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The classical Schrödinger bridge seeks the most likely probability law for a diffusion
process, in path space, that matches marginals at two end points in time; the likeli-
hood is quantified by the relative entropy between the sought law and a prior. Jamison
proved that the new law is obtained through a multiplicative functional transformation
of the prior. This transformation is characterised by an automorphism on the space
of endpoints probability measures, which has been studied by Fortet, Beurling, and
others. A similar question can be raised for processes evolving in a discrete time and
space as well as for processes defined over non-commutative probability spaces. The
present paper builds on earlier work by Pavon and Ticozzi and begins by establishing
solutions to Schrödinger systems for Markov chains. Our approach is based on the
Hilbert metric and shows that the solution to the Schrödinger bridge is provided by
the fixed point of a contractive map. We approach, in a similar manner, the steering
of a quantum system across a quantum channel. We are able to establish existence
of quantum transitions that are multiplicative functional transformations of a given
Kraus map for the cases where the marginals are either uniform or pure states. As
in the Markov chain case, and for uniform density matrices, the solution of the
quantum bridge can be constructed from the fixed point of a certain contractive
map. For arbitrary marginal densities, extensive numerical simulations indicate that
iteration of a similar map leads to fixed points from which we can construct a
quantum bridge. For this general case, however, a proof of convergence remains
elusive. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915289]

I. INTRODUCTION

In 1931, Erwin Schrödinger published a manuscript on “the reversal of the laws of nature”
(“Über die Umkehrung der Naturgesetze”). In it, he raised the following “new and unorthodox”2

question regarding Brownian motion. Suppose that the density of Brownian particles is observed
at two points in time, t0 and t1, and that the two end-point densities differ from the initial and
final marginals of the prior path-space distribution. Schrödinger then asked for the most likely
random evolution that the particles have taken so as to reconcile the observed “improbable but
still possible outcome.” In modern probabilistic language, as observed by Föllmer some fifty years
later,12 Schrödinger was posing (and, to some extent, solving) a problem of large deviations of the
empirical distribution. He was considering an abstract setting, although the very foundations of
probability theory were still missing! The solution of the large deviations problem requires, in view
of Sanov’s theorem,28 solving a maximum entropy problem. Schrödinger’s 1931/32 papers were
followed soon afterwards by works by Kolmogoroff on “the reversibility of the statistical laws of
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nature” (“Zur Umkehrbarkeit der statistischen Naturgesetze”) and by Fortet, Beurling, and many
others on the mathematical issues that Schrödinger’s paper raised.

In the present paper, following Pavon and Ticozzi25,33 to which we refer for potential appli-
cations, we consider discrete-time and discrete-space classical evolutions as well as quantum
Markovian evolutions. More precisely, we first consider discrete random vectors with given prior
distribution and endpoint marginals. We derive a constructive proof of the existence of multiplica-
tive functional transformations of the prior initial-final time joint distribution that allows connecting
the given end-point marginals. The unique solution is in fact the closest law to the prior in a relative
entropy sense amongst all probability laws that are in agreement with the two marginals. A key
concept is that of the Hilbert metric—this is a metric which is suitable for quantifying distances in
homogeneous positive spaces. A similar approach allows a constructive proof for matching uniform
marginal density matrices via a multiplicative functional transformation of any given prior Kraus
map. In essence, this result extends to the non-commutative case a result of Sinkhorn31,32 that any
strictly positive stochastic matrix can be transformed into a doubly stochastic matrix via a multipli-
cative functional transformation. Thus, for the quantum case, we establish that any strictly positive
Kraus map can be transformed into a doubly stochastic quantum map via a multiplicative functional
transformation. Further, extensive simulations have convinced the authors that the approach works
in complete generality, i.e., when the specified marginal densities are not necessarily uniform. How-
ever, a rigorous proof as well as a variational principle, in analogy with the classical case, is not
available at present.

The paper is structured as follows. Section II provides an exposition of the Hilbert metric. The
corresponding geometry is key in studying the Schrödinger bridge in the classical and in the quan-
tum case, in Secs. III and IV, respectively. More specifically, Secs. III A-III C explain Schrödinger’s
bridges for Markov chains. Then, in Sec. III D, the Hilbert metric is used to provide a constructive
solution to Schrödinger’s bridge problem for Markov chains. Section IV A overviews the formalism
of quantum mechanics followed by a description of a quantum analog of the Schrödinger bridge
problem in Sec. IV B. Section IV C presents a solution of the quantum Schrödinger bridge for the
special case of uniform marginals. The mathematical statement for this special case represents a
generalization of a result of Sinkhorn on the existence of doubly stochastic maps to a corresponding
quantum probabilistic analog. This result is followed by a discussion and a conjecture about the
general quantum Schrödinger problem, namely, that a fixed point of a certain map, which is used to
construct doubly stochastic maps, suitably modified, has a fixed point for general marginal density
matrices as well.

II. THE HILBERT METRIC

This metric was introduced by David Hilbert in 189516 while exploring the foundations of
geometry. Earlier special cases, its importance and several subsequent developments are being
discussed by Bushell.7 More recently, the underlying geometry has proven timely on a range of
problems in the study of communication and computations over networks (see Ref. 34 and in partic-
ular, the work of Sepulchre and collaborators5,30 on consensus in non-commutative spaces, as well
as the references therein) and in quantum information theory.27 A recent survey on the applications
in analysis is Ref. 23. A key result that enables the metric to be used for establishing existence
of solutions to various equations was proved by Garrett Birkhoff in 1957.3 Following Ref. 30, we
highlight the basic elements of the theory.

Let S be a real Banach space and let K be a closed solid cone in S, i.e., K is closed with
nonempty interior and is such that K +K ⊆ K , K ∩ −K = {0} as well as λK ⊆ K for all λ ≥ 0.
Define the partial order

x ≼ y ⇔ y − x ∈ K ,

and for x, y ∈ K \{0}, define

M(x, y)B inf {λ | x ≼ λy},
m(x, y) B sup{λ | λy ≼ x}.
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Then, the Hilbert metric is defined onK\{0} by

dH(x, y) B log
(

M(x, y)
m(x, y)

)
.

Strictly speaking, it is a projective metric since it remains invariant under scaling by positive con-
stants, i.e., dH(x, y) = dH(λx, y) = dH(x,λy) for any λ > 0 and, thus, it actually measures distance
between rays and not elements.

Birkhoff’s theorem, which was originally stated for the linear case and suitably extended by
Bushell,7 provides bounds on the induced gain of positive maps. More specifically, a map E from S
to S is said to be positive provided it takes the interior ofK into itself, i.e.,

E : K\{0} → K\{0}.
For such a map, define its projective diameter

∆(E) B sup{dH(E(x),E(y)) | x, y ∈ K \{0}}
and the contraction ratio

∥E∥H B inf{λ | dH(E(x),E(y)) ≤ λdH(x, y), for all x, y ∈ K \{0}}.
The Birkhoff-Bushell theorem states the following.

Theorem 1 (Refs. 3, 6, and 7). Let E be a positive map as above. If E is monotone and
homogeneous of degree m, i.e., if

x ≼ y ⇒ E(x) ≼ E(y)
and

E(λx) = λmE(x),
then it holds that

∥E∥H ≤ m.

For the special case where E is also linear, the (possibly stronger) bound

∥E∥H = tanh(1
4
∆(E))

also holds.

