8)

m

[H()?6(8) b+ prlH ()

- k=1

Since do, (6) is a bounded positive (non-negative) measuréhereH(\) = ¢(I — AA)~'b. Since|H(e’%)|? is positive al-

then P is a positive (semi-) definite x n matrix.

most everywhere (provided # 0), the quadratic form is sin-

Two simple cases of special interest are as follows. First, if gular only if both the regular spectrua(f) d is identically
is a companion matrix as in (4) ahds the corresponding input Zero, and

vector, then the state process is

Y
Yi+1
Xt = .

yt—l—n—l

and the covariance coincides with the Toeplitz maffix

given earlier. Second, ifi is a diagonal matrix as in (3) and
b is the corresponding input vector, then the covariance of t

state-space process is in the usual Pick-matrix form

n
:|i,k_1

In this case, the values; for i = 1, - - -, n relate to the covari-
ance of the individual entries of the vector-procgsgsee [4]
for details). In general, the state-covariaféés characterized

I

for somecy > 0and a suitable vectar. However, this last fact
will not be further exploited.

[w + Wy @

1—pp;

Co -1

P—APA* =1[b v][_l 0

H(%)y=0 fork=1,---,m.
Note thatH (1)) is a rational function that can be written as

n(A)

x(A)

with the denominatok (\) = det({ — AA) of degree< » and
the numeraton () of degree< =. It follows that the numerator
ngs to vanish at the pointg®+, i.e.,

H(\) =

9)

Hence, assuming th,’s are distinctyn < n. We summarize
these conclusions in the following proposition.

Proposition 1: Then x n state-covariance matrix defined in
(6) is singular of rankn < n if and only if it is of the form

() =0 fork=1,2,---,m.

P=Y" pG(*)G() (10)

k=1

for a selection of distinofy, with k = 1,---,m.
Proof: The “if” part is obvious. The “only if” was shown
by the arguments leading to the proposition. [ |
We now study the correspondence between the elements in
the above decomposition and the zero-eigenvectabs there-
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fore, letP be singular of rank: < =, and define the (left) null value decomposition aF, then the spectrum of, is discrete

space ofP and of the form
Nt (P) := {c: cP = 0} doy(6) = Z 27 p16(0 — 0 db
and the space of polynomials k=1
IO (b =1.... isti
A = {n(A): n(A) polynomial of degree< n, wheree?®s (k= 1,---,m) are distinct roots of

such that (9) holds dAATY) = (I = AT A) T U1 U100 — AA)
These two spaces are both of dimensionam, and in fact, they on the unit circle. Moreover(A, A=) has no root on the circle
are in bijective correspondence via other than the ones above, i.e., other thfh (k= 1,---,m).

. Proof: The proof was shown by the argument leading to

Due to controllability of( A, b), ¢ is already a bijection between
n vectors and polynomials of degree n. Then,cP = 0 is
equivalentcPc* = 0, which, in turn, is equivalent to (9) as it The typical assumption underlying MUSIC is that the signals

VII. SINUSOIDS IN WHITE NOISE

follows from the earlier arguments. are corrupted by white noise. The spectrunypfn this case is
A basis forN.i (P) can be easily identified from a singular m
value decomposition aP. More specifically, let doy(8) = po df + Z 27080 — Ox) dO (15)
P = U diag{o1,09, - 0m,0,---,0}U* (12 =t

. . and the corresponding state covariance is of the form
with U unitary ands; > 0 (i =1,---,m), and let
1 ™

36 A
U= [lfl:nlvl]nl+l:n] p= po% . G(GJ )G(GJ ) db
with U,,+1., representing the matrix formed out of the last + Em: RGP )G )™ (16)
n —m columns ofl/. Then, the rows ot/}, , ; .., span/\/left( ) P
Since the range aP is spanned by(¢?%) for k = 1, -
it follows that the non-negative trigonometric polynom|al Note that the term
. . . 1 [T . .
d(eja 67‘13) G*( 7‘13)[/'771-1-1 nl]nl+l nG(e]a) (13) E = 2_ / G(GJQ)G(CJG)* do
™ -7

hasm roots at{é1, - - 9,,,} It should be noted that just as in the
case of Section Ild()\ A~1) may have additional roots off the
unit circle, but it has no root on the circle other than the abov
This is a direct consequence of the following lemma.

