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Noninvasive Estimation of Tissue Temperature Via
High-Resolution Spectral Analysis Techniques
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Abstract—We address the noninvasive temperature estimation
from pulse-echo radio frequency signals from standard diagnostic
ultrasound imaging equipment. In particular, we investigate the
use of a high-resolution spectral estimation method for tracking
frequency shifts at two or more harmonic frequencies associ-
ated with temperature change. The new approach, employing
generalized second-order statistics, is shown to produce supe-
rior frequency shift estimates when compared to conventional
high-resolution spectral estimation methods Seip and Ebbini
(1995). Furthermore, temperature estimates from the new algo-
rithm are compared with results from the more commonly used
echo shift method described in Simon et al. (1998).

Index Terms—Diagnostic ultrasound, maximum entropy, spec-
tral analysis, state-covariance, super-resolution.

I. INTRODUCTION

NONINVASIVE temperature estimation continues to at-
tract attention as a means of monitoring and guidance for

minimally invasive thermo-therapy. Currently, magnetic reso-
nance imaging (MRI) and ultrasound have both been proven
to have the temperature sensitivity and spatial resolution nec-
essary to provide noninvasive temperature feedback. The main
limitation for MRI is the cost and the potential complication
of the heating protocol as the heating equipment must be MR
compatible. Ultrasound is relatively less expensive, portable,
and can be used in conjunction with almost any heating pro-
tocol without adding any significant constraints. Therefore,
noninvasive temperature estimation based on ultrasound echo
data continues to be an important problem in the area of
image-guided minimally invasive thermal therapy.

The ultrasound tissue characterization literature makes ex-
tensive use of a discrete scatterer model assuming that the echo
signal is a superposition of echoes from a semi-regular lattice of
point scatterers within the resolution cell of the imaging system
(see [3]). This model assumes that the echo signal reflects the
backscatter from specular, regular, and diffuse scatterers. In
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cases when regular scatterers exist within the resolution cell,
the power spectrum exhibits peaks at harmonic frequencies
related to the mean scatterer spacing (MSS). In [1], it was
shown that the local temperature change produces proportional
shifts in these harmonic frequencies. The proportionality factor
is related to the change in speed of the sound and the local
expansion. Thus, a quantitative estimation of tissue tempera-
ture becomes feasible by tracking the frequency shifts if the
harmonics can be reliably estimated from the spectra of the
echo signals.

In [1], the autoregressive (AR) spectral estimation was ap-
plied to estimate the frequency shifts. While this approach vali-
dated the MSS model and its use in temperature estimation, the
bias and variance in the frequency shift estimates made it dif-
ficult to develop a robust algorithm for temperature estimation.
It was suggested that three or more peaks in the AR spectrum
be “fit” to a harmonic model to improve the consistency of the
results.

Recent advances in nonlinear spectral analysis empowered us
to design algorithm with higher resolution [4], [5]. These al-
gorithms are constructed based on a new formalism for spec-
tral estimation where generalized second-order statistics are de-
rived from data to estimate power spectral density. Generalized
second-order statistics are natural generalization of covariances
which are the basis for the classical techniques like AR. The new
framework enables us to control the resolution in different fre-
quency bands. We use this property to design an adaptive algo-
rithm to track very small frequency shifts. Interestingly, the ex-
perimental results validate the theoretical prediction of existing
harmonic frequencies.

It is important to note that there are a number of different ap-
proaches to temperature estimation based on backscatter ultra-
sound. One of the more computationally attractive approaches is
described in [2] where temperature change in the tissue has been
related to the axial derivative of the echo shift from a scatterer
(or a collection of scatterers) at a given location. Not surpris-
ingly, the proportionality is also related to the local change in
speed of sound and thermal expansion. However, the echo shift
method does not depend on the existence of regular scatterers
within the analysis window. The main limitation of this method
is the phenomenon described in [2] as thermal lens effect due
to the ultrasonic beam distortion as it propagates through the
heated region. In addition, this method is less quantitative as it
is not related to a specific tissue structure with known behavior
in response to temperature change. Nonetheless, this method is
extremely attractive as it produces two-dimensional temperature
images that can be used to map the extent of the heated region,
with obvious implications for image guidance.

