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Stochastic Bridges of Linear Systems
Yongxin Chen and Tryphon Georgiou

Abstract—We consider particles obeying Langevin dynamics
while being at known positions and having known velocities at the
two end-points of a given interval. Their motion in phase space
can be modeled as an Ornstein–Uhlenbeck process conditioned
at the two end-points—a generalization of the Brownian bridge.
Using standard ideas from stochastic optimal control we construct
a stochastic differential equation (SDE) that generates such a
bridge that agrees with the statistics of the conditioned process,
as a degenerate diffusion. Higher order linear diffusions are also
considered. In general, a time-varying drift is sufficient to modify
the prior SDE and meet the end-point conditions. When the drift
is obtained by solving a suitable differential Lyapunov equation,
the SDE models correctly the statistics of the bridge. These types
of models are relevant in controlling and modeling distribution of
particles and the interpolation of density functions.

Index Terms—Schrödinger bridge, stochastic differential equa-
tion (SDE).

I. INTRODUCTION

The theoretical foundations on how molecular dynamics affect large
scale properties of ensembles were laid down more than a hundred
years ago. A most prominent place among mathematical concepts has
been occupied by the Brownian motion which provides a basis for
studying diffusion and noise [1]–[4]. The Brownian motion is captured
by the mathematical model of a Wiener process, herein denoted by
w(t) [5], [6]. Brownian motion represents the random movement of
particles suspended in a fluid where their inertia is negligible compared
to viscous forces [7]. On the other hand, as in the present note, if we
want to take into account inertial effects under a “delta-correlated”
stationary Gaussian force field η(t) (i.e., white noise, loosely thought
of as dw/dt [1, p. 46]), we are led to the “Langevin model”

m
d2x(t)

dt2
= −λ

dx(t)

dt
+ η(t) (1)

here x represents position, m mass, t time, and λ viscous friction
parameter. The corresponding stochastic differential equations (SDE)

[
dx(t)
dv(t)

]
=

[
0 1
0 −λ/m

][
x(t)
v(t)

]
dt +

[
0

1/m

]
dw(t) (2)

where w is a Wiener process and v the velocity, is a degenerate
diffusion in that the stochastic term does not affect all degrees of
freedom.

Starting with a model for diffusive transport, the problem to con-
dition sample paths at the two ends of a time-interval has been
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considered as early as 1931, by Schrödinger [8]. A process is often
referred to as a “bridge” (as it forms a bridge that links the two
end-point conditions). A textbook example is the so-called Brownian
bridge [6, p. 35], which has a well-known representation via the SDE
(see [3], [5], [9])

dx(t) = − 1

1 − t
x(t)dt + dw(t). (3)

This represents trajectories of diffusive particles whose position is
“pinned” at the end-points of an interval where, e.g., x(0) = x(1) = 0,
while the drift term

u(t) = − 1

1 − t
x(t) (4)

can be viewed as a feedback control law added to the “prior evo-
lution” dx = dw so as to ensure the end-point condition. However,
the particular form of feedback ensures that the process has the same
statistics as the Brownian diffusion conditioned to meet the end-point
constraints. In another model, the bridge is to satisfy specified end-
point marginal distributions and it is then referred to as a Schrödinger
bridge [10]. Early impetus for the study of bridges was provided by
Schrödinger’s insight for an alternative mechanism to explain quantum
theory [11], [12]. The construction of a bridge between two given end-
point marginal densities, for non-degenerate diffusions, turned out to
be a stochastic control problem [13]. The study of important connec-
tions between bridges of non-degenerate diffusions, large deviations in
sample-path spaces, thermodynamics, and stochastic optimal control
ensued (see [14], [15] and the references therein).

Earlier literature on stochastic bridges focuses primarily on non-
degenerate diffusions where the stochastic term affects all directions
in the coordinate space. In this present note we have been motivated
by questions regarding the transport of particles having inertia. Thus,
in contrast, we consider bridges of diffusion processes as in (2)
where the diffusive coefficient may have a rank that is less than the
dimension of the coordinate space. In particular, we are interested
in an Ornstein–Uhlenbeck bridge pinned at two end-points in phase
space. Such a model is natural when considering transport of particles
in regimes where viscous forces are negligible (e.g., in rarefied gas
dynamics) as well as in modeling RLC networks with variables the
capacitor charges and the inductor currents and resistors that introduce
Johnson-Nyquist thermal noise. The latter play a central role in recent
applications of feedback control of nano to meter-sized resonators
[16], [17]. Models of bridges also appear in physical sciences, biol-
ogy, genetics, see e.g., [18]–[20] and are relevant in the problem to
interpolate density functions (in many-particle systems, power spectral
distributions, etc., cf. [21]–[23]).