Birkhoff’s result provides a far-reaching generalization of the celebrated Perron-Frobenius the-
orem.4 Various other applications of the Birkhoff-Bushell result have been developed such as to
positive integral operators and to positive definite matrices.7,23 We will use Theorem 1 to establish
existence of solutions to certain equations involving Markovian evolutions on a finite time inter-
val. More specifically, S will either be Rn or the space of symmetric/Hermitian n × n matrices
with elements in R or C, accordingly. Then, K will either be the positive orthant of vectors with
non-negative entries or the cone of non-negative definite matrices, respectively. The former setting
will be brought in to give an independent proof of existence of the solution to the Schrödinger
bridge problem for Markov chains. The latter will be called in for studying quantum operations
(Kraus maps) in Sec. IV.

III. SCHRÖDINGER’S PROBLEM FOR DISCRETE RANDOM VECTORS

Following quite closely Schrödinger’s original derivation, we give below a rather self-contained
presentation for the purpose of later reference and comparison when we deal with the more complex
quantum case. First, we discuss general discrete random vectors and then, “time windows” of a
Markov chain. A paper dealing with the discrete time, continuous state space setting is Ref. 1.
Schrödinger bridges for Markov chains have been discussed in Ref. 25. A nice survey with exten-
sive bibliography for the diffusion case is Ref. 35.
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A. Discrete random vectors

Given a finite set X = {1, . . . ,N}, we are concerned with probability distributions P on “trajec-
tories” x = (x0, x1, . . . , xT) in XT+1. The case of a finite state space X is chosen for simplicity of
exposition. Results extend in a straightforward way to the case of a countable X. We write P for the
simplex of all such distributions. Let us introduce the coordinate mapping process X = {X(t),0 ≤
t ≤ T} by X(t)(x) = xt. For brevity, we often write X(t) = xt instead of X(t)(x) = xt. For P ∈ P,
we denote by,

p(s, xs; t, xt) B P(X(t) = xt | X(s) = xs), 0 ≤ s < t ≤ T, xs, xt ∈ X,

its transition probabilities. We also use p, but indexed, to denote marginals. Thus,

pt(xt) B P(X(t) = xt),
and similarly, for two-time marginals,

pst(xs, xt) B P(X(s) = xs,X(t) = xt).
Schrödinger’s original formulation was set in continuous time and with continuous state space.
The formulation herein represents the case where Schrödinger’s problem has undergone “coarse
graining” in Boltzmann’s style in its phase space and where time has also been discretized. Thus,
the a priori model is now given by a distribution P ∈ P and suppose that in experiments, an initial
and a final marginals p0 and pT , respectively, have been observed that differ from the marginals p0
and pT of the prior distribution P. We denote by P(p0,pT) ⊂ P the family of distributions having
the observed marginals and seek a distribution in P(p0,pT) which is close to the given prior P.
Large deviation reasoning28 requires that we employ as “distance” the relative entropy.

Definition 1. Let P,Q ∈ P, that is, they belong to the simplex of probability distributions on
XT+1, and let x = (x0, x1, . . . , xT). If P(x) = 0⇒ Q(x) = 0, we say that the support of Q is con-
tained in the support of P and write

Supp(Q) ⊆ Supp(P).
The relative entropy of Q from P is defined to be

D(Q∥P) =




x∈XT+1Q(x) log

Q(x)
P(x) , Supp(Q) ⊆ Supp(P),

+∞, Supp(Q) * Supp(P),
(1)

where, by definition, 0 · log 0 = 0.

The relative entropy is also known as the information or Kullback-Leibler divergence. As is
well known,8 D(Q∥P) ≥ 0 and D(Q∥P) = 0 if and only if Q = P. Given this notion of distance, we
seek a probability law Q◦ ∈ P(p0,pT) which is closest to the prior distribution P in this sense. That
is, we seek a solution to the following problem.

Problem 1. Assume that p(0, · ; T, ·) is everywhere positive on its domain. Determine

Q◦ = argmin{D(Q∥P) | Q ∈ P(p0,pT)}.
It turns out that if there is at least one Q in P(p0,pT) such that D(Q∥P) < ∞, there exists a unique
minimizer Q◦ called the Schrödinger bridge from p0 to pT over P. Now let

Qx0,xT = Q [ · |X(0) = x0,X(T) = xT]
be the disintegration of Q with respect to the initial and final positions. Then, we have

Q(x0, x1, . . . , xT) = Qx0,xT(x0, x1, . . . , xT)q0T(x0, xT),
where we have assumed that q0T is everywhere positive onX × X. We get

D(Q∥P) =

x0xT

q0T(x0, xT) log
q0T(x0, xT)
p0T(x0, xT) +


x∈XT+1

Qx0,xT(x) log
Qx0,xT(x)
Px0,xT(x)

q0T(x0, xT). (2)
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This is the sum of two non-negative quantities. The second becomes zero if and only if Qx0,xT(x) =
Px0,xT(x) for all x ∈ XT+1. Thus, Q◦x0,xT

(x) = Px0,xT(x). In particular, this shows that when both
marginals are delta distributions, the solution is simply obtained from the prior through condition-
ing. From this point of view, Schrödinger bridges with general marginals appear as a sort of “soft
conditioning” of the prior thereby generalizing the Bayesian approach.

As already observed by Schrödinger, Problem 1 now reduces to minimizing

D(q0T ∥p0T) =

x0xT

q0T(x0, xT) log
q0T(x0, xT)
p0T(x0, xT) (3)

with respect to q0T subject to the (linear) constraints
xT

q0T(x0, xT) = p0(x0), x0 ∈ X, (4)


x0

q0T(x0, xT) = pT(xT), xT ∈ X. (5)

The Lagrangian function has the form

L(q0T) =

x0xT

q0T(x0, xT) log
q0T(x0, xT)
p0T(x0, xT)

+

x0

λ(x0)



xT

q0T(x0, xT) − p0(x0)

+


xT

µ(xT)



x0

q0T(x0, xT) − pT(xT)

.

Setting the first variation equal to zero, we get the (sufficient) optimality condition

1 + log q◦0T(x0, xT) − log p(0, x0; T, xT) − log p0(x0) + λ(x0) + µ(xT) = 0,

where we have used the expression p0T(x0, xT) = p0(x0)p(0, x0; T, xT). Hence, the ratio q◦0T(x0, xT)/
p(0, x0; T, xT) factors into a function of x0 times a function of xT ; these are denoted ϕ̂(x0) and ϕ(xT),
respectively. We can then write the optimal q◦0T(·, ·) in the form

q◦0T(x0, xT) = ϕ̂(x0)p(0, x0; T, xT)ϕ(xT), (6)

where ϕ and ϕ̂ must satisfy

ϕ̂(x0)

xT

p(0, x0; T, xT)ϕ(xT) = p0(x0), (7)

ϕ(xT)

x0

p(0, x0; T, xT)ϕ̂(x0) = pT(xT). (8)

Let us define ϕ̂(0, x0) = ϕ̂(x0), ϕ(T, xT) = ϕ(xT) and

ϕ̂(T, xT) =

x0

p(0, x0; T, xT)ϕ̂(0, x0), ϕ(0, x0) B

xT

p(0, x0; T, xT)ϕ(T, xT).

Then, (7) and (8) can be replaced by the system

ϕ̂(T, xT) =

x0

p(0, x0; T, xT)ϕ̂(0, x0), (9)

ϕ(0, x0)B

xT

p(0, x0; T, xT)ϕ(T, xT), (10)

with the boundary conditions

ϕ(0, x0) · ϕ̂(0, x0) = p0(x0), ϕ(T, xT) · ϕ̂(T, xT) = pT(xT), ∀x0, xT ∈ X. (11)

The question of existence and uniqueness of functions ϕ̂(x0), ϕ(xT) satisfying (9)–(11) will be
established in Sec. III D. Before we do that, however, we investigate what else can be said about the
solution when the prior random vector happens to be a “time window” of a Markov chain.
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B. Markovian prior

Consider the special case where X = {X(t),0 ≤ t ≤ T} is a window of a Markov chain. Let us
introduce, in the language of Doob, the space-time harmonic function

ϕ(t, xt) B

xT

p(t, xt; T, xT)ϕ(xT), 0 ≤ t ≤ T (12)

and the space-time co-harmonic function

ϕ̂(t, xt) B

x0

p(0, x0; t, xt)ϕ̂(x0), 0 ≤ t ≤ T. (13)

Because of the Markov property, for 0 ≤ s < t < u ≤ T , we have

p(s, xs; u, xu) =

xt

p(s, xs; t, xt)p(t, xt; u, xu).