0018-9294/$20.00 © 2005 IEEE
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The organization of the paper is as follows. In Section II,
the essence of estimating temperature from ultrasound echo is
discussed. Section III briefly explains the new high-resolution
spectral analysis framework. In Section IV, we use new frame-
work to design an algorithm to estimate frequency shifts and
apply it on experimental data. The results of Section IV are
discussed in Section V, and concluding remarks are given in
Section VI.

II. TEMPERATURE ESTIMATION

The temperature change estimation method in this paper is
based on the thermal dependence of the ultrasound echo that
accounts for two different physical phenomena: local change
in speed of sound and thermal expansion of the propagating
medium due to changes in temperature. The speed of sound
is a function of temperature. In most tissue media around body
temperature, increases with temperature in the range (see [7,
pp. 106–110]). In fatty tissues, decreases with increasing tem-
perature [1]. For a tissue region with quasiregular scatterer lat-
tice, the average distance between scatterers is known as mean
scatterer spacing, . Thermal expansion and contraction of the
medium due to changes in temperature affects the mean scat-
terer spacing. Despite the complexity of the spectrum of the
echo signal, the presence of a quasiregular lattice of scatters pro-
duces harmonically related peaks with fundamental frequency

. This can be explained through the discrete tissue
scattering model which is widely accepted in the field of tissue
characterization with diagnostic ultrasound (cf. [3] and [8]).
This model is based on the assumption that the backscattered
A-line signal, , consists of a superposition of scaled and
shifted versions of the spatially varying impulse response
of the diagnostic transducer and the medium [9]. In particular

(1)

where represents the number of scatterers within the pro-
cessing window, represents time, and is the magnitude of
the reflection from th scatterer along the transducer imaging
axis. The term denotes the two-way travel time of the diag-
nostic pulse from the face of the transducer to the th scattering
center and back to the transducer.

Assuming the above model, it can be shown that the power
spectral density (PSD) of the backscattered signal has res-
onances related harmonically (see [1]). More precisely when-
ever scatterers are uniformly spaced the PSD of , has
peaks at

where (2)

When the distance between scatterers is not uniform, but has
some level of regularity, the local peaks in the PSD will be de-
termined by the average distance between scattering centers .
The larger the variance in the scatterer spacing distribution, the
wider are the resonant peaks in the PSD.

Temperature change affects local value of the speed of sound
and mean scatterer spacing of the medium. Thus, is a function
of the local temperature of the medium. The change in ,

due to the temperature change can be found by differentiating
(2) with respect to and is given by

Using forward differencing approximation of at a
given temperature, , one can get the following:

(3)

Strictly speaking, is function of space and time. However, in
practice, the proportionality coefficient in (3) is constant for a
range of up to 15 C from normal body temperature. There-
fore, it is reasonable to assume constant throughout the tem-
perature range of interest. For values of higher the 20 C,
the whole approach based on echo ultrasound is likely to fail.
Under such conditions, one may want to account for as a
function of time and space. This is beyond the scope of this
paper.

A reasonable approximation of mean scatterer spacing as a
function of temperature is given by

(4)

where is the linear coefficient of thermal expansion of the
medium and is the mean scatterer spacing at the baseline
temperature . Let be the speed of sound in the medium
at the baseline temperature of . Using (4) in (3), we obtain

(5)

where is defined as

(6)

Equation (5) explains the approximately linear relation between
and .1 Note that the constant combines two different

effects, the change in the speed of sound and the change in mean
scatterer spacing (cf. [1]).

There is an alternative approach of using ultrasound to esti-
mate temperature change. As it was explained the temperature
change causes two physical phenomena: local change in speed
of sound and thermal expansion. The former produces an ap-
parent shift in scatterer location, and the latter leads to a physical
shift. Along an A-line, however, the two effects amount to echo
time-shifts. Let , and denote the axial depth and time-shift,
respectively. It has been shown in [2] that

where is a medium (material) dependent parameter. For a
homogeneous medium this parameter can be experimentally de-
termined. Therefore, temperature-change estimates can be ob-
tained by first tracking the cumulative echo time-shift at each lo-
cation, and then differentiating it along the axial direction and
filtering along both axial and lateral directions. This method

1Note that � is a constant that depends on the medium structure and on tem-
perature. Therefore, this constant must be appropriately updated as temperature
changes are computed.
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was explained and discussed in detail in [2]. Section V the per-
formance of this method (time-shift) is compared to our method
which is based on frequency shift estimation.