Lemma 3:If m < nandf fork = 0,1,---,m, are pair-
wise distinct, then the columns of

€s a familiar object. It is precisely a controllability Grammian
that satisfies the Lyapunov equatiégh— AEA* = bb*. Con-
\'?ersely, given a state-covariande and the filter parameters
A, b, then we computds as above and then the eigenvalues of
the matrix pencil

(™), G-, )] Fork 4

We denote by, the smallest eigenvalue (which is positive by
virtue of the fact that bott? and F’ are Hermitian and positive
definite). Regardless of the statisticsyof, this value is a can-
didate for white noise level ig;. Indeed, we will show that the
decomposition (16) always holds, with no need for any specific
M(X) = [GN), G(7), -+, (7). (14) requirement on the spectrumpf. A key step is to prove that

are linearly independent.

Proof: It sufficesto prove the claim forn = n—1. There-
fore, letrn = n — 1, and consider the determinant of thex »
matrix function

Clearly,det M()) is an element ofC since all non-constant Fo:=P—pok (18)

entries of the first column belong #6. Thus : . . . . .
g is again a state covariance of the form given in (6), with a non-

det M(X\) = c(I — XA)™b negative measurés (¢), in order to take advantage of the sin-
gularity of Fy and apply our earlier results in Proposition 1. To
and it can have at most— 1 roots. From (14), these— 1 roots prove existence of suchdw (¢), we need to use certain results

are precisely{e’®t, - - - ¢/~ 1. Thus,M(e?%) is nonsingulam  from interpolation theory. The first lemma below is a version of
We summarize our conclusions in the following key proposthe standard commutant lifting theorem, which is due to Sarason
tion. and, in the most general form, due to Sz.-Nagy and Foias.

Proposition 2: If P given by (6) is singular and is of rank Lemma4[23, Th. 1]:If T7"is an operator o/ that commutes
m < n and if U,,41., IS Obtained as above from a singulawith S and the real part df’ is positive semidefinite, then there
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exists a functionp(\) that is analytic in the open disc and haSinceds,(6) ~ Re (¢(c’?)) df (see e.g., [1]), the state-co-
positive real part there such that variance matrix? is precisely the matrix that defines the above
quadratic form; hence
T = ¢(S).

Proof: The statement is isomorphic to that in [23], except

thatitis phrased in terms of a positive-real property as 0ppOSeCrpeg first part of the argument is fairly standard. To complete
to contractiveness. To make the correspondence, it sufficesfig proof, we only need to trace the above steps backwards for

pP= %(EW* + WE).

combine the follqv.ving weII-kngwn facts. _ Py. In this way, we will establish thaF, is given by (19) with
i) 1" has positive real part if and only if a suitabledo (6). First, we note that
(T _ -1 1 "
T=(I-T)(I+T) Py = 5 (EW§ +WoE)

is strictly contractive, i.e., its norm ig 1.

i) 7" commutes withS if and only if 7, does.

i) A function (), which is analytic in the disc, has posi-
tive real part if and only if the function T cG(N) — WoG(N).

with Wy := W — (po/2)I and that it is non-negative definite.
Then, define the operatdi, on K through its adjoint by

o —1
PA) = (1= (M)A +¢(V) SinceW,, differs from W only by (po/2)1, W, commutes with
. A as well. Hencel, commutes withs. Since the real part dfy

is also analytic and has norm bounded by one, i.e , :
>
[W(\)| < 1inside the disc. is Py > 0, it follows from Lemma 4 thafly can be interpolated

. g . . . by a positive-real functiogg(A). Invoking the existence of an
v) ¢(A) interpolatesl’, i.e.,¢(S) = T iff Y(A) interpolates integral representation ftdro(()\))as in (20) gives us the required
Lo- , measurels(6) in (19). ]
LemmaS:if A, b, G(A), P, B, po and Fy are as defined ear-  \ye now can apply our earlier analysis of singular state-co-
lier, thenF, is a state-covariance matrix f6f(\) and a suitable variance matrices t&, and deduce our main theorem.
stochastic input, i.e., that Theorem 1:Consider the state-covariande of a linear
1 = , , filter having parametersl, b, with A, b controllable and input
(G(e'?) do(0)G(7?)") (19) vy, having power spectrum any general bounded non-negative
o measurelo, (#). There is a unique decomposition Bfin the

for some bounded non-negative measiréd). form
Proof: Power spectra, likelo,(#), are characterized by 1 7 Y oo
the property that,(6) is a nondecreasing function of bounded P=poy / G(")G(e’™)" db
variation or thatlo,, (#) is a bounded non-negative measure. Itis o
a well-known fact (e.g., see [1]) thatdt, (6) is as above, then + Z PG/ )Gl )" 1)
k=1