In the present note we introduce a model for an Ornstein–Uhlenbeck
bridge as well as bridges of general linear time-varying dynamical
systems. We show that an SDE representation is available, akin to
(3), and that the respective drift term can be obtained by solving
the stochastic optimal control problem to ensure end-point conditions
(cf., [24]). For didactic purposes, we first explain the Brownian bridge
in a way that will be echoed in the construction of the SDE for the
Ornstein–Uhlenbeck bridge, followed by the construction of the SDE
for bridges of general linear time-varying systems. We finally note that
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in recent work, subsequent to this present correspondence, the subject
matter has been extended to Schrödinger bridges where the end-
point conditions represent specified marginals [25], [26]—the salient
issue in this is the ability to steer the density of a linear stochastic
system between the given marginals under general assumption on the
directionality of the diffusive and the drift (control) terms. One would
think that the ability to steer a linear stochastic system between Dirac
delta distributions, as shown in the present correspondence, suggests
also the ability to steer between more general marginals, however, the
technical details proved to be far from trivial and new insights were
necessary [25], [26].

II. BROWNIAN BRIDGE

The standard Brownian bridge is typically defined as a stochastic
process ξ on [0, 1] with ξ(0) = ξ(1) = 0, having continuous sample
paths, and taking values that are jointly normally distributed with

E {ξ(t)ξ(s)} = t(1 − s) for 0 ≤ t ≤ s ≤ 1.

Alternatively, it is often defined as a stochastic process with the same
statistics as w(t) − tw(1) and continuous sample paths; this is the
Brownian motion conditioned to satisfy the end-point constraints.
Below we consider the statistics of the Brownian bridge and outline
the construction of an SDE model for it.

A. Statistics of the Brownian Bridge

The Brownian bridge can be viewed as a standard Wiener process w
on [0, 1] conditioned on w(1) = 0. For t ≤ s, as before, we have that
the covariance at two points in time, s and t, is

E

{[
w(t)
w(s)
w(1)

]
[w(t), w(s), w(1)]

}
=

[
t t t
t s s
t s 1

]
. (5)

Therefore, the distribution of [w(t), w(s)]′ conditioned on w(1) = 0
is normal with zero mean and covariance

[
t(1 − t) t(1 − s)
t(1 − s) s(1 − s)

]
.

The latter is simply the Schur complement of (5) pivoted about its
(3,3) entry, which is the covariance of w(1). The covariance of the
conditioned process and joint normality of the values provide the law
for the Brownian bridge which agrees with those of the aforementioned
definitions.

B. Optimal Control and SDE Representation

We now consider the control problem to steer the Brownian motion
to a specified terminal point at the end of a given time interval [0, 1].
To this end, we consider the linear-quadratic stochastic optimal control
problem to minimize

E

⎧
⎨

⎩F ξ(1)2 +

1∫

0

u(τ)2dτ

⎫
⎬

⎭ (6)

with F > 0, subject to the dynamics

dξ(t) = u(t)dt + dw(t), ξ(0) = 0 a.s.

The optimal control is

uopt(t) = −p(t)ξ(t)

with p(t) satisfying the Riccati equation ṗ(t) = p2(t) and the bound-
ary condition p(1) = F . The value of the weight F impacts the
“spread” of the density function at the final time about the origin. In
the limit, as F → ∞, we obtain the control strategy of (6)

uopt(t) = − 1

1 − t
ξ(t). (7)

The corresponding “controlled” SDE

dξ(t) =uopt(t)dt + dw(t)

= − 1

1 − t
ξ(t)dt + dw(t) (8)

with ξ(0) = 0 a.s., generates a Brownian bridge as can be easily
verified [3, p. 132]. Indeed, the state transition of the deterministic
time-varying system with input r(t)

dξ

dt
= − 1

1 − t
ξ(t) + r(t)

which, for this first order system, coincides with the response at s to
an impulse at t, is

Φ(s, t) =
1 − s

1 − t
.

