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Robustness Analysis of Nonlinear Feedback
Systems: An Input–Output Approach

Tryphon T. Georgiou,Member, IEEE, and Malcolm C. Smith,Member, IEEE

Abstract—This paper presents an approach to robustness anal-
ysis for nonlinear feedback systems. We pursue a notion of model
uncertainty based on the closeness of input–output trajectories
which is not tied to a particular uncertainty representation, such
as additive, parametric, structured, etc. The basic viewpoint is
to regard systems as operators on signal spaces. We present two
versions of a global theory where stability is captured by induced
norms or by gain functions. We also develop local approaches
(over bounded signal sets) and give a treatment for systems
with potential for finite-time escape. We compute the relevant
stability margin for several examples and demonstrate robustness
of stability for some specific perturbations, e.g., small-time delays.
We also present examples of nonlinear control systems which
have zero robustness margin and are destabilized by arbitrarily
small gap perturbations. The paper considers the case where
uncertainty is present in the controller as well as the plant and
the generalization of the approach to the case where uncertainty
occurs in several subsystems in an arbitrary interconnection.

Index Terms—Gap metric, nonlinear systems, robust control.

NOTATION

Lebesgue -space of -vector valued func-
tions on with norm
Continuous and bounded-vector valued
functions on with sup norm
Truncation operator: for

on and zero otherwise.
The same notation will be used for vector
valued functions.

for all

for all
where is in either

or and denotes
the norm of the relevant normed space.

I. INTRODUCTION

ONE OF the basic properties of stable feedback loops
is that they tolerate uncertainties which are sufficiently

small in an appropriate sense. Moreover, stable loops have
the potential to reduce the effects of uncertainty, if de-
signed appropriately. Uncertainties may be small and yet have
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complex structure, e.g., infinite dimensional, time-varying,
hysteresis, etc., or may even defy a concrete realization in
the sense of a dynamical system. Our aim in this paper is to
present an input–output approach to uncertainty for nonlinear
systems which has the potential to include such a variety of
perturbations to the nominal model.

In the context of linear theory, it is well established that the
appropriate topology for considering questions of robustness is
that induced by the gap metric (the graph topology). Namely,
perturbations which are small in the gap are precisely those
which give small closed-loop errors in a feedback loop.
In contrast, other models of uncertainty have restrictions;
e.g., additive uncertainty does not allow a stable and an
unstable model to be compared, and parametric uncertainty
does not allow changes in model order, small time delays, etc.
Accordingly, in this paper we seek a suitable generalization of
the gap metric approach to robustness for nonlinear systems.

We consider a system to be defined by its graph, namely
the collection of its input–output trajectories. We consider two
systems to be close if their graphs are close according to
some measure. We will see by theory and example that such
a way of comparing systems allows the variety of uncertainty
mentioned above. One of the main results of the paper says
that robustness to small perturbations of the graph requires
that a certain disturbance-to-error mapping has bounded signal
amplification. Disturbances need to be injected at both the
input and output of the plant and the responses found after
and before the respective summing junctions. This mapping
is a (nonlinear) parallel projection operator, and the inverse
of its gain is the stability margin for plant uncertainty. This
result was first presented in the context of nonlinear systems
in [14] and generalizes a corresponding result from the linear
case [12], [8], [9]. The initial insight for the work of this
paper came from the geometrical techniques of [8] and [9].
However, the ideas have connections with a number of works
in the literature of nonlinear control. We mention particularly
the use of sector conditions for stability in [38], [39], and
[27]. Other contributions related to graph representations and
the complementarity of graphs as a condition for nonlinear
feedback stability include [15], [33], [30], and [23].

There are two basic tools which feature in the approach
of this paper for nonlinear systems. The first is a summation
operator for the characterization of stability. Any solution of
the feedback equations requires that an element of the graph of
the plant is added to an element of the graph of the controller
to equal the external disturbances. To find the response to
arbitrary disturbances, this operation must be invertible, and
for stability it must be bounded in a suitable sense. The second
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tool is the use of a mapping from the system graph onto a
perturbed graph and the use of the distance from the identity
of this mapping as a measure of distance between systems.
Although the assumption of the existence of such a mapping
appears to be strong at first, it will be shown that if two systems
are stabilizable then there exists such a mapping, and if the
closed-loop responses are close for some common controller
then the mapping is close to the identity. Moreover, we will be
able to construct such mappings explicitly in examples, such
as when time delays are introduced.

We now outline the contents of the paper. In Section II,
we introduce the summation and parallel projection operators.
In Section III, we present a generalization of the gap metric
for nonlinear systems defined on extended spaces. Theorem 1
provides the main paradigm of the theory: if the gap between
the plant and perturbation is less than the inverse of the norm
of a certain parallel projection, then the loop remains stable.
The theorem is applied in Example 1 to assess tolerance to time
delays when an integrator with input saturation is stabilized
by unity feedback. Theorem 2 studies the nonlinear gap
topology, and in particular, the relationship between closed-
loop norm convergence and convergence in the gap metric.
Metric properties of the gap are investigated. An alternative
distance measure is presented for which the corresponding
main robustness result (Theorem 3) has the circle criterion
as a corollary (Example 3). In Section IV, we give a version
of the theory for the case where there is a known bound
on the norm of potential disturbances. In this case, the main
theorem requires the gap and parallel projection norm to be
evaluated on a bounded domain (Theorem 4). This result
is pertinent in the case where stability, for the nominal or
perturbed systems, cannot be guaranteed globally. The theorem
is applied to an unstable system with saturation (Example 4). In
Section V, we deal with systems with potential for finite-time
escape. A modification of the gap and the norm of the parallel
projection are again evaluated, on suitably bounded domains,
and then compared to assess robustness of stability (Theorem
5). The theorem is applied to an unstable system with quadratic
nonlinearity (Example 5). In Section VI, we give a version of
our robustness theory for gain-function stability (Theorem 6).
The theorem is applied to a system with cubic nonlinearity
(Example 6). A brief discussion of hysteresis perturbations is
given. Section VII presents two examples of control systems
with zero robustness margin: a Nussbaum universal adaptive
controller and a parameter adaptive controller. In each case
it is shown that these may be destabilized by a perturbation
which is infinitesimally small in the gap. The two final sections
present generalizations of the robustness theory to the case
where uncertainty is present in both the plant and controller
(Section VIII) or in several elements in an arbitrary feedback
interconnection (Section IX).