III. HIGH RESOLUTION SPECTRAL ANALYSIS

Classical high resolution spectral estimation techniques typ-
ically rely on estimates of covariance lags

where , and “ ” denotes complex con-
jugate. Here, , where is the number of data points.
Given , in general, there exists a family of power spectra con-
sistent with . The variety in high resolution algorithms stems
from the different criteria that they apply to pick one spectrum
from this family. For instance, AR and MUSIC postulate some
models for the random signal and choose the spectrum that sat-
isfies the presumed model. On the other hand, the criterion could
be maximization of an objective function like maximum entropy
(ME) method where the spectrum with the largest entropy is
sought [10].

Recently a new framework has been developed, which uses
the generalized second-order statistics instead of covariance
lags. The mathematical theory for this approach was developed
in [5], [11], and [12], where its superior statistical properties
have been demonstrated in [13]. Next, we review the new
formalism and apply it to design algorithms for frequency shift
estimation.

Consider the (discrete-time) state equations

Throughout, we assume that and
. Also is a controllable pair and the eigenvalues of

have modulus less than one.
State-space equation (7) represents a filter which has one di-

mensional input and dimensional output (i.e., vector ).
We refer to this filter as input-to-state (IS) filter. The transfer
function of IS filter is given by

(8)

Assume that the above filter is driven by a zero-mean sta-
tionary stochastic process for long time, in other words
we have reached steady state. Then the covariance of the output

is defined by

and “ ” denotes complex conjugate transpose. The ma-
trix , which is referred by state covariance, is a gener-
alization of second-order statistics. In practice, is not
available and should be estimated from the data. To this
end, the IS filter is driven by the samples of the under-
lying process and generates

. Then can be estimated by

Similar to classical framework, there is a set of consistent
spectra corresponding to state covariance. In [11], a linear frac-
tion parameterization of spectra which are consistent with a

is derived. It is shown that the ME estimator consistent with
is given by

(9)

It should be noted that the new framework encompasses the
classical framework. It can be seen by choosing as

...

... (10)

In this case, is given by

. . .
...

. . .
. . .

which is exactly the Toeplitz covariance matrix. Thus, the clas-
sical approach is one example of the new framework where

are chosen as (10).
The key observation to improve resolution is that the variance

of the frequency estimator is a function of . In fact, there is
a tradeoff between variability of frequency estimates and resolu-
tion. The design factor which affects resolution is the frequency
response of the IS filter. Using an IS filter with a bandpass char-
acteristic increases the resolution in the passband at the expense
of resolution elsewhere. This stems from the fact that the state
covariance is function of IS filter frequency response. In partic-
ular, we have

The other factor which adversely affects variance of estimates
is time constant of the IS filter [13].

Exploring the structure of the IS filter reveals that the shape
of its frequency response is determined by the eigenvalues of the

. Note that IS filter is a single input/multi output filter, thus, to
quantify its frequency response we use the 2-norm of the output
vector. In particular, if denotes the set of the
eigenvalues of , then the frequency response of (8) is given by

(11)

It is evident that each summand is a bandpass filter with as the
center frequency. The other design parameters which determine
the Q-factor of the filter are ’s. The closer to one, the filter
is more selective. However choosing close to one makes the
time constant large unduly and adversely affects the quality of
the estimates (see [14]).

The conclusion is that the resolution of spectral estimator can
be enhanced in a frequency band by choosing the eigenvalues
of reasonably close to that band. Also from experience it
appears that the case when and are normalized such that

is more well-behaved numerically.
In this paper, we choose eigenvalues of at complex conju-

gates to address the symmetry of the spectrum of the RF-echo
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Fig. 1. Diagram of the experimental setup depicting the dual ultrasound
system.

data.2 In particular, we put half of the eigenvalues at
and the other half at to enhance the resolution in fre-
quency band around and . Thus, the IS filter

(12)

is fully characterized by , and .
The frequency shift estimation algorithm starts by estimating

the spectrum by which corresponds to a flat IS filter. Then
the rough estimates of peaks incorporates in IS filter design by
placing multiple eigenvalues close to them. This increases the
resolution and enables us to accurately track the peak in time.
Note that the order of the IS filter, , should be chosen based on
the length of the data to guarantee the accuracy of the estimated
state-covariance. As a rule of thumb we use .
The mathematical basis for such rules has been developed in
[15]. In the Section IV, we apply this technique to estimate the
temperature change from the experimental data.