For compactness, we often write πxt,xt+1(t) and π(n)xt,xt+n(t) instead of p(t, xt; t + 1, xt+1) and p(t, xt;
t + n, xt+n), respectively. Hence, ϕ and ϕ̂ satisfy the backward and forward equations, respectively,

ϕ(t, xt) =

xt+1

πxt,xt+1(t)ϕ(t + 1, xt+1), (14)

ϕ̂(t + 1, xt+1) =

xt

πxt,xt+1(t)ϕ̂(t, xt). (15)

Let q◦t denote the distribution of the Schrödinger bridge at time t. We get

q◦t (xt) =

x0


xT

p(0, x0; t, xt; T, xT)q◦0T(x0, xT) =


x0


xT

p(0, x0; t, xt)p(t, xt; T, xT)
p(0, x0; T, xT) ϕ̂(x0)p(0, x0; T, xT)ϕ(xT)

= ϕ̂(t, xt) · ϕ(t, xt). (16)

Similarly, one gets

q◦st(xs, xt) =

x0


xT

ϕ̂(x0)p(0, x0; s, xs)p(s, xs; t, xt)p(t, xt; T, xT)ϕ(xT)

which yields, using (12), (13) and (16), the new transition probabilities

q◦(s, xs; t, xt) = q◦st(xs, xt)
q◦s(xs) = p(s, xs; t, xt) ϕ(t, xt)

ϕ(s, xs) . (17)

Notice, in particular, that the Schrödinger bridge is also a Markov chain which is obtained from
the a priori model via a suitable multiplicative functional transformation just like in the diffusion
case.21 We have therefore established the following result Ref. 25, Theorem 4.1.

Theorem 2. Assume that p(0, ·; T, ·) is everywhere positive on X × X. Suppose there exist posi-
tive functions ϕ and ϕ̂ defined on [0,T] × X satisfying for t ∈ [0,T − 1], the system

ϕ(t, xt) =

xt+1

πxt,xt+1(t)ϕ(t + 1, xt+1), (18)

ϕ̂(t + 1, xt+1) =

xt

πxt,xt+1(t)ϕ̂(t, xt), (19)

with the boundary conditions

ϕ(0, x0) · ϕ̂(0, x0) = p0(x0), ϕ(T, xT) · ϕ̂(T, xT) = pT(xT), ∀x0, xT ∈ X. (20)

Then, the Markov distribution Q◦ in P(p0,pT) with one-step transition probabilities
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π◦xt,xt+1
(t) = πxt,xt+1(t)

ϕ(t + 1, xt+1)
ϕ(t, xt) (21)

is the unique solution of Problem 1.

Notice that, if a pair ϕ, ϕ̂ solves (18)–(20), so does the pair aϕ,a−1ϕ̂ for a > 0. This arbitrari-
ness in the scaling, however, does not affect transition probabilities (21).

Schrödinger and Kolmogorov were struck by the intrinsic time-reversibility of the solution:
swapping p0 and pT leads to a solution bridge which is simply the time reversal of the original
one. Moreover, factorization (16) resembles Born’s relation between the probability density and the
wave function in quantum mechanics ρt(x) = ψ(x, t)ψ†(x, t), where †, throughout the paper, denotes
conjugation/adjoint in a complex Hilbert space.29

At this point, it should be apparent that the bottleneck of the theory of Schrödinger bridges is
the existence and uniqueness (up to multiplication by a positive constant) of the pair ϕ, ϕ̂ solving
Schrödinger system (9)–(11) (in the Markov case, (18)–(20)). Schrödinger thought that existence
and uniqueness should be guaranteed in the diffusion case “except possibly for very nasty ρ0,
ρT , since the question leading to the pair of equations is so reasonable.” This problem turns out
to be quite nontrivial and was settled in various degrees of generality by Beurling, Jamison, and
Föllmer2,12,20 establishing the feasibility of the dual optimization problem of Problem 1. There
is, however, an alternative approach based on proving convergence of successive approximations
by Fortet.13 As it turns out, this more algorithmic approach had independent counterparts called
“iterative fitting algorithms” in the statistical literature on contingency tables.10 These were later
shown to converge to a “minimum discrimination information,”11,19 namely, to a minimum entropy
distance, see also Ref. 9. It will be apparent below that the approach pioneered by Fortet features
a very desirable property: while establishing existence and uniqueness for the Schrödinger system,
it also provides a computationally efficient algorithm to actually compute the space-time harmonic
function ϕ and therefore the solution.

Our approach consists in showing that a certain iterative scheme for the Schrödinger system
is a contraction mapping on the positive orthant with respect to the projective metric which was
introduced in Sec. II. We argue that this is the natural metric in which to cast the iteration for these
problems both in the classical and in the quantum case. Before we turn to that, however, we show
that in the Markov case, the new transition mechanism may be obtained via the solution of a two
consecutive times interval problem.

C. Reduction to the one-step bridge problem

Let Π(t) = �
πxt,xt+1(t)

�N
xt,xt+1=1 and Π◦(t) = (

π◦xt,xt+1
(t))N

xt,xt+1=1
be the transition matrices of

the prior distribution and of the bridge distribution. It is interesting to express (21) in matrix form.
To this end, we introduce the notation

φ(t) = diag (ϕ(t, x1), ϕ(t, x2), . . . , ϕ(t, xN))
for a diagonal matrix formed out of the entries of ϕ(t, ·). We now have

Π
◦(t) = φ(t)−1

Π(t)φ(t + 1). (22)

Consider now for n ≥ 1Π(n)(t) = (
π
(n)
xt,xt+n(t)

)N
xt,xt+n=1

the n-step transition probabilities matrix. By
the Markov property, we have

Π
(n)(t) = Π(t) · Π(t + 1) · · ·Π(t + n − 1).

Being the product of stochastic matrices, Π(n)(t) is also stochastic. Indeed, the elements of Π(n)(t)
are non-negative as sum of products of non-negative numbers. Moreover, let 1† = (1,1, . . . ,1).
Then, the fact that a matrix Q has rows summing to one can be expressed as Q1 = 1. As each Π(t)
has rows summing to one, we have
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Π
(n)(t)1 = Π(t) · Π(t + 1) · · ·Π(t + n − 1)1

= Π(t) · Π(t + 1) · · ·Π(t + n − 2)1
= · · · = Π(t)1 = 1.

Consider now Π◦
(n)(t). By (22), we get

Π
◦(n)(t) = Π◦(t) · Π◦(t + 1) · · ·Π◦(t + n − 1)
= φ(t)−1

Π
(n)(t)φ(t + n).