II. PRELIMINARIES ON FEEDBACK STABILIZATION

In this paper we assume that the plant and compensator are
causal mappings and which satisfy

and where and are appropriate signal
spaces. We define a signal space to be an extended space or a

Fig. 1. Standard feedback configuration.

Banach space of time functions with support on , e.g.,
, or A departure from this takes

place in Section V, where we address systems with potential
for finite-time escape. There we allow for the possibility that
signals are defined only over a finite window in time.

Consider the feedback configuration of Fig. 1 where the
signals belong to and
belong to Under mild, physically motivated conditions on

and (e.g., the product of the instantaneous gains is less
than one [37], [4]; see also [2]), the feedback configuration can
be guaranteed to be well-posed. Namely, for any

there exist unique signals and
such that the following feedback equations hold:

and moreover

is causal. Throughout the paper, well-posedness of the feed-
back configuration will always be assumed for the nominal as
well as for all perturbed systems (though a weaker version will
be assumed in Section V). Thus, given that the feedback equa-
tions have a solution (e.g., over extended spaces), feedback
stability is the requirement that is stable, i.e., bounded
in a suitable sense.

In the subsequent sections we will consider several al-
ternative notions of stability. These are defined here. Let

be signal spaces or subsets of such spaces. A
causal operator is said to bestableif and

A causal operator is said to beincrementally
stable if and

It is standard to check that the norm and the incremental
gain satisfy the usual triangle and submultiplicative
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inequalities. We define the gain function of a causal
via

The operator is said to begain-function (gf)-stableif
remains finite for all

It is fruitful to think of a system in terms of its graph instead
of as a mapping, i.e., as the set of all possible input–output
pairs which are compatible with the description of the system.
Formally, thegraph of is defined as

In case is defined for all (e.g., when is an operator
on extended spaces), the condition is redundant.
However in general, e.g., in case are Banach spaces,
the requirement that may restrict the inputs to a
proper subset of We adopt the convention that the elements
of the graph are ordered according to the decomposition of
the ambient space Thus, we define the graph
(sometimes called the inverse graph) ofas

In order to study stability of the feedback system in Fig. 1,
a convenient device is thesummation operatordefined on the
cartesian product of the two graphs and as

Under the well-posedness assumption, has an inverse
on the whole of and moreover

Thus (induced norm, incremental, or gf-) stability of the feed-
back system is equivalent to the same notion being imposed
on

In order to study robustness of feedback stability, the
following pair of operators plays a central role [8], [9], [14].
Define

and

where denotes the natural projection
onto the th component of These op-
erators represent the mappings, in Fig. 1, from the external
disturbances to the input and output ofand the output and
input of , respectively. Each of these operators is a parallel
projection. The relevant definition, given in [5], is that an
operator is a (nonlinear)parallel projection if
for any

(1)

We summarize several interesting properties of parallel pro-
jection operators which will be used below. First

and Therefore
the stability/causality of one parallel projection implies the
stability/causality of the other, and hence of Clearly,
the stability/causality of implies the same property for

the two parallel projections. Further, (respectively,
) is the identity operator on (respectively, ) so

each has norm greater than or equal to one. Finally, a parallel
projection always induces a coordinatization
of in the following sense: any has a unique
additive decomposition , where and

III. GLOBAL ROBUSTNESS

In this section we deal with robustness of global stability
of feedback systems, in the sense that the induced norm of
the input-to-error mapping is finite and remains finite
for suitable perturbations of the nominal plant To quantify
allowed perturbations we introduce a distance measure which
is a generalization of the gap metric to nonlinear systems
on extended or Banach signal spaces. For this measure we
prove that feedback stability is preserved for perturbations
which are smaller than the inverse of the norm of the parallel
projection onto the graph of the plant. Next we prove a result
which shows a close connection between norm convergence
of the closed-loop operators and convergence in the distance
measure. We then investigate the metric properties of the mea-
sure. Finally, we study a related alternative distance measure
and give a direct proof of the corresponding main robustness
theorem. The circle criterion is shown to be a corollary.

A. Robust Stability Margin

Let where is a signal space. The following
definition represents a generalization of a metric given in [20]:

is a causal
bijective map from to with

if no such operator exists

The theorem below generalizes a standard result from linear
robust control. More specifically, if are linear sys-
tems and are Hilbert spaces, specializes to the usual
gap metric (see Proposition 5 in the Appendix). Theorem 1
then becomes the sufficiency part of [12, Th. 5] and [8, Th.
3]. The tightness of (2) is not examined here. However, it is
believed that a suitable necessity construction could be carried
out for appropriate classes of plants (cf. [29]). Here we will
be content to call the robust stability margin.

Theorem 1: Consider the feedback system in Fig. 1. Denote
and let be stable. If a system

with is such that

(2)

then is stable and

The proof of the theorem uses the following simple lemma.
Lemma 1: Let where is a signal space, and

with Suppose
Then and
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Fig. 2. Integrator with saturation.

Proof: Clearly, Then

from which the inequalities follow.
Proof of Theorem 1:As observed previously,

Since there exists a causal bijective
mapping from to such that

(3)

Consider the equation

(4)

(5)

We claim that this equation has a solution for any
To see this, note that for some
and because of the well-posedness assumption. Next,

has a solution for some since is
surjective. It can now be seen that is a solution of
(5). Since and , then

At the same time, from (4) and Lemma 1,
Thus

Since this is true for all such the result follows on taking
the infimum over

Example 1 (Integrator with Saturation):Consider the feed-
back configuration of Fig. 2. We will use Theorem 1 to show
that the feedback loop remains stable in the presence of
sufficiently small time delays in the plant. The nominal plant

is defined by

where when and is equal to
when We take and choose the
feedback controller to be The instantaneous gains
of and are zero and one, respectively, so the loop is
well-posed. The feedback equations reduce to

(6)

where We first calculate the stability margin
where

For any gives with the
smallest input norm. Thus

(7)

for the mapping defined by (6). We now claim that
To see this, consider any interval and suppose

that achieves a maximum which is positive at
Then, for any there exists such that

and The latter means that
hence for any A similar argument

applies for the minimum of so But
for all gives hence

Next observe that
In fact, this upper bound can be approached arbitrarily closely
by the input for and for
since then Therefore, from (7), we
conclude that

We will now calculate the gap betweenand a perturbation
in order to apply Theorem 1. Assume that the perturbed

plant is described by

and for which means that
for Define a mapping by

Then

Hence

which means that In fact, the gap is equal to
this bound (for ). To see this, take on
for which on Since for any

we have

Theorem 1 now asserts that will be stable if
which predicts that the perturbed

system will remain stable for all values of the time delay
It should be noted that this prediction of delay

margin is conservative and can be improved (e.g., by use of
the scaling and
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B. Nonlinear Gap Topology

In [40, Th. 1] it was shown, for the case of linear systems
over Hilbert spaces, that open-loop uncertainties which cor-
respond to small closed-loop errors are precisely those that
are small in the gap. The following theorem is an attempt
to generalize this result to the nonlinear case. In particular, it
shows the equivalence in the case that the nominal closed-loop
is incrementally bounded. In general, it shows that closed-
loop convergence in norm implies convergence in the gap.
Conversely, any stabilizing controller for a given plant will
stabilize some neighborhood of the plant. However, closeness
in the gap does not necessarily imply closeness of the closed-
loop operators, as shown in Example 2. For this to be the case
some form of continuity of the nominal closed-loop operator
is necessary.