IV. EXPERIMENTS AND RESULTS

In order to illustrate the capabilities of the method pre-
sented in this paper, experiments have been conducted in
which a medium is heated using the therapeutic transducer
while diagnostic RF-echo is collected using the combined
imaging/therapy ultrasound system shown in Fig. 1. The setup
is similar to that described in [2]. We have collected data using
linear array probes on ATL Ultramark 9 (3.5–5 MHz with
sampling at 20 MHz) and Esaote MPX (5–9 MHz with sam-
pling at 33 MHz) scanners. In addition, two different phantoms
were used. The ATL data was acquired using the phantom
described in [2], which consisted of a parallelepiped sample
85 70 48 mm of rubber material (M-F Manufacturing Co.,
Fort Worth, TX). Microspheres with diameters 75–150 m
(Amberlite IR-120plus, Sigma Chemical Co., St. Louis, MO)
in a concentration of 0.6% by volume acted as ultrasound scat-
terers. The Esaote data was acquired using a phantom prepared
according to the procedure described in [16] and [17]. The
phantom was prepared by using 13 g gelatin, 18 ml N-propanol,
18.75 g graphite, and 52 ml glutaraldehyde in 230 ml water.
This phantom provides a more realistic approximation of tissue

2The RF-echo data is real, thus, the spectrum is symmetric.

TABLE I
PARAMETER VALUES USED FOR THE TEMPERATURE ESTIMATION

properties with special emphasis on elastic properties. We
mention here that the ATL data was acquired while the second
author was at the University of Michigan. The results reported
in this paper are based on this same ATL data to help the reader
compare the results shown in this paper with our previous
results shown in [2]. The Esaote data is actually of higher
quality than the ATL data, but produced similar results to the
ATL data. Therefore, we decided not to include these results in
this paper to avoid repetition.

Examining (3), one can see that the frequency shift in the th
harmonic is proportional to . This provide us with a means for
establishing the consistency of the temperature measurement.
Specifically, the relative frequency shifts at the true harmonics
are equal, i.e.,

Therefore, different harmonics have the same patterns of the
frequency shifts. In practice, only those harmonics within the
transducer bandwidth and are not masked by other scattering
phenomena are potentially detectable.

A. Algorithm

The new algorithms starts by finding a rough estimates for the
resonant frequencies. To this end we use IS filter (12) with
(i.e., nonselective) to estimate PSD peaks. Then an appropriate
set of IS filters is formed to track different harmonics. Note that
these primary estimates are exactly the achievable estimates in
classical approaches like AR. In particular, in (12) is chosen
as these rough estimates. Designing parameter, , allows us to
control the resolution. However the should not be too close to

to prevent the long transient time of the IS filter.

B. Phantom Heating Experiment

The first experiment has been performed with a tissue
mimicking phantom. The therapeutic field was applied to the
phantom after 10 s from the beginning of the experiment. This
lasted for 40 s and then the sample was allowed to cool down
for 50 s. The collected data consists of 128 A-lines and each
A-line consists of 2050 data point. Each A-line is segmented to
windows with length 100, this window corresponds to 3.3 mm
in phantom (Table I).

The estimated spectrum of the collected data shows three
dominant peaks in the passband of the transducer. To show the
frequency shifts around the heated area, we processed the data of
a window around the focus point of the therapeutic field. Fig. 2
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Fig. 2. Estimated frequency shift (i.e., (f (t))=(f (0))) (a) Classical method
AR, (b) ME with IS filter.

Fig. 3. Estimated frequency shift (i.e., (f (t))=(f (0))) in three Adjacent
A-Lines via proposed algorithm.

shows the normalized resonant frequencies versus time for three
harmonics. Fig. 2(a) is achieved by AR method when the order is

. Fig. 2(b) shows the result when IS filter with
and combined by ME estimator in (9) to estimate fre-
quency shifts. It is evident that estimated frequency shifts pat-
terns of Fig. 2(b) are quit similar and this validates the discrete
scattering model. In Fig. 3, the tracked harmonics for three adja-
cent A-lines around the focus point have been shown (Table I).

