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Spectral analysis based on the state covariance:
the maximum entropy spectrum and
linear fractional parametrization

Tryphon T.

Abstract—
Input spectra which are consistent with a given state
covariance of a linear filter, correspond to solutions of
an analytic interpolation problem. We derive an explicit
formula for the power spectrum with maximal entropy,
and provide a linear fraction parametrization of all solu-
tions.

Keywords: Analytic interpolation, covariance realization.

I. INTRODUCTION

IVEN a finite-dimensional linear filter which is driven
by a multivariable stationary stochastic process, and
given the covariance of the state vector, the family of all in-
put spectra which are consistent with such data correspond
to solutions of an analytic interpolation problem [12,13].
More specifically, consider the (discrete-time) state equa-
tions
= Axy_1+ Buyg, for k € Z. (1)
As usual z, € C*, A € C**™, B € C"*™, rank(B) = m,
(A, B) is a controllable pair, and the eigenvalues of A have
modulus < 1. Now, ifup € C™ (k=...,-1,0,1,...) is a
zero-mean stationary stochastic process and

Tk

Y= E&{xpxy}

is the state covariance (with £ being the expectation opera-
tor and * denoting “complex-conjugate transpose”), then it
is shown in [13] that the following two equivalent conditions
hold:
Y — AYA*
B*

B

rank 0l= 2m (2)

and,

Y — AYA* = BH + H*B* for some H € C™*".  (3)
It is also shown that if either (2) or (3) holds and if ¥ is
positive semi-definite, then there exists a suitable station-
ary input process uy giving rise to X as the state covariance
of (1).

A finite non-negative matrix-valued measure du(f) with
0 € (—m, 7r] represents the power spectrum of a stationary
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vector-valued stochastic process. It also specifies a matrix-
valued function

b 1 +/\€j£0

F(}) =/_w (1—)@#9)
with jc an arbitrary skew-Hermitian constant, which is an-
alytic in the open unit disc D := {A € C : |A\] < 1} and has
non-negative definite real part. In general, the class of such
positive-real functions F(A) will be denoted by F and the
class of bounded non-negative measures by M. In fact these
two families are in exact correspondence via (4) (modulo
the skew-Hermitian constant,) and the fact that du(6) can
be recovered by the radial limits of the real part of F'())
(or, the Hermitian part in case F'(\) is matrix-valued; cf.

[13]):
()

Let du(f) represent the spectrum of the input to (1)
with A, B,X, H and F()\) as above. Let also C' € C™*",
D € C™*™ be selected so that

V(A):= D+ AC(I — M) 'B

du(0
u()ﬂ.c,
27

(4)

du(9) ~ lim R(F (re’’)).

(6)
is inner, i.e., V()*V(£) = I for all |£] = 1, where I is the
identity matrix of size determined from the context. (Since
V(X) is square, V(§)V (£)* = I as well.) Then

FA)=HI-XA)"'B+QM\V()) (7

for a matrix-valued function Q(\) which is analytic in D.
Conversely, if F(\) € F and satisfies (7), the real part of
F()) gives rise via (5) to a measure which is consistent
with the state-covariance ¥. Equation (7) is akin to the
Nehari problem encountered in H, control theory, but in-
volves interpolation with positive-real functions instead of
functions in Heo (D).

The characterization of state covariances via (2-3) and
the connection of admissible power spectra to the ana-
lytic interpolation problem (7) are the main results in
[13]. The necessity of both (2-3) and (7) are algebraic
facts. However, the sufficiency requires the solvability of
(7) in F when ¥ > 0. This was accomplished in [13] via
“one-step-extensions” and thus, admissible spectra were
parametrized by an infinite sequence of contractive param-
eters. The purpose of the present paper is to focus on
the case where ¥ > 0 and provide an explicit formula for
the “maximum-entropy” solution as well as give an explicit
parametrization of all F-solutions to (7) via a suitable lin-
ear fractional transformation (LFT) of a “free parameter”.



Analytic interpolation has a history of over 100 years.
Hence many of ideas we use are not new. In fact, in the
process of developing the theory, we will see the analogs of
the Szegi-Geronimus orthogonal polynomials and for the
parametrization we will use J-inner/outer factorization a la
Ball-Helton. The derivations and forumulae are expressed
directly in terms of the state matrices of the filter and can
be readily implemented as a computer algorithm. A by-
product of this approach is an alternative derivations of
results in [13].

Besides the purely system theoretic interest in the ques-
tion of characterizing input spectra consistent with state
covariance statistics, the theory gives rise to promising new
techniques for high resolution spectral analysis. In fact,
the framework we describe encompasses most of the so-
called modern nonlinear methods of spectral analysis (like
maximum-entropy, MUSIC, ESPRIT, Capon, etc.) and
adds a new dimension to the design of such algorithms.
This new component is the selection of the state filter (1).
Judicious choice of the filter yields a substantial improve-
ment in resolution over state of-the-art. This was demon-
strated in [12] for the case of scalar input processes while
the present work allows dealing with vectorial processes as
well. The potential benefits are highlighted with a (scalar)
example where we utilize the maximimum entropy solution.
The relevance of such techniques to a truly multivariable
situation (e.g., in polarimetric synthetic aperture radar)
will be the subject of a future publication.