1 [T 14X
¢(A) = o /4 1 — \e—Jf day(9) (20) whereG()\) = (I — AA)~!b and where we have the following.

) o ) ) . i) The matrix
is analytic in the open disc with positive real part. Conversely,
any suchpositive-real functionp(A) admits a representation as 1 "
. . . / E.=—
in (20) with a suitable non-negative measure. 2

To prove the claim in the lemma, begin with,(¢), define

() as above, and then define the operator

Py=—
0 2m

GG (%) db

—T

is the solution of the Lyapunov equation

T = ¢(S): 2(A) — Mep(N)z(\) E—AEAT =bb".
wherez(A) € K. Inthe present context, it is easier to work with i) po is the smallest eigenvalue of the matrix pencil
adjoint operators. Thus, with regard to the basis), S* cor- P— poE
responds to the matrid, whereasl™ corresponds to a matrix o
W, ie., iii) m = n —rank P — poE).
, iv) ¢/ for k = 1,---,m are roots of the trigonometric
T*: CG()\) — CWG()\) pOlynomial
Sinced” andS commute /7 and A also commute. The real part A0 A™) = G A U1 U1 GOV (22)

of T"is
. i i onthe unitcircle, wher&,,, 1., is a basis folVign (P —
3(MeG(A), TTcG(A)) + MT™cG(A), cG(A))) poE). Further,d()\, A1) has no other root on the unit
= HEW* + WE)c'}. circle.
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Finally, the residueg,, above are given by for the covariance sequence of such a hypothetical input. This,
of course, givegy, = 2, ¢; = —1, and¢, = 3, which is inad-
diag{py, -+, pm} = VP = poE)V )" missible.
Thus, Theorem 1 is valid in general only for input-to-state
where filters.
G(eI9)* Remark 3: The decomposition (21) in Theorem 1 contains
V= G, G()]. (23)  aminimal number of dyads¥(e’® )@ (e )*, i.e., any other
G(e?m ) decomposition
Proof: The proof follows from Lemma 5, Propositions 1 ™
and 2, and the discussion leading to Lemmas 4 and 5. m P=poE+ Y pG(e™)G(%)" (24)

We wish to emphasize that the theorem makes no particular k=1
assumption on the spectrum of the input process. Yet, _it stafes, positive coefficientsyy, (k = 0,1,---, 1) is either iden-
that the state-covariance can always be decomposed in a Way| 14 (21) orm < sn. The minimality justifies our use of the

consistent with the possibility that the input was the SUperpogkim canonicalfor the decomposition of Theorem 1 as it is cus-

tion of sinusoids in white noise. , tomary in the theory of the moment problem (see [2], [16], and
Remark 1: The special case that correspondsit® as in (4) f[21])_
t

reduces to the Carathéodory—Fejér results and is the basis o
method introduced by Pisarenko (cf. [14] and [22]).

Remark 2: Consider the case wher€(\) is a general
transfer function, i.e., whe@(\) = ¢(I — AA)~1b, and P is

h?o show our claim of minimality, we first note that < n—1
from Theorem 1 iii), whereagy < po from Theorem 1 ii). We
now consider two cases: th = po, then

the output covariance. If the input consists of sinusoids in white ™ o o o " .
noise, then the output covariance is easily seen to be, again, prG(P)G(IH ) =Y GG ()"
in the form (21). Thus, we might be led to conjecture that a #=1 k=1

statement analogous to Theorem 1 holds in this case as well{@nce, we have the matrix
general, this conjecture is false. This is shown in the following ' ' '
simple counterexample. (Note thahas to have more than one [G(e7), G(e?%), - -+, G(7)]

row for the conjecture to be nontrivial and false.) ) )
CounterexampteLet A, b be as in (4) withs = 3, and let and its counterpart with the hats ought to have the same range
’ ’ (which coincides with the range d® — pE). Therefore, we

e [1 1 1} can deduce from Lemma 3 that the $6¢, 65, ---,6,,} and its

1 -1 1)° counterpart with the hats are identical. It now follows easily that
decomposition (24) is identical to the one in Theorem 1, modulo
Pg-%rdering the indices. If, on the other hapd, < po, then by
comparing the two decompositions, we get that