Thus, we get the following remarkable generalization of formula (21):

π◦
(n)
xtxt+n

(t) = π(n)xt,xt+n(t)
ϕ(t + n, xt+n)

ϕ(t, xt) . (23)

Consider now Π(T )(0) as the transition matrix of a prior “stroboscopic” evolution. Consider also the
Schrödinger bridge problem with the same marginals p0 and pT as before at the two consecutive
times 0 and T . Specializing Theorem 2 to this simple situation, we get that the new transition
probabilities are precisely given by (23) with n = T , where ϕ, ϕ̂ satisfy (9)–(11), namely,

ϕ(0, x0) =

xT

π
(T )
x0,xT(0)ϕ(T, xT), (24)

ϕ̂(T, xT) =

i

π
(T )
x0,xT(0)ϕ̂(0, x0), (25)

with the boundary conditions

ϕ(0, x0) · ϕ̂(0, x0) = p0(x0), ϕ(T, xT) · ϕ̂(T, xT) = pT(xT), ∀x0, xT ∈ X. (26)

We see that the solution of Problem 1 yields, as a by-product, the solution of the one-step problem.
The converse, however, is also true. Solving (24)-(26) yields the correct terminal value ϕ(T, ·) from
which ϕ can be computed at all times through iteration (18). From it, the new transition probabilities
are obtained through (21). We already know from Sec. III A that solving the one-step problem
suffices to characterize the optimal distribution Q◦. The argument above shows that it also permits to
obtain the more explicit description, namely, the transition mechanism of Q◦, which is desirable in
the Markov case.

D. The solution to the one-step bridge problem

Motivated by what we have seen in Secs. III A and III C, we study the one-step bridge problem
with possibly non-Markovian prior. The following result establishes existence and uniqueness for
system (9)–(11).

Theorem 3. Given an N × N stochastic matrix

Π =
�
πx0,xT

�N
x0,xT=1 ,

with strictly positive entries ( πx0,xT > 0 ) and probability distributions p0, pT , there exist four
vectors ϕ(0, x0), ϕ(T, xT), ϕ̂(0, x0), ϕ̂(T, xT), indexed by x0, xT ∈ X,with positive entries such that

ϕ(0, x0) =

xT

πx0,xTϕ(T, xT), (27a)

ϕ̂(T, xT) =

x0

πx0,xT ϕ̂(0, x0), (27b)

ϕ(0, x0)ϕ̂(0, x0) = p0(x0), (27c)
ϕ(T, xT)ϕ̂(T, xT) = pT(xT). (27d)

The four vectors are unique up to multiplication of ϕ(0, x0) and ϕ(T, xT) by the same positive
constant and division of ϕ̂(0, x0) and ϕ̂(T, xT) by the same constant.
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Rather than relying on the results of Beurling and Jamison as in Refs. 25 and 33, we give
an independent proof which also yields an effective algorithm. The proof relies on showing that a
certain iteration is strictly contractive in the Hilbert metric. We note that Fortet’s proof,13 which we
find very difficult to follow, is apparently based on establishing monotonicity of two sequences of
functions produced by the iteration.

Lemma 1. Consider the following circular diagram of maps:

ϕ̂(0, x0) E†−→ ϕ̂(T, xT) =


x0
πx0,xT ϕ̂(0, x0)

ϕ̂(0, x0) = p0(x0)
ϕ(0, x0) ↑ ↓ ϕ(T, xT) = pT(xT)

ϕ̂(T, xT)
xN
πx0,xNϕ(T, xT) = ϕ(0, x0) E←− ϕ(T, xT)

, (28)

where

D̂0 : ϕ(0, x0) → ϕ̂(0, x0) = p0(x0)
ϕ(0, x0) ,

DT : ϕ̂(T, xT) → ϕ(T, xT) = pT(xN)
ϕ̂(T, xT)

represent componentwise division of vectors. Then, the composition

ϕ̂(0, x0) E
†
−→ ϕ̂(T, xT) DT−→ ϕ(T, xT) E−→ ϕ(0, x0) D0−→ (ϕ̂(0, x0))next (29)

is contractive in the Hilbert metric.

Before proceeding with the proof, we provide a note about notation: the map

E† : ϕ̂(0, x0) → ϕ̂(T, xT) =

x0

πx0,xN ϕ̂(0, x0)

is the adjoint of the backward evolution

E : ϕ(T, xT) → ϕ(0, x0) =

xN

πx0,xTϕ(T, xT),

which is consistent with the standard notation in diffusion processes where the Fokker-Planck
(forward) equation involves the adjoint of the generator appearing in the backward Kolmogorov
equation.

Also notice that the componentwise divisions of D̂0 and DT are well defined. Indeed, even
when ϕ̂(0) (ϕ(T)) has zero entries, ϕ̂(T) (ϕ(0)) has all positive entries since the elements of Π are all
positive.

Proof of Lemma 1. The diameter of the range of E is

∆(E) = sup{dH(E(x),E(y)) | xi > 0, yi > 0}
= sup{log

(
πi jπk,ℓ

πi,ℓπk, j

)
| 1 ≤ i, j, k, ℓ ≤ n},

which is finite since all entries πi, j’s are positive. Birkhoff’s theorem (Theorem 1) provides a
contraction coefficient for linear positive maps and, in this case, we have

∥E∥H = tanh(1
4
∆(E)) < 1.

For the adjoint map E†, we only need to note that it is homogeneous of degree 1 and therefore, by
Birkhoff’s theorem,

∥E†∥H ≤ 1.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.84.192.102

On: Mon, 30 May 2016 17:04:26



033301-10 T. T. Georgiou and M. Pavon J. Math. Phys. 56, 033301 (2015)

Next, we note that provided p0(x0) and pT(xN) have positive entries, both D̂0 andDT are isometries
in the Hilbert metric since inversion and element-wise scaling are both isometries. Indeed, for
vectors [xi]Ni=1, [yi]Ni=1, it holds that

dH([xi], [yi]) = log
(
(max

i
(xi/yi)) 1

mini(xi/yi)
)

= log
(

1
mini((xi)−1/(yi)−1) max

i
((xi)−1/(yi)−1)

)
= dH([(xi)−1], [(yi)−1])

and

dH([pixi], [pi yi]) = log
maxi((pixi)/(pi yi))
mini((pixi)/(pi yi))

= log
maxi(xi/yi)
mini(xi/yi) = dH([xi], [yi]).

If p0(x0) and pT(xN) have any zero entries, then D̂0 and DT are in fact contractions. Finally, we
observe that

∥D̂0 ◦ E ◦ DT ◦ E†∥H ≤ ∥D̂0∥H · ∥E∥H · ∥DT ∥H · ∥E†∥H < 1,

where ◦ denotes composition. Therefore, the composition C B D̂0 ◦ E ◦ DT ◦ E† is contractive:
namely,

dH(C(x),C(y)) ≤ ∥C∥HdH(x, y), 0 ≤ ∥C∥H < 1.

This completes the proof of the lemma. �

It was pointed to us by Idel Martin that the use of the Hilbert metric for this type of problem is
in fact central and standard in the nonlinear Frobenius-Perron theory.22

Proof of Theorem 3. Since C is contractive in the Hilbert metric, there is a unique positive
ϕ̂(0, ·) = [ϕ̂(0, x0)] so that the corresponding ray is invariant under C. That is, in the notation of (29),

(ϕ̂(0, ·))next = C(ϕ̂(0, ·))
= λϕ̂(0, ·),

for the composition C B D̂0 ◦ E ◦ DT ◦ E†. From this, we can obtain

ϕ̂(T, ·) = E†(ϕ̂(0, ·)),
ϕ(0, ·) = E(ϕ(T, ·)),

while

ϕ̂(T, ·)ϕ(T, ·) = pT(·)
λϕ̂(0, ·)ϕ(0, ·) = p0(·).

However, since

1 = λ⟨ϕ̂(0, ·), ϕ(0, ·)⟩
= λ⟨ϕ̂(0, ·),E(ϕ(T, ·))⟩
= λ⟨E†(ϕ̂(0, ·)), ϕ(T, ·)⟩
= λ⟨ϕ̂(T, ·), ϕ(T, ·)⟩
= λ,

we conclude that these satisfy Schrödinger system (27a)–(27d). �

Remark 1. Numerical algorithm: The step above suggests that starting from any positive vec-
tor, e.g., x(0) = 1, the unique fixed point is given by
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ϕ̂(0) = lim
k→∞

x(k), (30)

where x(k + 1) = C(x(k)) for k = 1,2, . . ..