Section IT provides mostly notation. Section IIT starts
off with basics of multivariable prediction theory and de-
velops a formula for the maximum entropy spectrum which
is consistent with a given state-covariance matrix ¥ > 0.
Section IV develops a linear fractional description of so-
lutions to (7), and hence of input spectra consistent with
¥ > 0. The formulae are worked out in detail only for the
case of a non-singular ¥. Section V gives a characteriza-
tion of state-covariances of continuous-time filters based on
filter parameters— i.e., the continuous-time version of the
key result in [13]. Section VI introduces a fractal spectrum
(i-e., one with detail at all scales) as a testbed for high reso-
lution algorithms and presents how the maximum entropy
estimate performs via simulation. Finally, for complete-
ness, we include in an appendix (Section VII) the proof of
a technical lemma on J-contractive functions.

II. NOTATION AND SIMPLIFYING ASSUMPTIONS

Because (1) is finite-dimensional, we will need to deal
mostly with rational functions which are then conveniently
expressed via state-matrices. For general A, B,C,D matri-
ces of compatible size, we use the notation

Al B
C|D
to display the state matrices of a transfer function M(X) =
D+ XC(I — MA)~1B while
B
D

K

M) =
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is used to denote the corresponding block matrix of the
packed space-state data. A function is said to be outer if it
is analytic in D and has an analytic right inverse, inner if
it is analytic in D and an isometry on the boundary (e.g.,
M(e9%)*M(e??) = I). Similarly, co-outer and co-inner
refer to left invertibility and co-isometry, respectively.

Begin with a given pair (A, B) where A has all its eigen-
values in . A change of coordinates in (1) transforms
A+ TAT!, B~ TB and accordingly ¥ — TXT* where
T an invertible matrix as usual. Such a tranformation can
always bring (A, B) into a form where

AA* +BB* =1. (8)

Consider matrices C, D which complete [4, B] into the
unitary matrix
U:= [

It is easy to show that V()\) obtained as in (6) is unitary
on the unit circle (hence, both inner and co-inner). When
the state matrices transform as above, the state covariance
undergoes a congruence trasformation ¥ — TXT™*. The
normalization of the problem data (A, B,C,D,¥Y) so that
(8) holds, will be assumed throughout as it simplifies the
algebra. In particular, the fact that U is unitary provides
a number of useful identities such as AC* + BD* = 0,
A*A+ C*C =1, etc.

Given the data (A4,B,Y), then a spectral measure
du(0) € M is consistent with it iff

$= / 7; (G(eﬂ‘(’)d‘;—f)G(eﬂ)*) , )

A B
C D |’

where

G(\) :== (I =) A)"'B. (10)

We denote by My, the set of such consistent distributions:
My = {du(f) € M : equation (9) holds}.

For the most part (A, B) are omitted from the subscript.
One exception to this is Remark 4 where the notation
Ms 4,p is used instead.

As usual, Hs denotes the Hardy space of functions on
the circle which are square-integrable and have vanishing
negative Fourier coefficients. These have analytic contin-
uation in . When dealing with vectorial functions these
will typically be row-valued. In particular,

K = Hy*™ o Hy ™V (\)

will represent 1xm vector-valued functions in H3*™ which
are orthogonal to Hy*™V(\). Clearly Hy*™V (), is in-
variant under multiplication by the shift operator A. (The
Beurling-Lax theorem asserts that in fact is the form of all
possible such invariant subspaces, e.g., see [17, page 11].)
It follows that K is a subspace which is invariant under
the adjoint of A—which is the left shift followed by projec-
tion onto H5*™. (Accordingly, K exemplifies all possible
“co-invariant” subspaces.)
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III. MULTIVARIATE PREDICTION THEORY

Starting with a multivariable stochastic process uj hav-
ing spectral distribution ¢ € M, a Gram matricial struc-
ture can be defined on the space of p X m matrix-valued
functions on the circle (see [16, pages 353, 361]) via

27

(@), b(M)an = b(e’)du(@)a(e’)*

0
= & beur—0)O_ arui—)*}
¢ 4

(11)

where ay, by are the Laurent coeffients of a(\), b(\), respec-
tively. Evidently there is a natural correspondence

Z a[)\l = Z apUp_¢,
/4 /4

between functions on the unit circle and linear functions of
ug, under which the respective gram-matricial inner prod-
ucts in these two spaces agree—where the gram-matricial
inner product in the latter is defined as in (12).

A suitable norm (or, possibly, pseudo-norm depending
on whether dy is positive definite or only semi-definite) is

(12)

Jalu = [trace(a(X), a(A))au]? -

It turns out that the space of functions which are bounded
in this norm is complete. This is denoted by 5532" [0, 27].
Accordingly, the subspace of functions with vanishing neg-
ative Fourier coefficients is denoted by H3;*[0,27]. The
integral in (11) was first defined and studied by Rosenberg
and Rosanov (see Masani [16, Sections 5, 6]). In the se-
quel we explore the geometry of L3 4,[0,27], albeit focus-
ing mostly on certain finite dimensional subspaces. This
makes the analysis especially straightforward. For repre-
senting rational functions and carying out the necessary
algebra we will use a state-space formalism.

A. Prediction in K™

In view of (12), any matrix-valued function

h(X) =D e (13)
£=0
with vanishing negative Fourier coefficients and

corresponds to

h()\) = U — ﬁk\k—l
which can be interpreted as a “one-step-ahead prediction
error”. The “predictor”, which may not be optimal in any

particular way, is the respective linear combination of past
values of uy:

oo
Upjp—1 = — E heug—¢.
=1

With this in mind we first seek a least-variance one-step-
ahead prediction error which is made up of elements in /.