It follows that ξ has a representation as a stochastic integral:

ξ(t) =

t∫

0

1 − t

1 − τ
dw(τ)

for t < 1 and is a martingale. For t ≤ s < 1

E {ξ(t)ξ(s)} =

t∫

0

(1 − t)(1 − s)

(1 − τ)2
dτ

= t(1 − s)

as well as E{ξ(1)} = 0. By continuity, ξ(1) = 0 a.s. and therefore (8)
is a Brownian bridge.

III. ORNSTEIN–UHLENBECK BRIDGE

We now follow exactly the same steps in order to define a bridge
for the Ornstein–Uhlenbeck dynamics. Without loss of generality we
assume that there are no viscous forces and the mass is normalized to
one. Thus, we begin with the SDE

dξ(t) =

[
0 1
0 0

]
ξ(t)dt +

[
0
1

]
dw(t), ξ(0) = 0 a.s. (9a)

where

ξ(t) =

[
x(t)
v(t)

]

is the vectorial process composed of the position and velocity compo-
nents. We condition ξ to satisfy

ξ(1) = 0, a.s. (9b)

Any Gaussian process that shares the same statistics as ξ and has
continuous sample paths will be referred to as an Ornstein–Uhlenbeck
bridge. Below, we will establish in a manner that echoes the construc-
tion of the Brownian bridge that an SDE representation exists for such
a process.
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A. Statistics of the Ornstein–Uhlenbeck Bridge

To determine the statistics dictated by (9) we condition the “veloc-
ity” v(t), which in this case is a Wiener process, since dv(t) = dw(t),
to satisfy

v(0) =0 (10a)

v(1) =0 (10b)

x(1) =

1∫

0

v(τ) = 0 (10c)

while it is given that x(0) = 0. To this end, we first consider the
covariance of the vector

[v(t) v(s) v(1) x(1)]′

readily seen to be
⎡

⎢⎢⎣

t t t t − t2

2

t s s s − s2

2
t s 1 1

2

t − t2

2 s − s2

2
1
2

1
3

⎤

⎥⎥⎦ .

Therefore, the covariance of [v(t) v(s)]′ when conditioned on
[v(1) x(1)]′ being the zero vector, can be evaluated as the Schur
complement

[
t t

t s

]
−

[
t t − t2

2

s s − s2

2

][
1 1

2

1
2

1
3

]−1 [ t s

t − t2

2 s − s2

2

]
.

This is
[

−t(3t3 − 6t2 + 4t − 1) −t(s − 1)(3st − 3s + 1)
−t(s − 1)(3st − 3s + 1) −s(3s3 − 6s2 + 4s − 1)

]
.

B. Optimal Control and SDE Representation

Just like in the case of the Brownian bridge, we now consider the
linear-quadratic stochastic optimal control problem to minimize

E

⎧
⎨

⎩ξ(1)′F ξ(1) +

1∫

0

u(τ)′u(τ)dτ

⎫
⎬

⎭

subject to

dξ(t) =

[
0 1
0 0

]
ξ(t)dt +

[
0
1

]
u(t)dt +

[
0
1

]
dw(t) (11)

with initial condition ξ(0) = 0 a.s.. By solving the corresponding
Riccati equation and taking the limit as F → ∞, we obtain the control

u(t) = −
[

6

(1 − t)2
4

1 − t

]
ξ(t)

and consider the corresponding “controlled” SDE

dξ(t) =

[
0 1

− 6
(1−t)2

− 4
1−t

]
ξ(t)dt +

[
0
1

]
dw(t). (12)

We claim that (12) realizes the Ornstein–Uhlenbeck bridge. To estab-
lish this, we need to show that the statistics of solutions to (12) are
consistent with those of the “pinned” process generated by (9) derived

earlier. That is, for ξ(t)′ = [x(t), v(t)] it suffices to show that for
solutions of (12)

E {v(t)v(t)} = −t(3t3 − 6t2 + 4t − 1)

and

E {v(t)v(s)} = −t(s − 1)(3st − 3s + 1).