Assume that the input process is real with covariance seque
(co, ¢1,c2,--+). Then, the state-covariance matrix is

Chp C1 Co m
L=|a o a > GG > (po— po)E > 0.
C2 €1 Cp k=1
the output covariance is (Here,A > B designates thatl — B is positive definite.) It

follows that
p— |:3CO +4dcy 4+ 2¢o co + 2¢o :|

co + 2¢2 3co — 4y + 2¢0 [G(ejél)’ G(Gjéz), . G(ejé-fn)]

and the contribution of unit variance white noise to the outpus full row rank. Hencej > n, and the decomposition with
covariance Is the hats cannot be minimal.

31
E= [1 3} ) VIIl. MUSIC VIA SELECTIVE HARMONIC AMPLIFICATION

We now come to the point of integrating the above conclu-
sions into the analog of MUSIC for general state-covariance sta-
tistics.

Takecy = 4, ¢c; = —1, andes = 3. Then, 7> > 0, and hence,
P > 0. Now, takepy = 2. The difference

8 8
P —poE = [8 16} A. Choice ofA, b

is still positive definite, yet no input process could have gener- We first observe that there is a natural group action on the pa-

ated such an output covariance matrix (becélise pol ¥ 0). ;amettgrsA, b’j’f ofdmeorem L nag}ely the S'm'la”t)f[ tran?—
To see this more explicitly, solve ormation onA, b and the corresponding congruence transfor-

mation onP, E. These transformations leave the frequenéjes
3¢y + 4¢1 + 269 Co + 262 |8 8 and the weightg;. in decomposition (21) invariant. Indeed, if
Co + 26 3¢o—4é1+26, | |8 16 A— A, =CAC b —b,=Cb, P — P, =CPC*, and
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E — E, = CEC*, with C square and invertible, then (21) The selectivity measure is shown for two representative cases
holds for the new parameters,, b,, P,, E, and the same fre- in Figs. 1 and 2. The first is generated according to (27) with

quencied); and weightsy;. as before, i.e., 7 = 0.1 and the second according to (28) with= 0.3 and
. 6o = 7/2. In both cases4 was chosen 3& 30. These filters
P, = poE, + Z pkOG(Cjek)G(Cjek)*O* will be used in the examples below.
krfll B. State-Covariance Estimates
=poE, + Z prGo(e7%)G (9% )* Having decided on the filter parametetsb and having the
k=1 observation record

whereG,()\) = (I — AA,)71b,. In order to capture the selec-
tivity properties of input-to-state filters, we need a frequency-re-
sponse-like function that is invariant under similarity transfoavailable, we generate the state vector-progg$om the equa-
mation. A suitable such object can be obtained by normalizitign = = Azy_1 + byx fork =0,.--, N — 1. (Depending on
the parameterd, b so that the state-covariance due to the inptie dynamics of the filter, we might choose to go even a little
noise is the identity matrix. Hence, we define thelectivity beyondV — 1, but this will not be followed up in here.) Initial
measureof an input-to-state filter with parameters b (con- conditions can be taken as zero. Then, the time series
trollable and stable) as the function