(In the “time domain” this will amount to a linear function
of the state vector of (1).) Thus, we seek an element in X™,
i.e., a m x n matrix-valued function with rows in K, hence
of the form

I'G(X\) with I' e C™*™.,

The variance of the prediction error is
(TGN, TG(N)au = T(G(N), G(N)a I” = TSI,
while the constraint (14) becomes
rB=1.

We summarize the facts related to the minimizing solution:

Lemma 1: Let B full column rank, ¥ > 0, and

r'=(B*s'B)"'B*x'. (15)
Then
Q:=TYr* < S0 (16)

for any It € C™*™ which satisfies I1 # ' and INB = I.
Moreover,
Q= (B*3"'B)~'. (17)

Proof: Set I't = I'+ X where XB = 0 and simply
observe that

3T =TT + XXX

Since ¥ > 0, I' is the minimizing solution. [ |
Thus, the “minimal prediction error” is unique and given
by
J(\) := I'G()).

Remark 1: Tt is interesting to note that, if V(A) =
Vi(N)Va(A)... V(N and accordingly,

Ki=HPOVI(N) ... ViHD,

then the sequence of &;()\)’s are analogs of the Szego-
Geronimus orthogonal polynomials of the first kind (cf. [7]).
Recurrence relations which are analogous to the Szego-
Levinson ones of the classical orthogonal polynomials can
be obtained for these matrix-valued functions as well. This
is a vast topic for a future occasion. |

It is a classical fact that the Szegd-Geronimus orthog-
onal polynomials have roots inside the unit circle. In
fact all stable polynomials arise as orthogonal polynomials
for a suitable Pick-Toepliz matrix. The Routh-Hurwitz-
Schur-Cohn-like tests for stability in one way or another
rely on testing the positivity of the corresponding Pick-
Toeplitz matrix which in our case is none other than X.
The Pick/Toeplitz matrix is key to a Lyapunov-function-
based proof of stability. We now follow such steps for the
matricial case at hand:

Proposition 1: If ¥ > 0 and &(\) as above, then ¢(}\) is
invertible in the closed unit disc .

Proof: We can verify by direct algebra that

$(\)"' =T —TAXNI—-AA—BTl'A4)™'B,  (18)



and that

S = BQOB*+(A-BrA)X(A-BrA)*. (19)
Since the pair (A, B) is controllable, so is (A — BI'A, B).
Since ¥ > 0, we deduce from (19) that A — BI'A has all
eigenvalues in ), and hence @(\)~! is analytic in D as

claimed. ]

B. Mazimum entropy solution

The determinant of the variance of error of the optimal
one-step-ahead predictor is given by a determinental ver-
sion of the Szegd-Kolmogorov expression:

E() = exp {% / " log det(p(Q))dG}

—m

(cf. [16]). In the above formula “f(f) designates the deriva-
tive of u(8) which exists a.e. on [—7,w]. The exponent

™
T(p) = — / log det((6))d8
2 J_,
is in fact the entropy rate of the process.

In our setting, p is not known except for the fact that
it yields a known state-covariance. Thus, all candidate
spectral distributions for uy satisfy

(G,G)ay = 3.

Out of all such spectral distributions we seek one which
maximizes the entropy integral I(u), or equivalently E(u).
Theorem 1: Let ¥ > 0. The positive-definite measure

dpo(8) = (qs(ejﬂ)*lsrl (@(eﬂ)*l)*) d8
is the unique solution to

argmax{I(p) : dup>0and (G,G)q, =% }. (20)

Further, the maximal value of the functional is log(det(2)).

Proof: ~We begin by showing that (G,G)a,, = X.
To this end we first obtain a minimal realization for the
product
G\ o)yt = (I-)A)'Bx
(I —T'ANI — XA - BTI'A))™'B)

= (I—-XA—-BrA)™'B=:G,\).

The above reduction amounts to removing uncontrollable
dynamics. It now follows that

™

(G,G)ap, = / G,(e7)0G,(e%)*df

-

is the unique solution of the Lyapunov equation (19). This
solution is X.

For the second part we need to show that for any other
distribution the entropy integral assumes a larger value.
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This will follow from comparison of the variance of opti-
mal one-step-ahead prediction errors corresponding to such
distributions.

Observe that $~! has vanishing negative Fourier coeffi-
cients and a value at the origin equal to the identity. Hence,
if h(A) is any function with these same property (i.e., equal
to I at the origin and vanishing negative Fourier coeffi-
cients), this property is also shared by their product h@—1.
It follows that

(hyhYap, = (h® " hd ")qap
> 0

with equality only if A(A\)®~1(\) = 1. But Q = (9, 8)q,,.
Thus, & is a unique minimal element in Hg};om. Therefore,

(o) = log(det(£2)).

It is easy to see that if u is any other spectral distribution
for which (G,G)qu = X,

(&, B)g, = IST* = Q. (21)

Hence, the variance of the optimal prediction error of such
a distribution (i.e., for a choice in (21) possibly other than
?) is < Q. Therefore

I(p) < log(det(€2)) = I(uo)-

To see that the above holds in fact with a strict inequality
when p # o, consider two cases. First, assume that du
has a nontrivial singular part dus, while du, denotes its
absolutely continuous part. Because det(®) is nowhere zero
on the unit circle (@, ¢)4,, > 0. Hence,

<¢7 qj)du > <¢7 qj)dua-

The variance of the optimal prediction error for dy is iden-
tical to the one corresponding to the absolutely contin-
uous part. The latter however is less than or equal to
(@, B)du,- This proves the claim for the first case. In the
case where dy is absolutely continuous, it can be factored as
P(e?)Q,dOP(e??)* where P is outer and P(0) = I. Once
again,
<¢a é)du 2 Qla

with equality holding only when #(A\)P(A\) =T and Q =y
(from (21)). Hence the maximum entropy distribution is
unique. This completes the proof. |

Remark 2: Using lower case for denoting as in Geron-

imus [7] the normalized orthogonal polynomial of the first
kind, we have that

#(\) = (B'S™'B)"*B'S™ (I - AA)~'B.