By the variational analysis of Sec. III A, we finally get the following result.

Theorem 4. Let p0 and pT be probability distributions on X and assume that p(0, ·; T, ·) is
everywhere positive onX × X. Then, the unique solution to Problem 1 with prior P ∈ P is given by

Q◦(x0, x1, . . . , xT) = Px0,xT(x0, x1, . . . , xT)q◦0T(x0, xT),
where q◦0T(x0, xT), solving the problem for the two consecutive times 0,T, is given by

q◦0T(x0, xT) = ϕ̂(0, x0)p(0, x0; T, xT)ϕ(T, xT). (31a)

Here, ϕ̂(0, x0), ϕ(T, xT) are as in Theorem 3 with

Π =
�
πx0,xT

�N
x0,xT=1 , πx0,xT = p(0, x0; T, xT).

The corresponding transition probability is given by

q◦(0, x0; T, xT) = p(0, x0; T, xT)ϕ(T, xT)
ϕ(0, x0) . (32)

In fact, when P is Markovian, we also get the new one-step transition probabilities in a similar
manner, i.e., in the way described at the end of Sec. III C. Finally, as already observed, extending the
results of this section to the case of a countable state space is straightforward.

IV. THE SCHRÖDINGER BRIDGE PROBLEM FOR QUANTUM EVOLUTIONS

We begin with some background on quantum probability and stochastic maps, see, e.g.,
Refs. 18, 24, and 26. In quantum probability there is neither a notion of a random variable nor
of a probability space. Instead, random variables are replaced by Hermitian matrices/operators,
referred to as observables, while the expected outcome of an experiment is quantified by a suit-
able functional that provides the expectation. Throughout, we restrict our attention to the case of
finite-dimensional quantum systems with associated Hilbert space isomorphic to Cn. Here, experi-
ments take values from a finite alphabet and, thereby, the mathematical framework relies on alge-
bras of finite matrices. In this case, the state of the underlying system which defines the expectation
is represented by a non-negative definite matrix with trace one which is referred to as a density ma-
trix. Notation and basic terminology are explained next, followed by the formulation, the quantum
bridge problem, namely, the problem of identifying a quantum channel that is consistent with given
quantum states at its two ends and has a specific relation to a given prior quantum channel. For
potential applications of quantum bridges and links to topics in quantum information, we refer to
Ref. 25, Sec. VII and to Ref. 15 where a surprising connection between the main problem studied in
this section and quantum entanglement is explained.

A. Quantum channels

We use M B {X ∈ Cn×n} to denote square matrices, H B {X ∈ Cn×n | X = X†} to denote the
set of Hermitian matrices, H+ and H++ the cones of non-negative and positive definite ones, respec-
tively, and D B {ρ ∈ H+ | trace ρ = 1} the set of density matrices. The latter represents possible
“states” of a quantum system. In turn, a state ρ defines an expectation functional on observables
X ∈ H,

Eρ(X) = trace(ρX).
The standard model for a quantum experiment as well as for a quantum channel is provided

by a linear trace-preserving completely positive (TPCP) map between density matrices (which may
possibly be of different sizes). This is the quantum counterpart of a Markov evolution and is referred
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to as a Kraus map. For the finite-dimensional case treated herein, where quantum systems are
represented by density matrices and where, for notational simplicity, matrices are all of the same
size, a Kraus map assumes the representation

E† : D → D : ρ −→ σ =

nE
i=1

EiρE†i , (33a)

with Ei ∈ M such that
nE
i=1

E†i Ei = I, (33b)

see Ref. 26, Chapter 2. Throughout, I denotes the identity matrix. Condition (33b) ensures that
the map preserves the trace, i.e., that trace(σ) = trace(ρ) = 1. Completely positive refers to the
property that, besides the fact that E†(ρ) ≥ 0 for all ρ ≥ 0 (i.e., being a positive map), if Ik de-
notes the identity map on Ck×k and ⊗, the tensor product, then Ik ⊗ E†, is a positive map for all
k. The Kraus-representation ((33a) and (33b)) characterizes completely positive maps (see, e.g.,
Ref. 26, Chapter 2).

Herein, a further condition will be imposed on Kraus maps which we refer to as positivity
improving. This is the property that

E†(ρ) > 0 for any ρ ∈ D. (34)

Thus, positivity improving amounts to having the range of E† contained in the interior of D or, in
other words and in view of (33a), that there is no pair of vectors w, v ∈ Cn such that w†Eiv = 0
for all i ∈ {1, . . . ,nE}. A necessary condition for positivity improving is that nE > n. To see this,
assume that nE ≤ n and take v to be an eigenvector of the matrix pencil E1 − λE2. Then, E1v and E2v
are linearly dependent and the span of E1v . . . Env has dimension less than n. This implies that there
exists a w such that w†Eiv = 0 for all i. Determining whether a given Kraus map actually has the
property of positivity improving, in general, is NP-hard (namely any NP problem can be reduced in
polynomial time to it).14,17

Our notation in using E† for the Kraus map is not standard and differs from that in, e.g., Ref. 26
where E is used instead. However, our choice maintains consistency with the standard convention
throughout probability theory where the (forward) Fokker-Planck equation involves the adjoint of
the generator of a Markov semigroup.

A model for quantum measurement amounts to an instantiation of a quantum channel Ref. 26,
Chapter 2. Typically, an observable X ∈ H is specified having a decomposition

X =

i

λi χ
†
i χi,

with χi ∈ M such that 
i

χ†i χi = I .

A particular case is that of a spectral decomposition of X . When the outcome i is being recorded and
the value λi registered for a quantum system that is initially in a state ρ, then, after the measurement,
the system finds itself in the new state

*
,

1

trace(χiρχ
†
i )

+
-
χiρχ

†
i . (35)

The likelihood of this particular outcome associated with recording λi is trace(χiρχ
†
i ). Therefore,

Eρ(X)=

i

λi trace(χiρχ
†
i )

= trace(ρX)
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in agreement with the earlier statement. On the other hand, if the experiment takes place but no
particular outcome is recorded or, equivalently, all possible states in (35) are weighed in by the
corresponding probabilities trace(χiρχ

†
i ), the new state becomes

i

χiρχ
†
i .

This is precisely a Kraus map acting on ρ and this type of measurement is referred to as nonse-
lective. In the sequel, we will encounter observables φ ∈ H factored as φ = χ†χ. These represent
quantum analogues of the random variables ϕ in the classical case. The expression χρχ† may be
thought of as an “unnormalized” state that results in after a nonzero outcome has been recorded
when a measurement performed. The factors of observables φ will give rise to the multiplicative
functional transformations on Kraus maps sought in addressing the quantum bridge problem. These
specify Kraus maps that link a set of two given “marginal” density matrices.

While there are many similarities between quantum channels and Markov evolution, there are
also stark differences. A fundamental departure from classical probability arises in that, in general,
there is no notion of joint probability between “measurements” at the two ends of a quantum
channel. In this, the order with which measurements take place matters.

B. The bridge problem

Consider a reference quantum evolution given by an initial density matrix σ0 and by a sequence
of TPCP maps {E†t ; 0 ≤ t ≤ T − 1}, each admitting a Kraus representation with matrices {Et, i}, so
that

E†t : σt → σt+1 =

i

Et, iσtE
†
t, i, t = 0,1, . . . ,T − 1.

As usual, 
i

E†t, iEt, i = I .