Theorem 2: Let be stable and consider a sequence of
plants for Define and

Then the following statements hold.

1) If is stable for all sufficiently largeand
as then

2) If as then is stable for
all sufficiently large Furthermore:

a) if for some is continuous, then
as for any

b) if is incrementally stable, then
as

Proof of 1): Define

Since it follows that
We now show that maps bijectively onto

Let Then

Thus maps into Further, for
and this is unique among such additive

decompositions into a sum of elements in and [cf.
(1)]. Now consider the operator which has a well-
defined (not necessarily bounded) inverse by the assumption of
well-posedness. We observe that since
we can write Thus

which shows that is a 1–1 map from into
By a similar argument we get
Therefore is a 1–1 map from onto This means
that

Using the operators we can
show analogously that

2): Suppose Then there exists mapping
bijectively onto so that It therefore

follows from Theorem 1 that is stable for sufficiently
large Now note, as in the proof of Theorem 1, that

has a solution for all and
Let and

assume for convenience that for all Then

and from Lemma 1.
Now consider the following identity:

(8)

Part a) now follows from the continuity of
the uniform boundedness of and the fact

that as Assuming incremental boundedness,
we have from (8)

from which Part b) follows.
Remark: Theorem 2 was first given in [14] for stability

defined in the sense of incremental gain boundedness. We
point out that the proof of [14, Th. 2(b) (a)] contains an
error. Namely, the summation operator cannot be premultiplied
in the fourth displayed equation of [14, p. 93] because of
incompatible domain. However, the result is still valid and can
be proved exactly as Theorem 2-2)-b) of the present paper.

Example 2 (Discontinuity of Closed-Loop Operators):In the
feedback configuration of Fig. 1, let
be defined as scalar multiplication by and be a relay
with dead zone and a unit time delay in series

for
for
for

The feedback systems are well-posed due to the time delay.
Let For the constant input
with and

for

while

for all

It follows that for all while
This behavior is due to the fact that the

nominal closed-loop operator is discontinuous.

C. Metric Properties of the Gap

We now investigate the metric properties of In
fact, we show that a suitable scaling of defined by

is a metric under certain natural
assumptions imposed on its arguments (cf. [20]). We begin
with the triangle inequality.

Proposition 1: Let where is a signal
space. Then
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Proof: If either of is then the
statement is obvious. So assume that both
are less than and, consequently, that there exist 1–1
mappings for which and
Then is 1–1 and maps onto From the identity

we obtain

This shows that

and completes the proof.
In general does not imply However,

this is the case for the following type of subsets. We say that
is locally and asymptotically complete(l.a.c.) if, for all

is a closed subset of and moreover has
the property that it contains any such that
for all This type of subset is motivated by the following
proposition.

Proposition 2: Suppose is causal and
is defined and continuous on for all Then is an
l.a.c. subset of

We remark that, in case is not defined on the whole of
(e.g., when are Banach spaces), the property that
is defined for every is called causal extendibility. This
property requires that for any and any there exists

with such that This concept has
been studied for linear shift-invariant systems in [13].

Proof: Fix a value and consider a sequence
such that is a Cauchy sequence.

Let

Since is continuous then But
Hence which

means that

This proves that is closed.
Now consider any such that

for all Thus, for any there exists a such that
Hence, by causality (replacing

by in the last equation), for all
This implies that and so

Proposition 3: Let be l.a.c. subsets. Then,
implies that

Proof: Assuming that for any
there exists a bijective mapping such that

For any given there exists a
family such that Moreover, for any

as in Lemma 1. Hence we
can find a sequence such that, for any
Since is closed, it follows that Since

is l.a.c., it now follows that hence
Conversely, given any the family
satisfies Again, using the
fact that is l.a.c., it follows that hence

Corollary: is a metric on l.a.c. subsets of

D. An Alternative Distance Measure

It is possible to make Theorem 1 stronger by altering the
definition of induced norm used on Let be a causal
operator on with Define thels-gain

and theBanach gain

In general If satisfies
the property that implies that
(truncation invariance), then it can be seen that

If and are shift-invariant, then
However, in general, the three gains

may be different. If is a Banach space, then
coincides with the usual induced norm. Now it is possible
to rework Lemma 1 and the proof of Theorem 1 using

or . The changes are that the inequalities
hold only for sufficiently large At the final step of the
proof of the theorem one obtains bounds on or

, respectively. However, these are the same as
because of the truncation invariance of the space

Thus one can use the Banach or ls-gain in the definition
of , but otherwise the statement of Theorem 1 is
unchanged. We remark that Theorem 2–2) and Proposition 3
do not hold with such strengthening.

Further consideration of the proof of Theorem 1 indicates
that the conditions imposed on in the definition of
can be relaxed while allowing the basic robust stability the-
orem to remain valid. The essential requirement onis that
the mapping is surjective. The theorem still holds even if
fails to be injective, a single-valued map, or defined on the
whole of

Below we give an alternative distance measure which is
motivated by the above observations and a direct derivation
of the corresponding robustness theorem. A discussion on the
relationship of this measure with the gap metric for linear
operators on Hilbert space is given in the Appendix.
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Let , where is a signal space. We define the
following:

Theorem 3: Theorem 1 holds with replaced by

Proof: Suppose and
with Take any and write , where

and Such a decomposition exists and
is unique because of the well-posedness assumption of the
perturbed feedback loop. By definition, we can find
possibly depending on such that for
all sufficiently large (If , then we can choose

.) For the nominal feedback system, we must have
so that for all

Now note that

for sufficiently large Further,
for sufficiently large Thus

for sufficiently large This gives the required bound on
which is equal to

Example 3 (Circle Criterion):Here we show that the stan-
dard circle criterion is a corollary of Theorem 3. Let

, where is a memoryless nonlinearity
satisfying for any real and
is a linear shift invariant system with transfer function
Suppose that does not penetrate the disc with diameter

encircles it the correct number of times for
closed-loop stability, and the loop is well-posed (e.g.,
is strictly proper). We will show that the feedback system is
stable.