The respective orthogonal polynomial of the second kind,
denoted by v(A), can be computed by seting

PN TP = BN + QY (),

and

PPN + (NN = I.
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It turns out that

PN =

We note that in contrast to the scalar interpolation problem
(Nevanlinna-Pick or, more generally, Sarason, cf. [9,10])
where both ¥(A), ¢(A) belong to K, here ¢(A) € K™ while
P(A) € K™

Using the above expressions it follows that the
“maximum-entropy” (positive real) interpolant for which

(B'S™'B)"2(I - B'S (I — AA) L H').

dpo(6) = R{Fur ()},
is
Fup(\) = ¢(N)7'9()
- AvEe | Bur
B (CME Dyg )’ (22)
where
Ayr = (I-B(B'S"'B)"'B'S™H)4
Byg = BB'S'B)'+(I-BB'2'B)'B'THH
Cug = —-(B'YS'B)"'B'="'4
Dvr = (B'L'B)'(I-B'S'H).
O

IV. LINEAR FRACTIONAL DESCRIPTION

In this section we give a linear fractional transforma-
tion (LFT) description of all F-functions which satisfy (7).
This is stated as Theorem 2. The boundary limits of their
real part define all spectra consistent with the given state
covariance Y. as before.

Herein J represents a certain specified signature matrix.
The section is organized as follows: we first describe the
structure of J-inner functions, we then derive formulae for
J-inner-outer factorization of a matrix whose range con-
tains the graphs of interpolants, and we finally establish
an LFT parametetrization with coefficients the entries of
the aforementioned J-inner factor.

A. J-expansive functions

First we give a description of J-inner matrix functions
which are also expansive in D.

Lemma 2: Let J be a ¢ x g signature matrix, S be an xn
negative semi-definite matrix, and A € C"*", D € C?*9,
B,C' € C*4, with A having eigenvalues of modulus less
than 1. Define

A B
u= ¢ o)
S 0
J = [o J]
V() = D+ - \A)!B. (23)
If
UwaJu=J, (24)

then V() satisfies

V() IV(Q)
VIV =

Proof: This is a well-known lemma which is often
presented in a dual form cast for J-contractive functions.
For related material see [8]. For completeness of the expo-
sition we provide a proof in the appendix given as Section
VIL [ ]

A matrix-valued function which satisfies (25-26) is said
to be J-lossless (or, inner) on the circle and J-expansive
on the unit disc. We will refer to it as J-expansive, for
short. An important point is that if V() and U are as in
the lemma, then also

IN

J for |[¢| > 1, and
J for |¢| = 1.

(25)
(26)

UJ u* J L as well as (27)
V(QJIV()* > Jfor|¢| <1, and (28)
V(QJIV(Q)* = Jfor[(]=1. (29)

In the sequel we will need to consider the following two
specific signature matrices

JO::[I 0

0 —I

]andJl::[I 0

0 I ]

and hence we introduce this “subscript notation” to dif-
ferentiate when necessary. Obviously, they are congruent
since Jy = T J;T* with T the unitary matrix

1 I I
T._E[I —I]' (30)
We conclude the section with a standard lemma pointing
to a relationship between elements of a Jy-expansive func-
tions (see [5]) (which of course, translated accordingly, is

inherited by elements of J;-expansive functions).
Lemma 3: Let J = J, and

be rational and J,-expansive.  Then, a()\)~'b(\) and
c(A)a(\)~! are both analytic in the closed unit disc and con-
tractive, i.e., [|a(€)71B(€)|| < 1 as well as ||c(&)a(é) ]| < 1
for [|¢]] < 1.

Proof: Since L;(§)JL;(£)* > J for all £ € D,

a(€)(a(€))" = b(&)(b(&)" > 1.

We conclude that a(§) is invertible as well as
la(€&)~1b(¢)|] < 1 as claimed. The case of ¢(A)a(X)?! is
similar and requires using the fact that L;(§)* JL;(&) > J.

|

B. J-inner/outer factorization

Most of the steps below require straightforward algebra.
The only delicate point is in dealing with the case where
the state matrix A is singular. In this case, D is singular



as well, due to the fact that U is unitary, and certain alge-
braic identities hold between the block partitions and their
pseudo-inverses. In general, Mt denotes the pseudo-inverse
of a matrix M, and it holds that M M?" is an orthogonal
projection. We will need the fact shown next.

Lemma 4: Let

|

be a unitary matrix, then

A B
Cc D

A— BD'C

Proof: The (Moore-Penrose) pseudoinverse of A* is
the unique solution X of the matrix equations [14, page

243]:

XA*X
A*X A*
(A" X)"
(X A7)

(4!

X
A*
(X A7)

(A*X)*.

For X = A — BD'C we verify that

XA*X = (A-BD'C)A*(A-BD'C)

(I — BB* + BD'DB*)(A — BD'0)

(I — B(I — D'D)B*)(A — BD'(C)
— BD'C - B(I - D'D)B*A

—-B(I - D'D)B*BD'C

Il

= A

= A-BD'C=X,

because

(I - D'D)B*A = (I - D*(D*)")(-D*C) =0

while B(I — D'D)B*BD1C is equal to

B(I - D'D)(I — D*D)D'C

= B(I-D'D)D'C - B(I - D*(D*)")D*DDIC

= 0.