Since x(t) is
∫ t

0
v(τ)dτ in both cases, the statistics of x(t) will also be

consistent. The proof is given in Section IV for the more general case
of time-varying linear dynamics.

IV. THE BRIDGE FOR A TIME-VARYING LINEAR SYSTEM

We consider the linear SDE

dξ(t) = A(t)ξ(t)dt + B(t)dw(t) (13a)

with initial condition

ξ(0) = 0 a.s. (13b)

and are interested in solutions that are conditioned to satisfy

ξ(1) = 0 a.s. (13c)

as well. Below, we first determine the statistics of the pinned process
and then an SDE that generates the bridge.

A. Statistics of the Bridge

Since (13a) is a linear SDE driven by a Wiener process and
ξ(0) = 0, it follows that ξ(t) is a zero-mean Gaussian process. Thus,
we only need to determine second order statistics of the conditioned
process. The covariance of

[ξ(t)′ ξ(s)′ ξ(1)′]′

is
[

P (t) P (t)Φ(s, t)′ P (t)Φ(1, t)′

Φ(s, t)P (t) P (s) P (s)Φ(1, s)′

Φ(1, t)P (t) Φ(1, s)P (s) P (1)

]′

(14)

where Φ(s, t) is the state transition of (13a) and

P (t) = E {ξ(t)ξ(t)′}

satisfies the Lyapunov equation

Ṗ (t) = A(t)P (t) + P (t)A(t)′ + B(t)B(t)′. (15)

Since ξ(0) = 0 is given, P (0) = 0. Taking the Schur complement of
(14) gives the covariance of [ξ(t)′ ξ(s)′]′ conditioned on ξ(1) = 0 as

[
Q(t, t) Q(t, s)
Q(t, s)′ Q(s, s)

]

where

Q(t, s) = P (t)Φ(s, t)′ − P (t)Φ(1, t)′P (1)−1Φ(1, s)P (s). (16)

Any stochastic process that agrees with these statistics will be referred
to as a bridge of (13).
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B. SDE Representation

Once again let us consider the linear-quadratic stochastic optimiza-
tion problem to minimize

E

⎧
⎨

⎩ξ(1)′F ξ(1) +

1∫

0

u(τ)′u(τ)dτ

⎫
⎬

⎭

subject to the dynamics

dξ(t) = A(t)ξ(t)dt + B(t)u(t)dt + B(t)dw(t), ξ(0) = 0 a.s.

The optimal solution is

uopt(t) = −B(t)′P̂ (t)−1ξ(t)

where P̂ (t) satisfies the differential Lyapunov equation
˙̂P (t) = A(t)P̂ (t) + P̂ (t)A(t)′ − B(t)B(t)′ (17)

with boundary condition P̂ (1) = F−1. We consider the limiting case
of infinite terminal cost, i.e., F → ∞, corresponding to P̂ (1) = 0 and
verify that the corresponding controlled stochastic system realizes a
process with the sought statistics.

Proposition 1: Under the earlier notation and assumptions on
A, B, P̂ , w, the SDE

dξ(t) =
(
A(t) − B(t)B(t)′P̂ (t)−1

)
ξ(t)dt + B(t)dw(t) (18)

with ξ(0) = 0 a.s. generates a bridge of (13).
Proof: We only need to consider second order statistics of solu-

tions to (18) and establish that these coincide with the statistics com-
puted in Section IV-A. Hence, for 0 ≤ t ≤ s ≤ 1 we denote Q̂(t, s) =
E{ξ(t)ξ(s)′} to be the covariance of solutions to (18) and we will
show that Q̂(t, s) = Q(t, s). For simplicity we denote Q̂(t, t) = Q̂(t)
and the same for Q.

We first begin with

Q(t) = P (t) − P (t)Φ(1, t)′P (1)−1Φ(1, t)P (t) (19)

and show that it also satisfies the differential Lyapunov equation

Q̇(t) = Â(t)Q(t) + Q(t)Â(t)′ + B(t)B(t)′ (20)

for

Â(t) =
(
A(t) − B(t)B(t)′P̂ (t)−1

)

and, since Q(0) = 0, that indeed Q(t) = Q̂(t). To this end, consider
Q(t) as in (19). Then

Q̇(t) − Â(t)Q(t) − Q(t)Â(t)′ − B(t)B(t)′

= B(t)B(t)′G(t) + G(t)′B(t)B(t)′

where

G(t) = P̂ (t)−1Q(t) − Φ(1, t)′P (1)−1Φ(1, t)P (t)

= P̂ (t)−1P (t) − P̂ (t)−1T (t)Φ(1, t)′P (1)−1Φ(1, t)P (t)

and

T (t) = P (t) + P̂ (t).