Consider also the composition map

E†0:T B E
†
T−1 ◦ · · · ◦ E

†
1 ◦ E

†
0.

Observe that E†0:T is a TPCP map. For instance, it is immediate that E†1 ◦ E
†
0 admits a (double-

indexed) Kraus representation with matrices {E1, jE0, i}. Hence, as thoroughly argued in the classical
case, we only need to consider the one-step situation. Besides the reference quantum evolution, we
are also given an initial and a final positive definite density matrices ρ0 and ρT , respectively.

We consider the problem of finding a new quantum evolution F †0:T = F
†
T−1 ◦ · · · ◦ F

†
1 ◦ F

†
0 ,

where the F †t are TPCP maps, such that the new evolution is close to the reference one and

F †0:T(ρ0) = ρT . (36)

Providing a mathematical formulation for the selection of Ft’s is nontrivial. In Ref. 25, which deals
with the simpler problem where only the initial or final density matrix is prescribed, quantum paths
were introduced via a family of observables {Xt; 0 ≤ t ≤ T} with spectral decomposition

Xt =

mt
it=1

xitΠit(t).

Then, paths are defined as sequences of “events”
�
Πi0(0),Πi1(1), . . . ,ΠiT(T)

�
and thereby, one can

define path-conditioned density evolutions and formulate and solve maximum entropy problems in
a somewhat classical-like fashion. However, this approach does not seem to work when both initial
and final densities are given, specifically because it is not clear what notion of relative entropy
one should use to compare the two Markovian evolutions associated to E and F . Thus, herein
we formulate the quantum Schrödinger bridge problem as that of seeking a suitable multiplicative
functional transformation of the prior Kraus evolution so as to meet the marginal conditions. This is
explained next.
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Given the sequence of TPCP maps {E†t , for 0 ≤ t ≤ T − 1} and the two marginals ρ0, ρT , we
seek a sequence of invertible matrices χ0, . . . , χT such that for t ∈ {0, . . . ,T − 1},

F †t (·) = χt+1

(
E†t (χ−1

t (·)χ−†t )) χ†
t+1 (37)

is a Kraus map (i.e., totally positive and trace preserving) and the evolution

F †0:T(·) = F †T−1 ◦ · · · ◦ F
†

1 ◦ F
†

0 (·) (38)

= χT
(
E†0:T(χ−1

0 (·)χ−†0 )) χ†T (39)

is consistent with the given marginals (i.e., (36) holds). Conditions (37) and (39), represent the
quantum analogue of a multiplicative functional transformation.

Very much as in the classical case, the solution of the Schrödinger bridge in the multi-step case
reduces to solving the one-step bridge problem: given the triple (E†0:T , ρ0, ρT), determine invertible
matrices χ0, χT such that (39) is Kraus map and satisfies

F †0:T(ρ0) = ρT . (40)

The unital property of F , namely, the fact that F0:T(I) = I, when expressed in terms of E and the
factors in (39), implies that

E0:T(φT) = φ0 (41)

for the Hermitian, positive definite matrices

φ0 = χ†0χ0, φT = χ†T χT . (42)

Likewise, in view of (37) and the requirement that F †t is trace preserving, we set

Et(φt+1) = φt, (43)

for t ∈ {T − 1, . . . ,0} and factor

φt = χ†t χt . (44)

Conditions (41) and (44) indicate that the φt’s are space-time harmonic matrices with respect to
E†0:T and E†t , respectively. On the other hand,

E†0:T(χ−1
0 (ρ0)χ−†0                

φ̂0

) = χ−1
T (ρT)χ−†T                

φ̂T

, (45)

where the matrices φ̂t in (45) can be thought of as unnormalized density matrices in a dual Heisen-
berg picture.

The concept of space-time harmonic functions for quantum channels was introduced and stud-
ied in Refs. 25 and 33. Thus, following Refs. 25 and 33, when two Kraus maps are related as
in ((39), (41), and (42)), we say that F † is obtained from E† through a multiplicative functional
transformation induced by a space-time harmonic function. In Ref. 25, it was shown that the
solution of the Schrödinger problem, where only the initial or final density is assigned, is indeed
given by a multiplicative functional transformation of the prior providing the first such example of a
non-commutative counterpart of the classical results. A variational characterisation of the quantum
bridge as a critical point of a suitable entropic functional for the present general setting is unknown.

C. Doubly stochastic Kraus maps

The results we present next are for the special case where the two marginal densities are
uniform, i.e., when both

ρ0 =
1
n

I and ρT =
1
n

I .

This special case is interesting in its own right as, already for the classical case, it represents a well
known basic result in the statistics literature (Sinkhorn’s theorem).31,32 Sinkhorn’s result states that
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for any stochastic matrix [πx0,xT]Nx0,xT=1 having all entries strictly positive, there exists a unique
multiplicative functional transformation

πox0,xT
= πx0,xT

ϕ(T, xT)
ϕ(0, x0)

so that πo is doubly stochastic, that is, it has non-negative elements and satisfies
x0

πox0,xT
=


xT

πox0,xT
= 1.

In view of Eq. (32), in this classical setting, Sinkhorn’s result is a direct corollary of Theorem 3.
The property of a stochastic matrix to have all entries strictly positive corresponds to the posi-

tivity improving property (34) of a Kraus map. We proceed to derive the quantum counterpart of
Sinkhorn’s result.

Theorem 5. Given a positivity improving Kraus map E†0:T , i.e., satisfying (34), there exists a
pair of observables φ0, φT ∈ H++ unique up to multiplication by a positive constant and related as in
(41) such that, for any factorization,

φ0 = χ†0χ0

φT = χ†T χT ,

the map F †0:T : D → D defined by

F †(·) B χT
(
E†0:T(χ−1

0 (·)χ−†0 )) χ†T (46)

is a doubly stochastic Kraus map, in that F (I) = I as well as F †(I) = I.

Theorem 5 follows immediately from the following result that we establish first (it was recently
pointed out to us that the result in Theorem 5 has been obtained by Gurvits Ref. 15, Theorem 4.7
using a completely different argument which is based on the existence of certain natural potentials
(locally scalable functionals) that he constructs for this purpose).

Theorem 6. Given a Kraus map E†0:T satisfying (34), there exist observables φ0, φT in H++
unique up to multiplication by a positive constant such that

E0:T(φT)= φ0,

E†0:T(φ−1
0 )= φ−1

T .

Proof of Theorem 6. The claim in Theorem 6 amounts to the existence of a unique fixed point
for the following circular diagram of maps:

φ̂0

E†0,T−→ φ̂T

φ̂0 = φ
−1
0 ↑ ↓ φT = φ̂

−1
T

φ0
E0,T←− φT

, (47)

Thus, it suffices to show that the composition map

C :
�
φ̂0

�
starting

E†0,T−→ φ̂T
(·)−1

−→ φT
E0,T−→ φ0

(·)−1

−→
�
φ̂0

�
next (48)

from H++ → H++ is contractive in the Hilbert metric. It should be noted that “points” here are
defined up to a scaling factor, thus, they in essence represent rays.
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Once again, we use Birkhoff’s theorem to determine the contraction coefficient. Here, we are
working on the positive cone H+. This has a nonempty interior H++ and the partial order defined by
non-negative definiteness. Accordingly,

M(X,Y ) = inf{λ | X ≤ λY }
= max{eig(Y−1/2XY−1/2)}
= max{eig(XY−1)},

m(X,Y ) = sup{λ | λy ≤ x}
= min{eig(XY−1)},

where eig(·) denotes the “eigenvalues of,” and in this case, the Hilbert metric is

dH(X,Y ) = dH(Y−1/2XY−1/2, I)
= log(κ(XY−1)),

where κ(·) is the “conditioning number” of a Z ∈ M,

κ(Z) = max{eig(Z)}
min{eig(Z)} .