The remaining identities are shown in a similar manner. W
Proposition 2: Let A,B,H,%,G(\),V(A) with ¥ > 0 as

before. Specialize .J := J;, and define

KO = [

I HG(\)

V(A

-B H*

cx—1t

. A
K,()\) = HAY T

0

I HB

HA I
c 0

and

Ri= [ Cx ' A*H*

( A | ='B (B-X"'(BHB+ H*))D!

HAY 'A*H* - HB - B*H*
—-D

HAY-1C* — D* ] that
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Then . .
K(XA) = Ko, (MKi(N), (32)
K,(\) is outer, (33)
—R is congruent to J, (34)
|det(R)| =1, (35)

and for any constant matrix R; such that —R = Ry JR],
Ki(\) := Ry Ki(\)
is J-expansive.

With R, IA{O, etc. as above, we denote

A

Ko(\) := Ko(A\)Ry.

Then
K\ = K,(\)Ki(\)

is a factorization of K ()) into an outer times a J-expansive
factor.

Proof: We directly verify that

A0 -B  H*
NN X A 2B Y
K W& = | —gas= 72 I HB ’
cxt ¢ ‘ 0 D
where

X = X'BHAX™' +BDCcxy™!
-%"Y(BHB + H*)D'Cx ™!
Y = BD'D-X YBHB+ H*)D'D+ X 'BHB.

Changing coordinates in the state space of the above sys-
tem via A — T7YAT, C— CT, B+ T~ !B, with

I 0
re[ 48]
isolates the “unobservable modes” of the product
K,(A)K;(\) by bringing the state matrices into the fol-

lowing form

A 0 ‘ -B H*
: : 0 A 0 B
ENKEN=|——g1 171775 | 36
o ¢ 0

which, after eliminating the unobservable modes, is pre-
cisely K(A). The only nontrivial computation needed to
verify (36) is to show that

X-2'44+4A%1 = 0, and (37)
Y+3S'H* = B. (38)

) 'We first show (37). Begin with the identity A'A =

A* (AT = A = AA*(A*)1, let A =¥~ 2A4A%2, and multi-
ply the resulting expression on both sides by ¥3. It follows

AY = (ADA*) (AT (39)
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Substituting in the right hand side AXA* and (A*)! from
(3) and (31), respectively, we obtain that

AY. = (X — BH — H*B*)(A — BD'0).

Re-ordering terms and multiplying on both sides by X!
gives (37). To show (38) we first observe that

H*+BHB-%B = H*+BHB

—(ASA* + BH + H*B*)B

= H* - ASA*B-H*B*B

H* + ASC*D — H*(I — D*D)
(ASC* + H*D*)D, (40)

where we have used (3) in the first step and, subsequently,
the fact that U is unitary (hence B*B = I — D*D and
A*B = —C*D). Thus,

(H*+ BHB - ¥B)(I - D'D) =0, (41)

since, from (40), the rows of the first factor are annihilated
by I — D'D. Re-ordering (41) gives (38). Hence, (32) has
been established.

Next we argue that K,()\) is outer. This fact can be
verified directly by computing the state matrix of K,())~!
from the realization given in the proposition. This is

A,:= A-[ S-'B, (B—S-(BHB+ H*))D! | [ 4 ]
= A-BD'C-%"'BHA+X YBHB+ H*)D'C
= AN -2 'BH(A! + = H*DIC

We now claim that IC, is invertible. To see this note that
det ( A " ]
-B
0

cz' D
et ([ AS+BHA H*+BHB
N C D

det (ka) =

_[ HAS! HB][

) /deuts

where in the first step the expression is derived as the de-
terminant of the Schur complement of Ki pivoted about
the entry I. The second identity follows by simply factor-
ing out det(X) from the earlier determinental expression.
Thus, we only need to verify that

A+ BHA H*+ BHB
c D

is non-singular. To this end we multiply this matrix on the
right with the unitary matrix
B* D*

o5 5]

to obtain
Y AYXC* 4+ H*D*
0 I

which is invertible. Thus, K; is invertible and moreover,

A~

det(K;) = 1. (43)

From (42) it follows that readily that —R is invertible and
congruent to J, i.e., it has the same signature. From (43)
and (42) we also conclude (35).

= (A —27Y(Z - ATA* — H*B*)(A)' + =7'H*D'C  We finally show that K; is J-expansive. If K; denotes

= Y ASA AN + 2 H*B* (ANt + = tH* DO
= YA + 2 H*(B*(A*) + DtC)

where in the last step we used (39). The second term van-
ishes because

B*(A")'+D'C = B*(A-BD'C)+D'C
= —-D*C—(I-D*D)D'C +D'C
= D*(I-DDhHC
= D*(I-D*D"HC =o0.

Hence 4, = Y71 AY with all its eigenvalues in ). Therefore
K,()) is outer as claimed.

We now show (34). Pack the system matrices of K;(\)
into

A A —-B H*
K= HAY! I HB
cxt 0 D

It is easy to verify by direct (but lengthy) algebra that

’Q[—E 0 -3 0 ] (42)

0 J]’Ciz[o ~R

the corresponding matrix containing state-space data, i.e.,

[T 0 ],
’Cz’ = I 0 Rl_l ] ICZ';
then
-2 0] - 0
K; [ 0 J| K; = 0 J ] (44)
Using Lemma 2, the claim is established. |

Remark 3: Tt is interesting to pursue the algebra leading
to (42) a bit further. If S := —R~! then

¥l 0 ¥t 0
o s]e = [0 g
By writing explicitely the relations between known quanti-

ties and the entries of S it is easy to see that the (1, 1)-block
entry of S is

Ki

(45)

S11 = —-B*Y'B.

