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Our topic traces back to DEMING AND STEPHAN [1]
who sought to reconcile an empirical joint distribution of
two random variables with a priori known marginals for each
and proposed an iterative scheme for determining a solution.
Thus, in the case of finite probability spaces, the problem
data consist of two probability vectors p0 and p1 together
with the empirical joint probability matrix P = [p(i, j)], i.e.,
a matrix P such that p(i, j) ≥ 0 and

∑
i,j p(i, j) = 1. Then

the task is to suitably modify P into P̂ = [p(i, j)] which is
consistent with the marginals, i.e.,∑

i

p̂(i, j) = p0(j) and
∑
j

p̂(i, j) = p1(i),

over the corresponding indexing sets. It took almost twenty
years before a proof of convergence for the Deming-Stephan
algorithm was provided in [2] and before the problem was
fully understood and explained [2], [4], [3].

Closely related work that was motivated by estimation
of transition probabilities of Markov chains led to a very
similar problem. Here Π = [π(i, j)] is the transition proba-
bility from state i to j of a Markov chain, and the problem
which was originally posed by L. Welch (as cited in [5],
[6]) is to normalize its entries by alternating between scaling
rows and columns, so that they sum up to one, and thereby
modify Π so as to become doubly stochastic. Convergence of
this algorithm, which is similar to the algorithm of Deming
and Stephan, and the fact that under suitable conditions
it leads to a doubly stochastic matrix Π̂ is now known
as Sinkhorn’s theorem [?]. The more general case of the
Deming and Stephan’s setting corresponds to asking for a
transition probability matrix Π̂ for the Markov chain that
satisfies1

Π̂†p0 = p1

for the given probability vectors–Sinkhorn’s theorem corre-
sponds to the special case where p0 and p1 have all their
entries equal. For the more general setting the basic theorem
can be phrased as follows.

Theorem 1: Let

Π = [π(i, j)]
N
i,j=1
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1Dagger † denotes the adjoint.

be a N × N stochastic matrix i.e., π(i, j) ≥ 0 and∑
j p(i, j) = 1, and in addition assume that all entries are

positive (π(i, j) > 0), and let p0, p1 be given probability
vectors. Then, there exist a unique pair of diagonal matrices
D1, D0 such that

Π̂ := D1ΠD−10

is a stochastic matrix and satisfies

Π̂†p0 = p1.

The solution Π̂ is seen as a correction of Π so as to
agree with the given marginal vectors. The scaling matrices
can be obtained by a convergent iteration of scaling columns
and rows accordingly. Moreover, it can be shown that this
process provides a new law for the Markov chain for which
the joint probability law (given by p(i, j) = π̂(i, j)p0(i))
between states at two points in time for the Markov chain,
is closest in the relative entropy sense to the “prior” law
(given by π(i, j)p0(i)) and subject to being consistent with
the given marginals. For background and further references
see [7], [8].

The purpose of the presentation will be to highlight key
points of the above theory and the context to discuss a non-
commutative generalization. Briefly, this pertains to Quantum
Channels [14, Chapter 2] that represent the noncommutative
counterparts of Markov transitions. Finite-dimensional non-
commutative probability spaces are composed of nonnegative
matrices having trace one, herein denoted by

D := {ρ ∈ Cn×n | ρ = ρ† ≥ 0 and trace ρ = 1}.

These are referred to as density matrices and encapsulate
the statistics of quantum systems–they are the analog of
probability vectors. Linear maps in this category are trace
preserving and completely positive (CPTP). Assuming for
notation convenience that both domain and range have the
same size, CPTP admit the representation

E† : D→ D : ρ −→ σ =
∑
i=1

EiρE
†
i , (1a)

with Ei ∈ Cn×n such that∑
i=1

E†iEi = I. (1b)

Throughout, I denotes the identity matrix. Condition (1b)
ensures that the map preserves the trace, i.e., that trace(σ) =
trace(ρ) = 1. Completely-positive refers to the property that,
besides the fact that E†(ρ) ≥ 0 for all ρ ≥ 0 (i.e., being a
positive map), if Ik denotes the identity map on Ck×k and ⊗



the tensor product, then Ik ⊗ E† is a positive map for all k.
The above so-called Kraus-representation (1a-1b) precisely
characterizes the CPTP property (see, e.g., [14, Chapter 2]).

The condition in Theorem 1 that requires strict positivity
of transition probabilities (π(i, j) > 0 for all indices), implies
that Π maps probability vectors into the open interior of the
probability simplex. Likewise, the following property that we
refer to as positivity improving,

E†(ρ) > 0 for any ρ ∈ D, (2)

amounts to having the image of E† contained in the interior
of the space of density matrices. Positivity improving can
be rephrased as having no pair of vectors w, v ∈ Cn such
that w†Eiv = 0 for all i ∈ {1, . . . , nE}. Interestingly, while
entry-wise positivity of a matrix is easy to ascertain, deter-
mining whether a given CPTP map is positivity improving
turns out to be NP-hard [9], [11].

While there are many similarities between quantum
channels and Markov evolution, there are also fundamental
differences. A departure from classical probability arises
in that, in general, there is no notion of joint probability
between the two ends of a quantum channel. This is due
to the fact that the order in which measurements take place
matters. For this reason, generalization of the problems of
Deming and Stephan, and Sinkhorn for Quantum channels
can more naturally be thought in the context of CPTP maps.

Sinkhorn’s theorem [5], [6] extends almost vebatim to
the noncommutative setting. In this context, the problem
amounts to scaling the two ends of the Quantum channel
so as modify the channel to be consistent with uniform
marginals, i.e., with

ρ0 =
1

n
I as well as ρ1 =

1

n
I.

We refer to CPTP maps with this property as doubly stochas-
tic. The precise result is:

Theorem 2: Given a positivity improving CPTP map
E†0:T , there exists a pair of square matrices χ0, χ1 unique
up to scaling by a constant such that

Ê†(·) := χ1

(
E†0:T (χ−10 (·)χ−†0 )

)
χ†1 (3)

is a doubly stochastic, i.e., Ê(I) = I as well as Ê†(I) = I .

This result was obtained by Gurvits [10, Theorem
4.7] and independently in [7] using a completely different
arguments. In [10] existence was established by construct-
ing certain natural potentials (locally scalable functionals)
whereas in [7] the proof was based on nonlinear Frobenius-
Perron theory and the Hilbert metric.

The full generalization of Theorem 1 to the noncom-
mutative case remains open. This will be the topic of the
presentation and it is more precisely stated below as a
conjecture (see also [7, Conjecture 1]):

Conjecture 1: Given a positivity improving CPTP map
E†0:T and two density matrices ρ0, ρ1, there exists a pair of
square matrices χ0, χ1 unique up to scaling by a constant
such that

Ê†(·) := χ1

(
E†0:T (χ−10 (·)χ−†0 )

)
χ†1 (4)

maps ρ0 into ρ1 and it is trace preserving, that is, Ê†(ρ0) =
ρ1 as well as Ê(I) = I .

In either, Theorem 2 and Conjecture 1, it is seen
that χ0χ

†
0 and χ1χ

†
1 play the role of the scaling matrices

D0 and D1, respectively. In fact, specialization of the two
statements to the commutative case (where, e.g., ρ0, ρ1, χ0,
χ1 are diagonal and the CPTP map reduces to a stochastic
matrix) can be seen to correspond precisely to their classical
counterpart in Theorem 1. The presentation will highlight the
context and overview the theory surrounding this problem.
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