We take as a nominal the linear gain

This is chosen so that the line with slope bisects the
angle between the two lines with slopes and It is
straightforward to show that

where is the angle between the two lines with slopes
and We now show that It suffices to show
that for any point on the graph of we can select a point on
the nominal graph so that This can always be

Fig. 3. Sector bounded nonlinearity.

done by selecting (on the line with slope so that is
orthogonal to (see Fig. 3). Then

Now consider the (stereographic) projection of the disc with
diameter and of the locus onto the
Riemann sphere of unit diameter placed above the origin of
the complex plane. It can be seen directly (see also [35] and
[36]) that (where and )
is the smallest chordal distance of to As long
as avoids the circle with diameter it
follows that (Note that is the chordal radius of the
projection of the disc from the projected center This
proves the assertion on the stability of the feedback system by
Theorem 3.

IV. STABILITY AND ROBUSTNESS ONBOUNDED SETS

It is often the case that a feedback system cannot have
a bounded response outside a restricted set of disturbance
signals. Such an example is an unstable nominal plant with
input saturation. In this section we present a local version of
the robustness theory, and introduce a suitable modification
of for such a class of disturbances. The main result
(Theorem 4) states that, as long as the plant perturbation is less
than a certain robustness margin, bounded operation for the
perturbed feedback system can be guaranteed over a suitably
restricted set of disturbance signals. The predicted size of the
allowable disturbance set for the perturbed system decreases
with the magnitude of the perturbation from the nominal plant.

Let be causal operators mapping a
causal operator from and as before, denote

and Let be the open ball of
radius , i.e., is defined by

and define
is causal

maps into with
and is such that

is compact for all
if no such operator exists

Theorem 4: Let be bounded on with

and let be such that with
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Then is bounded on with

(9)

The proof of the theorem uses the following basic lemma.
Lemma 2: Let be a Banach space, the open ball of

radius in and consider a mapping Suppose
is a continuous compact mapping such that
Then the equation has a solution for
any given and moreover

Proof: Define the homotopy
for Since is the identity operator and
the Leray–Schauder degree of relative to the set and
the map (see [18, Th. 4.3.1]) is degree
Furthermore, since and it follows
that for any where denotes the
boundary of Thus, we have degree for all

(see [18, Th. 4.3.4]). Consequently, there exists an
such that (see [18, Th. 4.3.2]),

and the required bound follows immediately.
Proof of Theorem 4:Since then for

any there exists a causal map
with and compact for all

We choose such a for which The operator
satisfies the conditions of Lemma 2

(with ). Hence, the equation

has a solution for any and moreover

Since where and
and the perturbed system is well-posed,

then

Hence

The above holds for any Therefore (9) holds true.
We include here a useful proposition which shows that

linear integral operators are compact when restricted to a
finite interval. In particular, linear systems with strictly proper
transfer functions define such operators. This fact will be used
in the example below which illustrates Theorem 4.

Proposition 4: A linear operator defined by
is compact when restricted to

if

Fig. 4. Unstable plant with saturation.

Proof: On the rectangle can be
uniformly approximated by simple functions, i.e., functions
which have finite range. Since measurable sets can be approxi-
mated arbitrarily closely in measure by rectangles, the integral
operator can be approximated in norm by replacing
with functions of the form where each of the
functions is a scalar times the characteristic function of
an interval. But such approximations are finite rank operators
and hence compact, so the original operator is compact.

Example 4 (Robust Stabilization of an Unstable Linear Sys-
tem with Saturation, Over a Bounded Set of Disturbances):
Consider the feedback configuration of Fig. 4, where is
described by

with for and the nominal plant
has We wish to illustrate Theorem 4 by finding
bounds on the parametersand for which stability of the
feedback system can be guaranteed. We take

We begin by finding the -induced gain of the mapping
for the nominal model We first

compute the gain of the mapping for
constrained so that and The nominal
closed loop is described by the equations

(with plotted in Fig. 5 as a function of). We first note that
if , then for all if which
means that can become unbounded for constant, bounded
disturbances. We therefore need to assume that We next
note that if , then for all
and once again can become unbounded. We therefore assume
that We now claim that is
the infimum of such that is nonpositive for
all To see this, note that the two right-
most -axis intercepts of are and and

Thus

cannot exceed A similar argument for the range of neg-
ative values shows that In fact, by examining
the form of in Fig. 5, it can be seen that the upper bound
is tight for (constants). Let us now
specialize to the case where with Then
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Fig. 5. f(x; u0; y0) as a function ofx:

Hence

Next we estimate the gain of subject to
Since , then

providing In fact, this upper bound
can be achieved for (for which the saturation
remains inactive) as follows. Take on a
sufficiently long interval so that is close to then
apply Thus the mapping
has gain six on which means that

We now consider a perturbation of the parameters
and from their nominal values and apply the
above theory to assess robustness of stability. To this end we
obtain an estimate of the gap betweenand It can be
shown (e.g., see [34, p. 234]) that the respective graphs are
given by and where

and

Let (which satisfies and
define the mapping

which takes onto Then

We now estimate the -induced norm of It holds
that

But and

being in both cases the -norm of the relevant convolution
kernel. It follows that

From Proposition 4, it follows that this choice of asatisfies
the compactness requirement in the definition of We
finally apply Theorem 4 for Since the norm of
the nominal parallel projection is it follows that the
perturbed system is stable on the restricted set
provided that

V. ROBUSTNESS FORSYSTEMS WITH

POTENTIAL FOR FINITE-TIME ESCAPE

In this section we are motivated by the need to provide
a robustness theory for nonlinear systems which allows for
the possibility of a finite-time escape. An example of such a
system is given by

with

We first remark that global robust stabilization is impossible
for such a system. To see this, consider an arbitrarily small
time delay at the plant input. The feedback equations are

(10)

If and for then
on the same interval. This means that on
for any causal controller Then, on the interval the
state evolves according to with a solution of
the form Clearly if ,
the state escapes to infinity before Thus, no (causal)
controller can prevent finite-time escape in the presence of
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small time delaysunlessthe disturbances are subject to some
fixed bound. Below we will discuss a way to extend the
theory of Section IV to deal with such systems. The main
new element is the fact that such systems cannot be viewed as
operators on signal spaces in the way which has been assumed
so far.