In order to illustrate the capabilities of the presented method
to estimate the temperature evolution in the medium, an experi-
ment conducted where the therapeutic field has two focus points
4 mm apart. First we estimate the temperature at a fixed axial
depth. To this end the frequency shifts were estimated by pro-
posed algorithm and filtered by smoothing filter in Table I. In
Fig. 4, a spatiotemporal (lateral-time) image of the estimated
temperature has been shown. It should be noted that delivered
average power to the top focus point is seventy percent of the
bottom one and this explains the larger temperature change in
the bottom focus point.

Fig. 4. Lateral temperature profile; By echo frequency shift estimation.

Fig. 5. Axial temperature profile; By echo frequency shift estimation.

To estimate the temperature evolution along axial direction,
the A-line data is segmented to windows of length 3.3 mm and
frequency shifts are estimated. Then we apply a smoothing filter
as in Table I. Fig. 5 is spatiotemporal image of the estimated
temperature along axial direction. The ripple observed behind
the heated region in Fig. 5 is caused by thermo-acoustic lens
effect which has been explained in [2]. For comparison we ap-
plied the echo time shift estimation technique explained in [2]
and the resulted temperature profiles depicted in Figs. 6 and 7.

C. Bovine Muscle in Vitro Experiment

The noninvasive temperature estimation method presented in
this paper can be used to provide guidance for high intensity fo-
cused ultrasound thermal therapy. In order to demonstrate this
capability, an in vitro bovine muscle heating experiment was
performed. This type of tissue present a mixture of scattering
structures throughout the imaging field and require some char-
acterization of this structure within the region being interrogated
by a given data segment. For the algorithm described in this
paper, this means that temperature estimation can be reliably
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Fig. 6. Lateral temperature profile; By echo time shift estimation.

Fig. 7. Axial temperature profile; By echo time shift estimation.

performed only when the underlying regular scatterer model is
valid. To identify these locations we use the fact that different
harmonics should exhibit similar relative frequency shifts. The
in vitro experiment described here illustrates this point.

The experiment was performed by the setup shown in Fig. 1,
in which the phantom was replaced with an approximately par-
allelepiped sample of bovine muscle tissue. The heating pat-
tern was eight 2-s single-focus patterns applied at one minute
intervals at eight different locations along the axis with a
spacing of 2 mm. The therapeutic array was physically moved
to produce each heating pulse moving progressively toward the
imaging transducer. The frequency shifts were estimated at a
point near the top of the sample, i.e., the heating points get closer
to the observation point as time goes on. Fig. 8 shows frequency
shifts in a location that consistent harmonics could be identi-
fied. The time evolution of the (relative) frequency shift curve
is quite consistent with the turn-on and turn-off time of the ther-
apeutic transducer. Furthermore, the increased frequency shift
with the increased proximity of the heating points to the obser-
vation point is also clear from this result. It is interesting to note

Fig. 8. Frequency shifts in bovine muscle tissue.

Fig. 9. Frequency shifts in bovine muscle tissue.

that the third heating pattern produced smaller temperature rise
than the second one.

The scattering structure of the tissue region contributing to
the echo segment affects the quality of the temperature estimate
obtained by the algorithm described in this paper. The quality
of the spectral estimate of the frequency shifts is related to the
existence of two or more harmonics with (approximately) the
same relative frequency shift. To appreciate this point, the re-
sults shown in Fig. 8 should be compared with those shown
in Fig. 9. The latter was obtained from a data segment which
is 1 mm from the data segment that produced Fig. 8. One can
see that the relative frequency shift patterns shown in Fig. 9
are inconsistent with each other, implying the lack of dominant
regular scatterers. This lack of consistency between the tracked
harmonics can be used as a quality index or figure of merit of
the temperature estimate obtained using this particular window.
This means that we generally cannot produce contiguous es-
timates leading to a temperature image. Fortunately, however,
most tissues have numerous locations where the regular scat-
terer model is valid (due to vascularization).