By virtue of the fact that S = —R~!, this relates to the
inverse of a corresponding Schur compliment of R, in fact:

(Ros — Ri2R;'Ry1) ™t = B*S7'B.



The expression on the left hand side appears in the
parametric description of solutions given in [13] via one-
step-extensions.  Thus, (B*X~'B)~'/2? represents the
“left” uncertainty radius while (already given in [13])
(CE~1C*)~1/2 represents the “right” uncertainty radius.
Throughout, all inverses exist since B, C* are assumed to
have full column rank and ¥ is positive definite. (If any of
these assumptions is omitted then analogous formulae are
still valid with pseudo-inverses replacing the inverses. How-
ever, the algebra for verifying these is significantly more
tedious.) O

Remark 4: We explain another way of dealing with a sin-
gular state matrix A. To this end we temporarily modify
the notation My, into My 4 g, so that the parameters A, B
of the relevant filter are shown explicitely. Let L € C™*"
be such that A— BL has eigenvalues in D— {0} and consider
the system

T = (A — BL).’Ek_l + B(uk + Lil':k_l)
= Arzp_1 + Buy.

The state covariance is again ¥ while the spectral measure
of the input process vy, is now

dpy(8) = (I + e’ LG(e)du(8)(I + e’ LG ()", (48)

Since
(I +ALGAN) ' =T1—-AL(I —)AL)™'B

is analytic, du(6) can be determined from du, (6) using (48)
as well. Hence there is a bijective correspondence between
the two solution sets

du(0) € M, 4,5 < dpy(0) € My, a, B

and the data of the problem modified so that the “new”
state matrix is nonsingular. O

Remark 5: Although it is very easy to effect the factor-
ization —R = R;JR; (e.g., using singular value decompo-
sition of R), we do not know if there is a particular value
for the factor Ry which can be expressed directly in terms
A, B,C,D,H and ¥ in “closed form”. Such an expression
would be highly desirable. m|

We continue with the main result of the section which
characterizes all positive real solutions to (7) via a suitable
LFT.

C. LFT Parametrization

We denote by S, the open unit ball of matrix-valued
function in H, i.e.,

So = {Y()\) : analytic in D and sup||Y(§)]] < 1} .
¢eD

For simplicity of the presentation we restrict our attention
to solutions of (7) in the interior F which will be denoted
by

F, := {F()\) : analytic in D and gr&%%{F(@} > 0} .
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Here, since F'(£) is a matrix, R signifies the “Hermitian part
of”. The two sets S, and F, are in bijective correspondence
via

FO)=I+Y\) I -Y(N)

and the parametrization given below can equally well be
expressed in terms of a free parameter belonging to either
of these sets.

Theorem 2: Let A, B, H,X,G()\),V()\) with ¥ > 0 as be-
fore, and K;(A) as in Proposition 2. Then, a function F())
is in F, and satisfies

FQA) =HGA) + QN)V(A) (49)
with @Q()\) analytic in D, if and only if
F(\) =FR(\) 'R0 (50)

with
(R, BN ] =[I+Y0), I-Y(\) ]Ki))
and Y () € S,. oy
Proof: We first show the “if” part. So let
F(\) = (N Ey(N)

with (51) being valid and Y (X) € S,. Then

[ ) + B2(V), Fi(A) - F() [ =[1, Y() [ L}

N =

where L;(\) = TK;(A\)T and T as in (30). Clearly, L;()) is
Jo-expansive. With a()), ¢()\) as in Lemma 3 we conclude
that,

AN +FO) = a) +YN)e(\)

a(N) (I +Y(Ne(Na(N)™)

is invertible in the closed unit disc. Since L;(\) is J,-
expansive and Y () strictly contractive,

Fi(§)* + Fo(¢)*
[ B + B, B -F© ]| f e L pir

is strictly positive for £ € D. From this it easily that Fy (€)+
F» (&) is invertible for all £ in the closed unit disc and that

(FL(€) + F2() ™ (Fu(€) — F2(6)) €S

It follows that Fi(€) is invertible D and that F'()\) € F,.
To see that F'()\) also satisfies (7) simply observe that

[T ANT'BRWN ] =] Zi(\), Z2(N) JKQN)
which follows from (51) and

[ Zl()\), ZQ()\) ] = F]_()\)il X

[T+Y()), T-Y(\) K,

Clearly Z;(A) = I and (7) follows.
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We now argue the validity of the converse. First note
that the set of solutions to (7), herein denoted by

P o= {F() =F,0\+QWV() €F,

with @Q(A) analytic in D} |
is convex. From the “if” part we know that how to con-

struct a particular element fo(A) € P of the required form
(50-51). In particular, we take Y (\) = 0. Then

(RO BRO] = [ T]1KX
and

[Ia fO()‘)] =

= [FWNY BN KO

= [ mo(N), no(A) ] Ki(A

[ I, FR(N)T'BO) ]

with mg(A) invertible on the closed unit disc. Now take
any other fi(\) € P and write it in the form

[T AN ] = [ a) JEX
[ mai(N), na(N) ] K(N).