The basic idea of the summation operator carries over even
if some responses escape to infinity in finite time. To see this,
note that the solution of the feedback equations requires that
for any external disturbance the components
of the feedback system respond accordingly by producing
responses and so that
However, in the present context, some of these signals may be
defined only over a finite interval and escape to infinity
at Below we will impose a well-posedness assumption
on the feedback system which requires that this decomposition
is unique on the interval over which all the signals are defined.
In this case, the summation operator still plays its normal role,
and its inverse, being the map from the external signalto
the feedback signals , is a well-defined map with the
provision that may not necessarily belong to
Thus, the difference from the earlier situation is that the graphs
of the plant and the controller belong to a space which includes
signals that are defined only on finite intervals We will
study the case where the nominal feedback system is bounded
on some bounded set , i.e., with

and we will give conditions for a perturbed
system to be stable in the same sense.

Formally, a system is a collection of input–ouput pairs
with the provision that these may be defined only on a finite
interval We will assume for all systems considered
that finite-time escape behavior cannot occur instantaneously.
Thus, in this section, the following replaces our standing
well-posedness assumption.

Assumption 1:All feedback systems considered, together
with their perturbations, satisfy the property that for each

there exists a unique pair with
and such that

over a maximal interval with Moreover,
the mappings are causal on Finally, if is
finite, then as tends to from below.

For this type of system the conclusions of Theorem 4 carry
over without modification as we now show.

Theorem 5: Let and satisfy Assumption 1. Denote
Let be bounded on

with

Suppose there exists a mapping
such that , and

satisfies the conditions of Lemma 2. Then
is bounded on with

Proof: As in the proof of Theorem 4, for any
there exists a solution to the equation

(11)

Moreover, for any Note
that By Assumption 1, there exists a
maximal for which is bounded for all

Over such an interval

Hence

(12)

Note that (12) provides a uniform bound on the response of
the perturbed system for any This fact prevents the
possibility of finite-time escape since the perturbed system
satisfies Assumption 1. Hence

Example 5 (Robustness of Stability for a System with
Quadratic Nonlinearity): We consider the feedback inter-
connection of Fig. 1 with defined by

and the controller by

(This controller aims to cancel the quadratic term and replace
it with a stable linear term.) We will take
The closed-loop system evolves according to

and satisfies Assumption 1. We will study the robustness of
this system to a time delay at the plant input, using Theorem 5.

Claim 1:

(13)

Proof of Claim 1: Recall that is the mapping
from We will first consider the bounds

To guarantee boundedness of the induced norm it is necessary
that Otherwise , and gives
which diverges. We claim that

(14)

where This can be
seen by noting that when
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Thus is decreasing whenever exceeds
But as for identically

constant.
We next note that the maximum of will be

achieved for so that
where Computing the partial
derivative

shows achieves its maximum at an extreme point
while achieves its maximum either at an

extreme point or at a possible turning point if
in the interval Considering first the
extreme points, it is clear that
and Furthermore, it is straightforward
to check that Considering the sign
of at the extreme points, a turning point of exists
in the interval , providing

(15)

in which case it occurs at with a
corresponding value of From
(15)

(16)

(17)

It is easy to check that the upper bound in (16) is smaller
than the lower bound in (17). We have therefore shown that

We now turn to the mapping From the
expression it is easy to
see that

(18)

where In fact,
equality is achieved in (18), since the disturbances
on on make

as close as desired to and as close as
desired to for large enough We will now specialize
to the case Then

It can be checked that each of the terms in (13) is a monoton-
ically increasing function of for fixed (for the second
expression, each of the numerator factors divided by
is separately increasing). Therefore, we conclude that
is equal to

It is interesting to consider the behavior of for
fixed and variable As and as
Generally there is an intermediate value ofat which

Fig. 6. Plot ofk���M==Nj k = f(1; k) versusk:

Fig. 7. k
min

(dashed) andf(r; k
min

) (dashed-dotted) versusr:

achieves a minimum, (see Fig. 6). A plot of and
versus is shown in Fig. 7 (where the values for

are given on the left and the values for
on the right). Experience from linear control design indicates
that the parallel projection norm should not exceed about
four or five for good robustness properties. From Fig. 7 it
is necessary that in order that
assuming that This suggests that good performance
of this control system requires a rather tight constraint on the
disturbance signal magnitudes.

We will now consider the effect of time delays on the
control system, and we will use Theorem 5 to give a bound
on the delay which will not destabilize the loop. Suppose
is defined by the equations

(Since is shift-invariant, it is equivalent to place the delay
at or .) We first remark that Assumption 1 is satisfied
because the closed-loop system is defined through a differential
equation. Next we consider the mapping defined
by
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We will check below that satisfies the
conditions of Lemma 2. We will now proceed to bound the
norm of

Claim 2:

Proof of Claim 2: Note that

Since

then

(19)

where

In fact, equality is achieved in (19), since the disturbances
on on

make as close as desired to for large enough
Once again we can set to find

which is a monotonically increasing function offor
Therefore, we have the bound

Considering for fixed and variable , we note that
as and as A minimum of
is achieved at which may be close
to, but is not identical to, calculated previously. This
gives

To guarantee stability of the perturbed system (with )
on some bounded set we need Note that the
perturbed loop will only be guaranteed to be bounded on a
set

Suppose we wish to determine a bound such that the
nominal loop will tolerate any time delay for a
suitable in the presence of external disturbances

We require, for
where we select Solving for gives

which is maximized for giving
The corresponding value for is Under
such conditions we can compute the following bound for the

perturbed loop:

It remains only to verify that satisfies
the conditions of Lemma 2. Note that the first component
of is zero, while the second component equals

It follows from the fact that is the output
of an integral operator that is causal and continuous for

with We will now
show that the mapping is (sequentially) compact on

This mapping is determined by

(20)

where and
both belong to We need to show that, for any bounded
sequences in the corresponding sequence

has a convergent subsequence. Note that (20) has a
solution

From Proposition 4 we know that defines a com-
pact operator from to Hence

has a subsequence which converges uniformly on
, and so the same is true of

Thus we can select a subsequence so that

where and
uniformly on By Proposition 4 we can select
another subsequence so that

converges, in which case converges to the same limit.
The conclusion now follows by noting that is the sum of
two compact operators, which is therefore compact.