From the Birkhoff-Bushell theorem, we have that both ∥E∥H ≤ 1 and ∥E†∥H ≤ 1 (from linearity
together with monotonicity). Furthermore, the diameter of the range of E,

∆(E) = sup{dH(E(X),E(Y )) | X, Y ∈ H++},
is finite. To see this, first note that

∆(E) ≤ 2 sup{dH(E(X), I) | X ∈ H++},
utilizing the metric property and the fact that E(I) = I, and then, note that dH(E(X), I) is invariant
under scaling of X by a scalar. Therefore, we can restrict our attention to X ∈ D instead, and since
E(X) > 0 for all X ∈ D, by compactness ofD,

∆(E) ≤ 2 max{dH(E(X), I) | X ∈ D} < ∞.
Therefore (see Theorem 1),

∥E∥H = tanh(1
4
∆(E)) < 1.

Finally, we note that the induced Hilbert-gain of the inversion

Z → Z−1

is 1 since

dH(X,Y ) = dH(X−1,Y−1).
We conclude that with C as in (48), ∥C∥H < 1. Again, contractiveness in the Hilbert metric, there
exists a unique fixed ray, i.e.,

φ̂0 = λC(φ̂0),
for some λ > 0, and corresponding

φ̂T = E†0:T(φ̂0),
φ0 = E0:T(φT),

while

φT = φ̂
−1
T

λφ̂0 = φ
−1
0 .

Since,
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n = λ trace(φ̂0φ0)
= λ trace(φ̂0E0:T(φT))
= λ trace(E†0:T(φ̂0)φT)
= λ trace(φ̂TφT)
= λn,

and therefore, λ = 1. This completes the proof of the theorem. �

Proof of Theorem 5. This is truly a corollary to Theorem 6. Since φ0, φT in the proof of Theo-
rem 6 are in H++, we take any factorization

φ0 = χ†0χ0

φT = χ†T χT .

Then, with F † as in (46),

F †0:T(I) = χT

E†0:T

(
χ−1

0 (I)χ−†0

)
χ†T

= χT

E†0:T(φ−1

0 ) χ†T
= χT

�
φ−1
T

�
χ†T

= I .

Likewise,

F0:T(I) = χ−†0


E0:T

(
χ†T(I)χT

)
χ−1

0

= χ−†0 [E0:T(φT)] χ−1
0

= χ−†0 (φ0) χ−1
0

= I .

Thus, F † is doubly stochastic as claimed. �

While in the classical case (Sinkhorn’s theorem), there is a unique doubly stochastic map ob-
tained from πx0,xT via a multiplicative functional transformation, in the quantum case, this is clearly
false. Uniqueness in Theorem 5 is claimed for the observables φ0, φT . Hence, F is unique modulo
corresponding unitary factors; obviously, if F † is a Kraus so that F (I) = I and F †(I) = I, then for
any unitary matrices U0,UT ,

UTF †(U0(·)U†0 )U†T (49)

is also a doubly stochastic Kraus map. It is easy to see that the totality of doubly stochastic Kraus
maps that relate to E† via a multiplicative transformation are of this form.

D. The quantum bridge for general marginals and a conjecture

Consider now the situation of Sec. IV C with general initial and final density matrices ρ0 and
ρT . We are, namely, seeking a quantum bridge, as defined in Sec. IV B, for the triple (E†0:T , ρ0, ρT).
Theorem 5 admits the following generalization.

Theorem 7. Given a Kraus map E†0:T and two density matrices ρ0 and ρT , suppose there exist
observables φ0, φT , φ̂0, φ̂T ∈ H++ solving the Schrödinger system,

E0:T(φT) = φ0, (50)

E†0:T(φ̂0) = φ̂T , (51)

ρ0 = χ0φ̂0χ
†
0, (52)

ρT = χT φ̂T χ
†
T . (53)
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Then, for any factorization,

φ0 = χ†0χ0

φT = χ†T χT ,

the map F †0:T : D → D defined by

F †(·) B χT
(
E†0:T(χ−1

0 (·)χ−†0 )) χ†T (54)

is a quantum bridge for (E†0:T , ρ0, ρT), namely, F (I) = I and F †(ρ0) = ρT .

Proof:

F0:T(I) = χ−†0


E0:T

(
χ†T(I)χT

)
χ−1

0 = χ−†0 (E0:T(φT)) χ−1
0 = χ−†0 (φ0) χ−1

0 = I .

Moreover,

F †0:T(ρ0) = χT

E†0:T

(
χ−1

0 ρ0χ
−†
0

)
χ†T = χT


E†0:T(φ̂0)


χ†T = χT

�
φ̂T

�
χ†T = ρT .

�

The case of initial and final pure states is worthwhile writing out.

Corollary 1. Given a positivity improving Kraus map E†0:T and two pure states

ρ0 = v0v
†
0 and ρT = vTv

†
T

(i.e., v0, vT are unit norm vectors), define

φ0B E(vTv†T),
φT B vTv

†
T

and

F †(·) B φ1/2
T E

†(φ−1/2
0 (·)φ−1/2

0 )φ1/2
T

(where, clearly, φ1/2
T = φT = vTv

†
T). Then, F † is TPTP and satisfies the marginal conditions

ρT = F †(ρ0).

Proof: We readily verify that

F (I)= φ−1/2
0 E(φT)φ−1/2

0

= φ−1/2
0 E(vTv†T)φ−1/2

0

= I .

Next, we observe that

F †(ρ0)= φ1/2
T E

†(φ−1/2
0 (v0v

†
0)φ−1/2

0 )φ1/2
T

= vTv
†
TE
†(φ−1/2

0 (v0v
†
0)φ−1/2

0 )vTv†T
= vTv

†
T

= ρT .
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To see this, consider a representation E†(·) = 
i Ei(·)E†i and note that

v†TE
†(φ−1/2

0 (v0v
†
0)φ−1/2

0 )vT =

i

(
v†TEiφ

−1/2
0 v0

)2

= v†0φ
−1/2
0 E(vTv†T)φ−1/2

0 v0

= v†0 Iv0

= 1.

�

Thus, precisely as in the classical case, the key challenge is to establish existence and unique-
ness for Schrödinger system (50)-(53) and that this is an attractive fixed point of a suitable iterative
map. At present, proving the natural generalization of Theorem 6 appears nontrivial. Thus, below,
we give the relevant statement as a conjecture since its proof remains elusive.

Conjecture 1. Given a positivity-improving Kraus map E†0:T , i.e., a Kraus map satisfying (34),
and given two density matrices ρ0 and ρT , there exist observables φ0, φT , φ̂0, φ̂T in H++ such that

E0:T(φT)= φ0,

E†0:T(φ̂0)= φ̂T ,
with

ρ0 = χ0φ̂0χ
†
0, (55a)

ρT = χT φ̂T χ
†
T (55b)

and

φ0 = χ†0χ0, (55c)

φT = χ†T χT (55d)

which can be obtained as a fixed point of a suitable map. In particular, χ0, χT can be taken to
be Hermitian, i.e., for i ∈ {0,T}, χi = (φi)1/2 is the Hermitian square root of φi, and in this case,
the solution to the Schrödinger system can be obtained as a fixed point of a map specified in (56)
explained below.

Equations (55a) and (55c) together represent a non-commutative analogue of the relationship
between ϕ̂(0, x0),p0(x0), ϕ(0, x0) in

ϕ̂(0, x0) = p0(x0)
ϕ(0, x0) ,

while Eqs. (55b) and (55d) represent the analogue of

ϕ̂(T, xT) = pT(xT)
ϕ(T, xT) .