We claim that m;y()) is invertible in the closed unit disc.
If this is not the case, then consider the continuous path

Q) =Q=7)fo(A\) +7f(A) €P

with 7 € [0,1] and denote m,,n, the corresponding con-
vex combination of mg(A), m1 (A), and ng(A), n1(A), respec-
tively. It follows that for some intermediate value 7 = 79,
M, (A) is singular on the boundary of D. Since K;(\) is
J-unitary on the boundary, it follows that the real part of
fro(A) is singular on the boundary. This contradicts our
assumption that f-(\) € P. Hence, m4(A) is invertible. It
can be also seen that m;(\)~1n;()\) € F,. We finally write
[ 1, AN ] = miN)[ I, miN) (N | K (N
mi(A) I +Y(\)™t x
[T+Y(N), T-Y(\) ]Ki)\

with Y'(A\) € S, and
mi(N) i (A) = ([ +Y (V) 1T =Y (V).
This completes the proof. |

V. CONTINUOUS-TIME FILTERS

Analogous results hold in the case of continuous-time
processes and systems. We summarize the analog of The-
orem 1 for this case along with a short proof.

Theorem 3: Let B € C**™, A € C"*™ be such that the
continuous-time system

&(t) = Ax(t) + Bu(t), t € R

is a controllable, the eigenvalues of A have negative real part,
and let ¥ € C**™ be a Hermitian positive definite matrix.

The matrix X is the stationary state covariance of the above
system for a suitable input process if and only if

([ SA+4s BY]_ [0 B
an =rank | 5. |-

B* 0
Proof: The necessity of the condition follows easily
as in the discrete-time case [13]. Simply write

(52)

5= /_Oo (jwI — A)~ Bdp(w)B* (—jwl — A*)!

where du(w) a nonnegative measure on R, and utilize the
algebraic identities A(sI — A)~! = s(sI — A)~! — T and
(—sI—A*)"1A* = —s(—sI—A*)"1—T to express AL+X A*
in the form

AS + YA* = —BH — H*B*, (53)

with
H= [ (p@p (s - 47,

The rank condition claimed is equivalent to the solvability
of (53), e.g., see [13, Proposition 1].

For the sufficiency we need to produce a suitable spec-
trum that generates ¥. To this end consider a rational
power spectrum of the form

o () = B(je) 5 (B(jw) 1)’

with
®(s) = I+Ci(sI-A)'B,
G = S(B'ST'B)"'B'ST — HE, and
Q = (B*S'B)~L.
We compute that
®(s) ! = I—Cy(sI—A) 'Band (54)
G(s)®(s)™" = (sI—A)7'B, (55)

where A1 = A — BC4. From (53) (which is equivalent to
the rank condition in the statement), it follows that

A% + A7 = —BOB*. (56)

Note that (41, BQB*) is a controllable pair since (A, B) is,
and also that BQB* > 0. From Lyapunov theory we know
that the above are sufficient to conclude that A; has all its
eigenvalues in the left half of the complex plane, and that
the solution ¥ of (56) is also given by

Y = / (jwI — Al)*lBQZ—“’B*(—jw — AL
oo T
= / (jwI — A)~' Bdp,(w)B* (—jwl — A*)™1.
This completes the proof. |

Remark 6: Tt is important to point out that, in general,
output covariances of linear systems can be characterized
neither by a rank condition, nor in terms of the solvability
of only a linear algebraic equation—cf. [11, Remark 2, page
786]. O
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VI. HIGH RESOLUTION ANALYSIS: AN EXAMPLE

The following academic example is intended to highlight
the potential relevance of the theory in high resolution
spectral analysis. We make no effort to compare with other
techniques except for the periodogram.

We consider a rather nontraditional spectrum with “de-
tail at all scales”—which is appropriate as a benchmark for
spectral analysis techniques. The ideal power spectrum is
“self similar”. The spectral distribution function, shown
in Figure 1, is the so-called “devil’s staircase” and is con-
structed as follows. Begin with an interval [fy, f2] (in our
case [0, 7]) where we set p(f1) = 0 and p(f2) = 1. Define
distribution p(f) to be constant and equal to %
over the middle third of the interval

f2—h fa—fi
[f1+ 3 3 ]7

and repeat the above indefinitely for the remaining two
thirds [fi, f1 + f2;f1] and [f1 + 2f2gf1,f2]. The spectral
distribution we construct in this way is continuous from
0 to 1 with derivative equal to 0 everywhere except on a
set of zero measure where it is not defined. The deriva-
tive of p which is the “spectral density” can be thought
of as consisting of infinitely many spectral lines of “zero
amplitude” each. It represents the power spectrum of a
deterministic signal which is impossible to draw. An ap-
proximation of it by a finite number of sinusoids of nonzero
amplitude—corresponding to the above process for drawing
1 terminated after finitely many steps—is drawn in Figure
2. It examplifies the fact that more lumps of spectral energy
become apparent at finer and finer scales.

,i+2

2

18 b

16 q
Spectral distribution function

(fractal “devil's staircase”)

14 q

121 b

1

0.8

0.6

0.4

0.2

Fig. 1.

An approximation of a process with such a spectrum was
generated by combining 2° = 1024 exponential sinusoids,

29
1 .
U = E 2_96-7(0£k+¢15)’
=1

with ¢, random and uniformly distributed in [0,27]. A
typical realization for u is shown in Figure 3.