V. DISCUSSION

The discrete scattering model predicts the existence of har-
monics of a fundamental frequency in the backscattered ultra-
sound from a medium with regular scatterers. Also there is a
linear relationship between the fundamental frequency change
and the temperature change. We developed an algorithm based
on the new spectral analysis formalism, introduced in [11], to
estimate the frequency shifts in echoes from a medium under-
going heating by a therapeutic heating field. This enabled us
to detect several harmonics, which has similar (identical) rel-
ative frequency shift patterns, in the echo from a tissue mim-
icking phantom. This observation, which was not possible with
classical high resolution spectral estimation techniques [1], sup-
ports the assumptions of the theoretical model. The estimated
frequency shifts were used to determine the temperature evolu-
tion in the medium.
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The echo signal can be used in a different way to estimate
the temperature. It was shown in [18] that there is a linear
relationship between the temperature-change and echo shifts.
The analysis of the estimated temperature profiles resulted
from these two techniques show that both of the techniques act
similarly in the heated regions. However, they both suffer from
artifacts in the regions behind the heated area which is known
as thermo-acoustic lens effect [2]. This provides an opportunity
for compounding temperature estimates from both methods
to improve the overall quality and accuracy of noninvasive
temperature estimation.

An important advantage of spectral approach to temperature
estimation is the potential for quantitative temperature estima-
tion. It is possible to envision an algorithm which uses the echo-
shift estimation methods described in [2] to improve the spectral
estimation results and, consequently, improve the quantitative
accuracy of the temperature estimation. It is important to note,
however, that quantitative temperature measurements are pos-
sible when the echoes from the region under test are (largely)
due to regular scatterers. That is, specular and diffuse scatterers
do not produce harmonics. For these other scattering structures,
other spectral models may have to be developed. Based on the
model described in this paper, application of the algorithm in
real tissue media with mixture of scattering structures requires
some level of characterization of the scatterers. The presence
of regular scatterers is fairly straightforward and there are a
number of robust algorithms for the estimation of mean scatterer
spacing [3], [18]. Several techniques for characterizing specular
and diffuse scatters also exist (one of the better motivated ap-
proaches is described in [19]).

The in vitro bovine muscle experiment was meant to illustrate
the limitation mentioned in the previous paragraph. The results
from this suggest that only points where the existence of regular
scatterers within the echo segment can produce consistent shifts
in the relative frequency at more than one harmonic. This means
that the proposed algorithm will produce temperature estimates
at various locations on the ultrasonic image. Fortunately, many
tissue organs of interest (e.g., liver and kidney) are largely ho-
mogeneous and echoes from these organs are dominated by reg-
ular scatterers. Even for more heterogeneous and/or anisotropic
structures (e.g., muscle and breast), one can expect that a large
number of valid temperature measurement points (or islands)
can be found throughout the image.

This paper does not address some of the outstanding limi-
tations of noninvasive temperature estimation based on pulse-
echo ultrasound. One example is tissue heterogeneity, especially
the presence of fatty tissue, which behaves differently from most
tissue in response to temperature change. Another problem is
the temperature estimation when the baseline temperature [
in (3)] is a function of space. It is our view that these and other
problems such as the thermal lens effect described in [2] will be
solved using a two-step approach to temperature estimation. In
the first step, estimation of raw temperature field can be obtained
using techniques similar to the one described in this paper or in
[2]. In the second step, a temperature reconstruction from noisy
estimate employing physical constraints (e.g., based on the bio-
heat transfer equation) can be used. This is the subject of a fu-
ture report on this topic. It is important to emphasize, however,

that the high-resolution technique introduced herein provides a
potentially valuable means to characterize the temperature mea-
surement at every point. Namely, the presence of two or more
harmonics having the same relative frequency change as demon-
strated in Figs. 3 and 8. This figure-of-merit characterizing the
available temperature field could be the key to the success of any
two-step algorithm similar to the one described in this section.

VI. CONCLUSION

We have presented a new algorithm for noninvasive temper-
ature estimation based on the tracking of (relative) frequency
shifts in the spectrum of an echo segment from a region un-
dergoing temperature change. The IS high-resolution spectral
estimation method was shown to produce consistent relative
frequency shifts from two or more harmonics related to the
mean scatterer spacing in the region. This consistency is a key
improvement over previously considered high-resolution spec-
tral estimation models (e.g., conventional ME). Temperature es-
timation results from tissue-mimicking phantoms have shown
that the new method produces temperature estimates similar to
those obtained using the echo-shift tracking technique, but with
different artifacts. This suggests that the two methods are suit-
able for compounding to improve the overall accuracy of tem-
perature estimation.
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