By taking χ0 = (φ0)1/2, i.e., the Hermitian square root, clearly,

φ̂0 = (φ0)1/2ρ0(φ0)1/2.

On the other, taking χT to be the Hermitian square root of φT and solving for φT in terms of φ̂T and
ρT using (55b)-(55d) gives

φ̂T → φT =
(
ρ1/2
T

(
ρ−1/2
T φ̂−1ρ−1/2

T

)1/2
ρ1/2
T

)2
.
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Thus, the conjecture claims the validity of the following correspondence:

ρ0
χ−1

0 (·)χ−†0−→ φ̂0
E†0:T−→ φ̂T

χT (·)χ†T−→ ρT ,

I
χ−†0 (·)χ−1

0←− φ0 = χ†0χ0
E0:T←− φT = χ†T χT

χ†
T
(·)χT
←− I,

and therefore, that the Kraus map

F †0:T(·) B χT
(
E†0:T(χ−1

0 (·)χ−†0 )) χ†T
solves the one-step quantum Schödinger bridge problem for general marginal density matrices.
Extensive simulations have convinced the authors that the composition of maps

φ̂0
E†0:T−→ φ̂T

DT−→ φT
E0:T−→ φ0

D̂0−→
�
φ̂0

�
next, (56)

where

DT : φ̂T → φT =
(
ρ1/2
T

(
ρ−1/2
T φ̂−1ρ−1/2

T

)1/2
ρ1/2
T

)2
,

D̂0 : φ0 → φ̂0 = (φ0)1/2ρ(φ0)1/2

have an attractive fixed point. In this, χi for i ∈ {0,T} are taken Hermitian for specificity. Simula-
tion shows that the iteration converges to a fixed point for a variety of other normalizations for the
factors χi of φi, as well as when the boundary conditions are replaced by ρ0 = (φ̂0)1/2φ0(φ̂0)1/2 and
ρT = (φ̂T)1/2φT(φ̂T)1/2 and the iteration is modified accordingly.

In the above, D̂0 and DT are no longer isometries in the Hilbert metric as their commutative
analogues and, as a consequence, it is not clear how to generalize the earlier argument in a direct
manner. However, as pointed out to us by Idel Martin, the map in (56), suitably normalized by
the trace of the image, sends positive definite trace-1 matrices to the same and is continuous, and
therefore, existence of a solution to the Schrödinger system is guaranteed by Brouwer’s fixed point
theorem. Thus, the essence of the conjecture is the uniqueness and attractiveness to a fixed point.

For a bridge with many intermediary time steps, very much as in the commutative classical
case, the solution of the one-step bridge via multiplicative functional transformation permits solving
the general bridge in a similar manner. More specifically, starting from φ̂0, φT that correspond to a
fixed point of (56), define for i ∈ {1, . . . ,T},

φ̂iB E†i−1φ̂i−1,

φi−1B Ei−1φi,

ρiB (φi)1/2φ̂i(φi)1/2.

The sought sequence of Kraus maps is

F †
i+1(·) = (φi+1)1/2

(
E†i ((φi)−1/2(·)(φi)−1/2)) (φi+1)1/2,

since, clearly,

F †0:T(·) = (φT)1/2
(
E†0:T((φ0)−1/2(·)(φ0)−1/2)) (φT)1/2

and, assuming the validity of the conjecture, satisfies

F †0:T(ρ0) = (φT)1/2
(
E†0:T(φ̂0)

) (φT)1/2

= (φT)1/2φ̂T(φT)1/2

= ρT .
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V. EXAMPLES OF DOUBLY STOCHASTIC KRAUS MAPS

Perhaps the simplest nontrivial example of a (self-adjoint) positivity improving doubly stochas-
tic Kraus map is

E†(·) = E1(·)E†1 + E2(·)E†2 + E3(·)E†3, (57)

with

E1 =




1
2

0

0 0


, E2 =



0 0

0


1
2


, E3 =



0


1
2

1
2

0



.

A second example is

E1 =




2
3

0

0 0


, E2 =




1

24
−


1
8

−


1
8


3
8



, E3 =




1
24


1
8

1
8


3
8



,

where all coefficient matrices are again symmetric but they all now of rank one.
In general, neither the symmetry (Hermitian-ness) of the coefficients nor any constraint on the

rank is essential. The following example is constructed numerically. For this, we start with

E1 =



1 1
0 0


M−1/2,

E2 =



0 1
0 1


M−1/2,

E2 =



0 1
1 0


M−1/2,

where

M =


2 1
1 4



so that E ′1E1 + E ′2E2 + E ′3E3 = I. It can be shown that the corresponding Kraus map E† is positivity
improving, i.e., it satisfies (34). We then compute the fixed point of (48), and this is

φ0 =



1.1448 −0.1350
−0.1350 0.8749


,

φ1 =



0.8411 −0.2362
−0.2362 1.3134


,

φ̂0 =



0.8897 0.1372
0.1372 1.1642


,

φ̂1 =



1.2521 0.2251
0.2251 0.8018


.
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These space-time harmonics give rise to coefficients

F1 =



0.5690 0.4411
−0.0720 −0.0558


,

F2 =



−0.0558 0.4411
−0.0720 0.5690


,

F3 =



−0.1441 0.5131
0.8013 −0.1441


for a corresponding doubly stochastic Kraus map.

When ρ0 and/or ρT are in general different from the identity, extensive numerical experi-
mentation suggests the validity of Conjecture 1 which, in conjunction with Theorem 7, provides
solutions of the quantum Schrödinger bridge problem. In particular, for our first example (57) and
nonuniform marginals,

ρ0 =



1/4 0
0 3/4


and ρ1 =



2/3 0
0 1/3


by iterating (56), we obtain

φ0 =



1/2 0
0 1/2


,

φ1 =



2/3 0
0 1/3


,

φ̂0 =



1/2 0
0 3/2


,

φ̂1 =



1 0
0 1


and the Kraus map with coefficients

F1 =




2/3 0
0 0


,

F2 =



0 0
0


1/3


,

F3 =



0


2/3
1/3 0


.

This Kraus map is no longer Hermitian, it is of the form (46) and, as can be readily verified, it
satisfies the required condition F †(ρ0) = ρ1. Software for numerical experimentation can be found
at http://www.ece.umn.edu/∼georgiou/papers/schrodinger_bridge/.

VI. CONCLUDING REMARKS

In this paper, we introduced a new approach to studying Schrödinger’s systems. In particular,
we establish new proofs for existence and uniqueness of solutions. In contrast to earlier treatments,
our approach provides a direct computational procedure for obtaining the space-time harmonic
function and the corresponding solution of the Schrödinger bridge in finite-dimensions. Space-time
harmonics are obtained as fixed points of a certain map. Convergence is established in a suitable
projective geometry as convergence of rays using the Hilbert metric. That is, in the classical case
of discrete random vectors that is treated herein, our approach provides a direct new proof of
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existence and uniqueness by a contraction mapping principle. Since the approach also provides a
computational scheme, it appears to have considerable potential for applications. Indeed, models
for stochastic evolution, which include Markov chains, are ubiquitous. The bridge evolution may
be viewed as a controlled steering problem–a facet that will be thoroughly explored elsewhere. In
the case of quantum channels, the solution of an analogous Schrödinger system corresponds to a
steering between two given density matrices. We prove convergence of an iterative algorithm in a
corresponding projective metric in the case of uniform marginals, i.e., identity matrices, thereby
establishing existence of doubly stochastic Kraus maps that can be derived from a given reference
map via multiplicative functional transformations. Extensive simulations have convinced the au-
thors of a more general result regarding the general quantum bridge problem which, however, is
stated as a conjecture since at present a proof is not available.
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