Y ={yo,y1,v2, -, Yn-1}

{-/E(? o '7-/L’N71}

Sap: 0 ||Go (P = | E7Y2G (e’ 25 _ : :
i 0= [[Gole)l] = | (el (25) can be used to estimate the sample state-covariance niatrix

where E+/2 denotes the Hermitian square-root of the solutio@

E to the Lyapunov equatiok — AEA* = bb*. An alternative ] Nt
justification can be argued based on the formula P = N Z Ty
t=
27
tracg P,) = / 1Go(e7®)|1? doy(8) (26) Here,/ could either be 0 or equal to a value that gives a level of
0

stationarity for the state time-series after /.
where g ;(#) weighs the contribution of the spectrum across
frequencies on the “size” of the resulting state-covariance. C. New MUSIC
The filter parameters can now be specified so that the selely We need to specify the integer. It is advisable to chose:
tivity measure has passband characteristic over a range of in-slightly larger than the expected number, say, of sinu-
terest, i.e., the range of frequencies where the sinusoidal com-soidal components in the spectrumyef The method pro-
ponents are expected to reside. A simple approach is to seélect ducesn candidate frequencies, and then a subsetgfre-

in a Jordan form guencies that are closest to the expected range can be se-
r 10 0 lected.
0 r 1 0 2) After selectingn, we construcl/,, 1., to span the (right)

ST eigensubspace corresponding to the smalestm eigen-
A=1: 1 : (@7) values of the matrix penciP — pE. This can be done by
000 standard eigenvalue decomposition of the pencil.

000 - 3) Finally, the following two options can be followed.

Root MUSIC As an estimate for the frequencigs(k =
1,---,m) of potential sinusoidal components take the angle
of m roots ofd(\, A=1) in (22), which are closest to the unit
circle and of modulus< 1.

Spectral MUSIC As an estimate for the frequencies of

< -

andrintheinterval < » < lor,in—1 < r < 0,depending

on whether a lowpass or a highpass characteristic is desired,
respectively, whereas the choike= [0, - - -,0, 1] can be used.
Similarly, a block Jordan structure

R I 0 .-+ 0 potential sinusoidal components take the frequencies where
0o R T --- 0 the pseudo-spectrum
A=1: = : (28) 1
0 0 O I W
0 0 O R
has its peaks.
where Remark 4: In case the lowest eigenvalue of the peiitit p £
reos(fy)  rsinf 1 0 has multiplicityn — m, then we can compute an exact candidate
R= —rsin(fy) 7 cos 90} and I = {0 1} spectrum (as opposed to only a pseudo spectrum). This follows
from Theorem 1 since, besidgg andfy, fork = 1,---,m, we

with0 < r < land0 < 6y < w generates bandpass characan also identifyp;, for £ = 1,---,m from (23). Generically,
teristics. Accordingly, the same choicelof [0,---,0,1]) can this is the case only whem = n — 1. This corresponds to the

be used again. method of Pisarenko [cf. (22)]. O
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input-to-state low—pass filter input-to-state band-pass filter
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o
o

o
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L
selectivity measure

5.2

4'80 015 1K 1!5 é 215 é 35 0 015 ; 1!5 é 215 i‘% 3.5
frequency frequency
Fig. 1. Selectivity measure for a lowpass input-to-state filter. Fig. 2. Selectivity measure for a bandpass input-to-state filter.
IX. CASE STUDIES 5 : : . ; : . .

We now compare MUSIC in the standard implementatio ,|
(Method I) versus the implementation suggested in Section VI
(Method ). 3k i

A. Example 1: Lowpass Filter 2 -
We simulated numerically a random signal

Yyt =1 + p1sin(wit + ¢1) + po sin(wat + ¢2)
fort=0,1,--- ., N -1

o+ -

1k 4
whereN = 100, w; = 0.4[rad], w2 = 0.5[rad], p; = 0.5, and
p2 = 1, whereas, (t =0,---, N — 1) were generated as unit -2 .
variance independent Gaussian random variableghang, as
random variables uniformly distributed ¢, =].

We usedn = 30 andm = 4. Note thatm was taken larger

3+ i

: L 1

4 I L 1

H H H i 0 10 20 30 4I0 510 60 7IO 80 90 100
than t_he known number of sinusoidal components, which in th Timacseries: white noiss » sinusowds at 04, 0.5 rfs
case isng = 2. Thus, among the frequenciés, -, 63, 6, that
MUSIC produces, only the two most “dominant” ones, or the Fig. 3. Time series realization.

two “closest to the expected frequency range,” should be taken

as the estimated values for andw,. We first present one sim- s with dashed lines in Fig. 4. The solid line and the solid

ulation in some detail and then summarize the results of adgjyows represent the spectrum of the white noise with the two

tional runs. _ _ sinusoids. This is superimposed on the pseudo-spectra in the two
Method | represents the standard implementation of MUSIGyaphs of Fig. 4. It is apparent that Method Il produces a more

e.g., as described in [22]. This corresponds to the case Whgg rate pseudo-spectrum than Method .