VI. ROBUSTNESSANALYSIS USING GAIN FUNCTIONS

In the present section we will develop a version of the
robustness results of Section III which makes use of a “gain
function” to quantify the size of closed-loop operators and
the mismatch between the nominal and perturbed plant. In
the first result we show how the gain function of the parallel
projection must relate to that of a mapping from the nominal
to the perturbed system graph for stability to be preserved.
In the second result we show that the existence of such a
mapping is a consequence of simultaneous stabilizability, and
we investigate how the mismatch between the graphs relates
to gain functions of the closed-loop errors.
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We recall the standard notation for the set of functions
which are continuous, strictly increasing,

and satisfy and As usual we denote
and

Theorem 6: Let be gf-stable. If there exists a map
from a subset onto and if there exists a function

such that

for all then is gf-stable and

(21)

We remark that, as pointed out in Section III-D,is allowed
to be a multivalued map, e.g., defined as the inverse relation
of a map selected so as to control the
size of ; however, the theorem will be worked out
in the simpler form. It was suggested in [10] that a result
along the lines of Theorem 6 may be obtained by applying the
Mareels–Hill small gain lemma [19] to the basic framework
set out in [14]. Subsequently, Teel developed an independent
approach to such a result using -functions [31].

Proof of Theorem 6:It is a standing assumption that
has a well-defined inverse. This, together with the

fact that is surjective, implies as in the proof of Theorem 1
that, for any there is an such that

(22)

and moreover, that

(23)

From (22) it follows that for any

Hence

Therefore

From (23) it now follows that is gf-stable and is
such that (21) holds.

Theorem 7: Let be gf-stable. The following hold.

1) Let be gf-stable. Then, there exists a causal
bijective mapping such that

for all
2) Suppose that and that there exists a

mapping from a subset onto for which
If

(24)

then is gf-stable and

(25)

where

Proof of 1): This result follows in the same way as the
proof of Theorem 2-1) using the choice

2): Since Theorem 6 implies that is gf-
stable. As in the proof of Theorem 1, for any
there exists an such that (22) holds. From Lemma 1,

and From
(23)

(26)

which gives the required result.
Theorem 7 provides the analog of Theorem 2 in the context

of gain functions. In particular, 1) captures the essence of the
idea: “convergence of closed-loop norms implies convergence
of the gap to zero.” More precisely, if a plantand a sequence
of plants are all stabilized by a compensator

and the gain function of the difference of the corresponding
closed-loop operators tends to zero, then there are mappings
between and which tend to the identity operator in the
same sense. The converse idea is expressed in 2). Namely, if
there are mappings from onto which tend to the identity
in such a way that the gain function of the difference (of these
mappings from the identity) acting on the gain function of the
nominal closed-loop tends to zero, thenstabilizes the ’s,
and the closed-loop errors tend to zero, providing the nominal
closed loop has a bounded incremental gain function.

Below we present two examples. The first example (Exam-
ple 6) shows a gf-stable feedback system and, using Theorem
6, gives a bound on a possible time delay that can be
tolerated in the feedback loop and for which gf-stability can
be guaranteed for the perturbed system. The second example
(Example 7) illustrates the usefulness of equation (26) to
estimate closed-loop errors. This example does not impose the
“small gain” condition (24), so (25) is not directly applicable.

Example 6 (A gf-Stable System with Cubic Nonlinearity):In
the feedback configuration of Fig. 1, defineby

(27)

and by The closed loop is then given by

(28)

where We take We will
first calculate the gain function of the parallel projection

where is the mapping
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Note that maximizing over the set is equivalent
to maximizing over We first consider the
mapping defined by (28). Clearly

in (28) for all

(29)

where is the unique real root of the equation
In fact, the bound in (29) is tight since can be

approached arbitrarily by choosing We next observe
that

which again is tight, since we can set on and
We thus obtain

We now consider the effect of a small time delay, namely
a perturbed plant

Consider a mapping defined by

Note that, in (27), given any

and so Since
for we get

(30)

Note, for all the above inequalities hold with equality.
Also

(31)

which, with a choice of on and
can be approached arbitrarily closely.

Fig. 8 shows the gain function of the parallel projection,
which we denote by Fig. 9 shows the upper bound on
the distance to the identity for the map computed using
(30) and (31), for This upper bound we denote
by In order to guarantee gf-stability for the perturbed
system using Theorem 6, it is required that the composition
of the two functions is bounded away from the identity map
in the sense of the theorem. For this to be the case, because
of the shape of the two functions, it turns out that we only
need to check that for the value of for which

This value is It follows that should
not exceed a maximal value of Fig. 10 shows,
for , the composition function (solid line)
compared to the line of slope 1 (dotted line).

Fig. 8. F (�) := g[���M==N ](�) versus�:

Fig. 9. G(�) := g[III � ���](�) versus� for h = 0:1:

Fig. 10. G(F (�)) (solid line) versus� for h = 0:12:

Example 7 (A System with Hysteresis):We consider pertur-
bations of hysteresis type on a feedback loop as shown in
Fig. 11. The hysteresis is modeled by the (simple)hysteron,

shown in Fig. 12, as defined in [17], also called the
ordinary play. Its behavior on continuous functions can be
physically realized using the piston and cylinder arrangement
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Fig. 11. Feedback system with hysteresis perturbation.

Fig. 12. Hysteron.

Fig. 13. Piston and cylinder.

of Fig. 13. In case the piston is at the extreme right-hand
position and is increasing, or at the extreme left-hand
position and is decreasing, then remains
constant. Otherwise, remains constant. It is typical to
initialize and to zero at and the piston to
the midpoint position. The definition of on continuous,
piecewise monotone inputs is illustrated in Fig. 12.

We consider the graphs of to be

Observe that there is a natural bijective mappingfrom to
which is the identity on the input component and satisfies

for any From (26) we get

since implies
We remark that this bound can also be obtained by modeling
the hysteresis nonlinearity by the identity map plus an external
source for a disturbance of magnitude no larger than

VII. EXAMPLES OF NONROBUST CONTROLLERS

The examples of this section have zero robustness margin,
and the feedback loops are destabilized by arbitrarily small
gap perturbations of the plant.

Example 8 (Nussbaum Universal Controller):In the feed-
back loop of Fig. 1 define by

where but otherwise and are unknown. Let be
defined by [1, p. 291], [24]

In the case where and (so and
), the controller regulates the output to zero

asymptotically for an arbitrary initial condition
However, we will show that, if and for
an arbitrarily small then can become unbounded
with Thus, any form of the robustness margin as
considered in this paper should be assigned the value zero. We
will further show by construction that an arbitrarily small gap
perturbation of the plant from the assumed model class can
lead to instability (even of the autonomous system).