Figure 4 shows a periodogram which was constructed
based on 1024 data points. Subplots (3,2) and (3,3) zoom
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Power spectrum

detail for frequencies
in[7,13]

detail

. I ) . ,
0.7 0.8 0.9 1 11 12 13
x10°
detal for frequencies
inf1, 1.1]
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1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 11

60

40
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0 100 200 300 400 500 600 700 800 900 1000

Fig. 3.

in onto the intervals [0.7,1.3] and [1, 1.1], respectively. It is
apparent that the resolution of the peridogram does not go
beyond the two spectral lumps which are located around
frequencies 1.01 and 1.04, respectively.

We present three sets of spectra constructed using
the maximum entropy formalism and estimated state-
covariances. The input-to-state filters that were utilized
in each case have progressively narrower bandpass charac-
teristic centered around 1.02. These filters are designed as
follows. Consider a state matrix A, consisting of a single
Jordan block

o 1 0
0 X 1
0 ... 1

with eigenvalue Ao = pe? and let B, = [0, 0,...0, 1]
Then, the “pass-band” of the corresponding input-to-state
frequency response ||G(e’?)]|| is centered around 6y. Typi-
cally, 6 is selected in the frequency range of interest. For
p = 0, 6y is irrelevant and the filter consists of simple
delay elements with [|G(e’?)|| constant over frequencies.
In this case, the state covariance is simply an ordinary
Toeplitz matrix made up of the covariance lags of u; and
the maximum-entropy formula in Theorem 2 reduces to the
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classical one (e.g., see [19]). In general, we have observed
that “balancing” the state matrices via similarity transfor-
mation A, = A = TA,T7 ! and B, » B = TB, so that
AA* + BB* =1 is beneficial for numerical reasons. This
is followed in our simulations.

Fig. 5.

For the three spectra in Figures 5-7 we took (n =
65, 0 = 0), (n = 20, = 0.65¢71:°?), and (n = 7,\ =
0.95e71-01) " respectively. In each case, we give three sub-
plots which differ as to the range of values for the fre-
quency axis—zooming in on to the interval of interest. The
first subplot contains in addition the frequency response
|G(e??|| of the corresponding filter drawn with a dotted
curve and suitably normalized.

The spectrum shown in Figure 5 amounts to an ordinary
maximum entropy based on 65 samples of the autocorrela-
tion function. The resolution in the neighborhood of, e.g.,
[1,1.1] is comparable to that of the periodogram.

In the spectrum in Figure 6 we observe that the spectral
lumps about 1.015 and 1.045 are more clearly pronounced.
Yet the next finer set of spectral lumps is not discernible.

Moving on to the spectrum shown in Figure 7, we ob-
serve that the spectral lump at 1.015 has now been resolved
into two adjacent lumps (centered about 1.01 and 1.02 re-
spectively) at the expense of accuracy /resolution elsewhere
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©
-

30 b

20 b

10 b
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1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 11

on the frequency axis.

We make the following further observations:

(i) As the pass band of the filters becomes progressively
narrower, their reliability diminishes outside the bandpass,
while inside, the resolution increases. This may be traced
to the fact that, in view of (9), the state covariance de-
pends more heavily on the part of the spectrum within the
passband.

(ii) Values of p close to 1, adversely affect variability of the
estimated state covariances. However, at the same time a
smaller size n for the filter and the corresponding state-
covariance can be afforded.

(iii) The limitations of methods based on second-order
statistics are due to statistical and numerical errors in
estimating the state-covariances. Thus, they are of a
different nature than the time-bandwidth limitations of
periodogram-based methods, and thus can exceed the res-
olution of Fourier transform methods under suitable con-
ditions.

The example we presented (i.e., one of a fractal spec-
trum) is suitable as a benchmark for testing high resolution
methods. The particular exercise in applying the maximum
entropy method while computing the state covariance via
a suitably tuned input-to-state filters, suggests the poten-
tial of the approach—though this is far from conclusive.
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Additional studies giving guidelines for filter design, and
establishing the limits to performance and the variance of
the estimators are needed.

VII. APPENDIX: PROOF OF LEMMA 2

Consider the dynamical system

T = C(Azp_1 + Buy,
yr = (Czp_1 + Duy,
where z_1 =0, k=0,1,..., and ( € D. With
1 ¢A B
U = [ ol

using equation (24) and the fact that S is negative semi-
definite, we deduce that

" _ EA* C_C* S 0 CA B
U gl = [B* D*Ho J][CC D]
_ [ KPS o
then that

ep Sty —ypdyr > zh_1Sxp—1 — ui Jug,

for all £ > 0, and then

4
D (upJur —ypJye) = 27, 8w <0 (57)

k=0

for all £> 0. Le., 77, ;ST¢41 represents a “storage” func-
tion. If we define the £ x £-block matrices

[ J
J
Jy = , and

i J
I D

(CB D

72,[ = : )

i CtCA1B (CB D

(which are block diagonal, and block lower triangular, re-
spectively), then from (57) follows that
T T > Je (58)

Since the eigenvalues of (A are inside the open unit disc,
the series

Ve(€) :=D + (CB+ CCAB+ ...+ (fcA*'B
converges as £ — 0o, while (58) implies that
Ve(Q)* IVe(Q) > J
for all £. Tt follows that
V()*JV(¢) > J for all ¢ € D.
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It remains to show that (59) holds with equality on the
unit circle. This is a consequence of the algebraic identity

VFATHIVA) =J
which is shown using (24):

VA Hhaviy) = DD

+ATIBH (I - A TtAn et gD

+AD*JC(I — N\A)'B

+B*(I - XA 'C*JC(I - MA)'B
= J-C*sC

—\TIB*A*(I — M\A*)71SB

—AB*S(I — MA)~*AB

+B*(I = X1A*) 1S — A*SA)(I - 2A)'B
= J
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