all poles are chosen at the origin, and the filter datdé are  op, the other handRoot-MUSIGollowing these two different

chosen according to (4). For this case, the frequency respoRs&hods produced the estimates as in the following.
is not shown since it is constant across frequencies. Hence, the

standard implementation shows no preference for any particular

frequency band. Method | (0.4901, 2.4096,0.3257, 3.1416).
Method Il represents the implementation of Section VIII. In Method Il | (0.5020,0.3763,2.4223,1.0701).

this case, since the sinusoidal frequencies are (known to be) at

the low-frequency part of the spectrum, we make use of a low-Thus, the two values that are selected as estimates fand

pass filter. The parameters fa¥, b were chosen according tow, are as follows.

(27)with» = 0.1. The normalized frequency response is plotted

in Fig. 1.
The time series of a typical simulation is shown in Fig. 3. The Method | wi ~ 0.3257 andw; ~ 0.%901.
(normalized) pseudo-spectra producedIpectral-MUSICare Method Il w1 ~ 0.3763 andw; ~ 0.5020.
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Case ll: Filtér poles at the 0.1

Fig. 4. Estimated pseudo-spectra.

B. Additional Simulation Runs

Case ll: Filtér poles at the 0.1

Fig. 5. Estimated pseudo-spectra.

The results from a typical simulation, when we apBlyec-
tral-MUSICin the two implementations, are shown in Fig. 5. On

We tabulate the results produced of six additional runs othe other handRoot-MUSICproduced the following estimates.

tained byRoot-MUSICimplemented by the two methods. We
only list the two frequencies that each method identified closest
to the expected frequency range (i.e., closest to the interval [0.4,

0.5]) as follows.

Method |
Method Il

(1.5838,1.3614, 1.0795,1.9301)
(1.5953,0.2612, 1.4458,0.8007)

Thus, again, the two values selected as estimates;fandw-

Simulation Method | Method II
1 0.5020, 0.8555 0.4042,0.5124
2 0.4670,0.5680 0.4550, 05549
3 0.4177,0.5162 0.3863,0.5100
4 0, 0.4844 0.3849, 0.4989
5 0.0612,0.4809 0.4689, 0.5596
6 0.4953, 1.0496 0.3890, 0.4994

are

Method |
Method Il

w1 ~ 1.3614 andws ~ 1.5838.
w1 ~ 1.4458 andws ~ 1.5953.

It is seen that the method proposed in this paper produced
consistently more accurate estimates and that it has the potential
to give better resolution and accuracy than the standard imple-
mentation of MUSIC. It is our expectation that more detailed

Itis seen that Method Il performs consistently better. In fact, tralysis will reveal a quantitative assessment of the improve-
standard implementation of MUSIC in Method | often misseffent in performance.

completely in identifying a second component in the vicinity of

[0.4, 0.5].

C. Example 2: Bandpass Filter
Again, with

ye = 1y + p1sin(wit 4+ ¢1) + po sin(wat + ¢2)

fort = 0,1,.--,N — 1, and all parameters as in Example 1

except for

w; = 1.45[rad and w, = 1.59[rad

we simulated and compared the performance of MUSIC in t
two differentimplementations. Method | refers again to the sta
dard implementation, whereas Method Il now refers to using a
bandpass filter witkd in block-Jordan form as described in Sec-
tion VIII-A. The parameters are chosen= 3 andf, = 7/2,

X. REcAP

The effectiveness of MUSIC in locating sinusoids in noise
can be enhanced by using state-covariance statistics of an
input-to-statefilter driven by the given time series. The filter
can be chosen to amplify the effect of a specific harmonic
interval where sinusoids are expected to reside. A general
canonical decomposition theorem is presented for state-co-
variance matrices (Theorem 1). The method takes advantage
0f the canonical decomposition and applies it to the estimated
covariance matrices to retrieve information on the frequency of
embedded sinusoids. Simulation studies show that the method
is capable of significantly higher resolution than traditional
I%USIC. The current framework requires uniformly spaced
ﬁgmples of the process.
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