We assume that and take
Consider a nominal plant with and let

The feedback equations reduce to

(32)

(33)

First, we claim that as To see this assume
the contrary, i.e., that remains bounded. Since
[from (33)], Then (33) implies that
At the same time (32) implies that This
is a contradiction. Therefore, Second, we claim
that grows unbounded as well. It is easy to see that the
gain in (32) exceeds any value. For instance, in the
interval where

and are chosen accordingly, the feedback
gain is

It is clear that exceeds any value for a suitable choice of
the integer Over such an interval

Integration over gives

Thus, exceeds any bound as claimed. We conclude that
the relevant parallel projection operator is unbounded over any
bounded set, no matter how small.

We now consider a perturbation of the nominal plant by
introducing a first-order lag with transfer function

in series with the plant. We claim that this
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perturbation is arbitrarily small in the gap for sufficiently
large. This can be seen as follows. The graphs ofand are

Consider a mapping from onto , which is the identity
on the input component. Then, for

Since (1, 1) is a left inverse of , we see that
Thus

for any Thus which
proves the assertion.

We now examine the behavior of the perturbed closed-
loop system. We continue to assume the nominal parameters

The autonomous feedback system evolves
according to

(34)

(35)

(36)

A typical response of the system is shown in Fig. 14, where
and A similar

diverging solution can be observed as is varied.
To better understand the form of the solution we can view
and as functions of and eliminate from (34)–(36) to

obtain

(37)

(38)

The numerical solution of and versus for
and is shown in Fig. 15. Numerical analysis of

the data suggests dominant terms inof and in
of Further numerical analysis suggests the following

asymptotic expansion for and :

(39)

Fig. 14. Universal controller with perturbed plant.

Fig. 15. Universal controller with perturbed plant.

(40)

where the fractional powers ofon the right-hand side (RHS)
decrease by one-half between subsequent terms of the series.
Similar series are common in the solution of certain types
of linear time-varying differential equations (e.g., see [6]).
This is an instance of a nonlinear differential equation whose
solution appears to have a similar asymptotic expansion. We
have no formal proof that the solution to (37) and (38) can
be represented by (39) and (40). However, the following
considerations support this hypothesis. Substitution of (39) and
(40) into (37) and (38) gives the following algebraic equations
for the coefficients to of the dominant powers of in
the drift and the periodic components:

Interestingly enough, these values are independent of initial
conditions and agree with the results of numerical integra-
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tion using a variety of initial conditions. The form of the
series justifies the observed growth ofand and moreover
suggests, since that the solution of
(34)–(36) diverges in finite time. The prediction for finite-time
escape appears again to be corroborated by the simulations. We
remark that the independence of the leading terms from initial
conditions suggests that this type of behavior (which occurs
also in Example 9) indicates the presence of some kind of
“explosive attractor.”

Example 9 (A Parameter Adaptive Controller):In the feed-
back configuration of Fig. 1 define by

where and is known, but otherwise and are
unknown. Let be defined by

where is a constant chosen so that In the case
where and (so and ),
the system is globally stable, since the Lyapunov function

has for
and This controller can be obtained from a model
reference adaptive scheme (e.g., see, [1, p. 127]) with a zero
reference signal.

Now consider a nominal plant with and
take We assume that and take

If and , the feedback
equations reduce to

The same reasoning as Example 8 shows that as
It can also be seen that as (To see

this, notice that for since
If then is increasing. But is

decreasing to zero, so eventually there will be asuch that
and thereafter remains negative. Now if

for sufficiently large then eventually is
less than any negative number, which is a contradiction.) Then,
the external disturbances on on
and give which can be
made arbitrarily large. We conclude that the relevant parallel
projection operator is unbounded over any bounded set, no
matter how small. Thus, any form of the robustness margin as
considered in this paper should be assigned the value zero.

We now consider a small gap perturbation of the nominal
plant, namely we introduce an all-pass factor
in series with the plant. It can be shown as in Example 8 that
the gap tends to zero as The autonomous feedback
system with perturbed plant now evolves according to

Fig. 16. Parameter adaptive controller with perturbed plant.

A typical response of the system is shown in Fig. 16 where
and

Again we eliminate to obtain

(41)

(42)

The diverging solution appears to be governed by a series
expansion with leading terms

Substitution of the series into (41) and (42) gives

which are independent of initial condition apart from the
sign. These values agree with the results of simulation with a
variety of initial conditions. Since the finite
time escape is expected (and corroborated by simulation). We
remark that the infinite gain of certain closed-loop operators,
and the consequent lack of robustness, of parameter adaptive
controllers was first pointed out in [25].

VIII. C OMBINED PLANT AND CONTROLLER UNCERTAINTY

In this section we discuss how the results of Section III
extend to the case where uncertainty occurs in bothand

Let and be causal operators from , and let
and be causal operators from Denote their

respective graphs by and

Theorem 8: Let be stable. If

(43)
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then is stable and

An analogous bound holds for
Proof: It is sufficient to assume from (43) the weaker

requirement that there exist mappings from a subset
onto and from a subset onto

such that

Consider the equation

Since (respectively, ) is surjective onto (respec-
tively, ), for any we can find a solution In
particular, if and then

where are chosen so that
and It follows that

Finally, since the required
bound, and hence the stability of now follow.

Theorem 9: Let be stable. The following hold.

1) Let be stable. Then there exist causal bijective
mappings from onto and from onto

such that

2) Suppose that there exist mappings from a subset
onto and from a subset

onto such that where

Then

Proof:

1) We define
As in the proof of Theorem 2-1) maps
into and Moreover,

has a well-defined (not necessarily bounded)
inverse by the assumption of well-posedness and
so and

[cf. proof of Theorem 2-1)].
Hence maps bijectively onto Similarly,

Fig. 17. Feedback interconnection with three subsystems.

we can define and
show it is a bijection from to

2) For any we can find an such that

as in the proof of Theorem 8. The identity

and Lemma 1 now give the required result.

IX. GENERAL FEEDBACK CONFIGURATIONS

In this section we point out that the framework for ro-
bustness analysis, involving graphs and summation operators,
applies equally well to more general feedback configurations.
We will demonstrate this by way of example.

Consider an interconnection of three systems as shown in
Fig. 17. We consider three signal spaces and where

, etc., and denote
We denote by the natural projection from
onto and respectively. We embed the graphs of
in as follows:

Write and define the summation
operator

We will assume well-posedness of the feedback configuration,
which means that has a well-defined inverse on
the whole of Stability of the feedback loop requires that

is stable.
The mappings
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from the external disturbances onto the graphs of the compo-
nents, are generalizations of the notion of nonlinear parallel
projection to the case where more than two manifolds (in this
casethree) “coordinatize” the space It follows easily that

for

for

In fact, the generalization of (1) which defines such a set of
projections is

for any
We now consider perturbed systems acting on

the appropriate spaces, with graphs Accordingly,
we define

Theorem 10:Let be stable. If

then is stable and

Proof: As in the proof of Theorem 8, it is sufficient to
assume the weaker condition that there exist mappingsfrom

onto such that

Consider the equation

As before, because of the well-posedness assumption of the
perturbed system and the surjectivity of the maps

there exists a solution of the above equation
for any (cf. proof of Theorem 8). In fact, the solution
is such that for each Bounds on each
of the closed-loop operator norms now
follow immediately.

In conclusion, we would like to point out that the main
elements of the framework when applied to more general
situations (i.e., more than three plants and arbitrary inter-
connections) are: 1) to introduce additive disturbance signals
at each interconnection point which belong to suitable signal
spaces; 2) to embed the graph of each operator in the cross
product of these spaces; and (3) to consider the generalized
parallel projections onto the system graphs. A useful sign

convention is to arrange that each disturbance enters the
summation junction with a positive sign and all other signals
with a negative sign.

X. CONCLUDING REMARKS

This paper has developed an input–output framework for
robustness analysis of nonlinear systems which is a gener-
alization of the linear gap metric theory. The essence of
the approach was shown to be adaptable to a variety of
situations, e.g., global, local, possible finite-time escape. The
initial insight for the approach was provided by an (abstract)
geometric treatment of the linear gap-robustness theory [8],
[9]. This work highlighted the role of the parallel projection
operator for robustness, and in particular, that the inverse of
its norm is the maximum aperture between plant and perturbed
plant which can be tolerated if preservation of feedback
stability is to be guaranteed. The existence and geometric
significance of a nonlinear parallel projection operator, when
the elements of the feedback system are nonlinear, was studied
in [5]. Suitable generalizations of the gap and variants of the
basic robustness result [12, Th. 5], [9, Th. 3] were presented
in [11] and in [14], for a concept of differential stability and
of incremental gain stability, respectively. The present work
builds on [14], which contains two basic results of our theory
(analogous to Theorems 1 and 2) for nonlinear systems on
Banach spaces. In [14], the condition of incremental gain
stability was used, which is quite restrictive in the context
of nonlinear systems (e.g., see [3]). This observation, and the
experience gained from treating specific examples, motivated
the development presented here.

We remark that, in each version of the theory presented in
this paper, the nonlinear gain of a parallel projection needs
to be computed. The examples presented here were chosen
to be tractable with hand calculations. In general, appropriate
computational tools are required (see [32], [16], [26], and [7]
for some examples of recent work in this area). The problem of
computing the nonlinear gap distance measures introduced in
this paper is also a topic which requires further investigation.
In most cases we were content to define awhich was
the identity mapping when restricted to the system’s input
component. This is usually quite conservative.

Finally, we point out that one of the most useful aspects
of the linear gap theory has been in the area of controller
synthesis. In particular, minimization of the -norm of the
parallel projection, suitably weighted, is the basis of the
loop-shaping method [21], [22]. The results of this paper
indicate that a generalization of this design method can be built
around a nonlinear gap robustness theory in an analogous way
to the linear case. This consideration highlights the need to
find tractable methods to optimize system gains for nonlinear
systems.

APPENDIX

CONNECTION OF WITH THE GAP BETWEEN

LINEAR SYSTEMS OVER HILBERT SPACES

We prove that certain versions of the gap as defined in the
present paper, when specialized to the case of linear systems
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over Hilbert spaces, coincide with the usual gap metric (cf.
[12]). Further, we show that in the same case a compactness
condition can be imposed on the mappingwithout altering
the value of the gap. This fact suggests that the conditions
imposed in Sections IV and V on for capturing a suitable
notion of distance between systems on bounded sets, are
reasonable.

In the proposition below, is the same as the definition
in Section III-D except that no truncations are taken,
represents the usual directed gap between linear systems over
Hilbert spaces (see [12]), represents the specialization
of given in Section III-A but with the Banach gain,
and represents a similar definition with the additional
compactness assumption (cf. Section IV).

Proposition 5: Let be linear, shift-invariant, finite-
dimensional dynamical systems with strictly proper transfer
functions, acting on signals in Define

and the graphs

where are normalized coprime factoriza-
tions over of the respective transfer functions. Define

is
causal, bijective

if no such operator exists

is
causal, causally invertible
with compact

if no such operator exists

where denotes the orthogonal projection onto a closed
subspace and denotes the usual induced norm
on a Hilbert space. Then

(Note the order of and .) Also, if
then

Proof: First note that

Now consider and fixed and separated by
an angle Then

where the first infimum is achieved by taking
perpendicular to and the second by taking

perpendicular to This is already enough to show the first
part of the proposition.

Now if , it is standard that
[12, Proposition 3]. Therefore, under

this condition,
Consider any (causal) mapping Then

Since this is true for any , then
Clearly,

Now suppose that Then there exists a
such that

with [28]. Let be matrices over such
that Define

Multiplication of signals by is the frequency domain
representation (i.e., after taking Fourier transforms) of a causal,
shift-invariant mapping on Allowing the usual abuse
of notation, operators considered below as acting on
are written as multiplication by matrices of functions,
though they are strictly to be interpreted as their time-domain
equivalents. Observe that

and

for Since is an isometry on , then
Now let be matrices over such that

Then

Hence has a causal inverse (between and ). To
complete the proof we need to find aso that is compact
on finite intervals. This will be achieved if can be
made strictly proper (see Proposition 4). Take any so that

Without loss of generality,
Define

(44)

(45)

and observe that Thus we can find a
disc centered at the origin so that outside
the disc in the right half-plane. Thus will be bounded
outside this disc, from (45). But within the disc is
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bounded. Hence, from (44), will be bounded within
this disc for sufficiently small This means that is
invertible for sufficiently small Further, insideanysuch
disc, in the RHP, can be made arbitrarily small
by choosing small enough, and

can be made less than On the other hand, we can choose
such a disc to be sufficiently large so that

outside that disc, independent ofSo, once again, if the disc
is large enough can be kept within of
in norm, i.e.,

Thus we can find a which is invertible so that

for arbitrary, and with

strictly proper, i.e., compact on finite intervals. But the same
is now true of

Therefore for any which means that
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