From (15) and (17)

Ṫ (t) = A(t)T (t) + T (t)A(t)′

and therefore

T (t) = Φ(t, 0)T (0)Φ(t, 0)′

while T (0) = P̂ (0) and T (1) = P (1). Since

T (t)Φ(1, t)′P (1)−1Φ(1, t)

= Φ(t, 0)T (0)Φ(t, 0)′Φ(1, t)′P (1)−1Φ(1, t)

= Φ(t, 1)Φ(1, 0)T (0)Φ(1, 0)′P (1)−1Φ(1, t)

= Φ(t, 1)T (1)P (1)−1Φ(1, t) = I

the identity matrix, we deduce that

G(t) = P̂ (t)−1P (t) − P̂ (t)−1IP (t) = 0.

Therefore (20) holds and Q(t) = Q̂(t).
For general 0 ≤ t ≤ s ≤ 1

Q̂(t, s) = Q̂(t, t)Φ̂(s, t)′

where

∂Φ̂(s, t)

∂s
= Â(s)Φ̂(s, t).

Therefore

∂Q̂(t, s)

∂s
= Q̂(t, s)Â(s)′.

We now show that Q(t, s) satisfies the same differential equation,
i.e., that

∂Q(t, s)

∂s
= Q(t, s)Â(s)′. (21)

From (16) we deduce that

∂Q(t, s)

∂s
− Q(t, s)Â(s)′ = H(t, s)B(s)B(s)′

where

H(t, s) =Q(t, s)P̂ (s)−1 − P (t)Φ(1, t)′P (1)−1Φ(1, s)

=P (t)Φ(s, t)′P̂ (s)−1 − P (t)K(t, s)P̂ (s)−1.

But

K(t, s) =Φ(1, t)′P (1)−1Φ(1, s)T (s)

=Φ(1, t)′P (1)−1Φ(1, s)Φ(s, 0)T (0)Φ(s, 0)′

=Φ(1, t)′P (1)−1T (1)Φ(s, 1)′ = Φ(s, t)′.

Therefore H(t, s) = 0 and (21) holds. Since we already know that
Q(t, t) = Q̂(t, t), it follows that Q(t, s) = Q̂(t, s). This completes
the proof. !

V. BRIDGE WITH ARBITRARY BOUNDARY POINTS

So far we have discussed bridges with initial and terminal states
being 0. The more general case with nonzero initial and terminal states
is straightforward. More specifically, we consider the linear SDE

dξ(t) = A(t)ξ(t)dt + B(t)dw(t) (22a)

with initial condition

ξ(0) = ξ0 a.s. (22b)

while the process ξ(t) is conditioned to satisfy

ξ(1) = ξ1 a.s. (22c)

Here ξ0 and ξ1 are fixed values. Next, we determine the statistics of
the pinned process and then the SDE that generates the bridge.
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A. Statistics of the Bridge

The second order statistics of (22) coincide with those of (13).
Hence, we only need to compute first-order statistics. Considering only
(22a) and (22b)

E {ξ(t)} = Φ(t, 0)ξ0.

Thus, the conditional expectation of ξ(t), given ξ(1) = ξ1, is

L(t) = Φ(t, 0)ξ0 + P (t)Φ(1, t)′P (1)−1 (ξ1 − Φ(1, 0)ξ0) . (23)

B. SDE Representation

In order to enforce the terminal constraint (22c), we now penalize
the difference between ξ(1) and ξ1 and consider the linear-quadratic
optimal control problem to minimize

E

⎧
⎨

⎩(ξ(1) − ξ1)
′F (ξ(1) − ξ1) +

1∫

0

u(τ)′u(τ)dτ

⎫
⎬

⎭

subject to the dynamics

dξ(t) = A(t)ξ(t)dt + B(t)u(t)dt + B(t)dw(t), ξ(0) = ξ0 a.s.

The optimal solution is

uopt(t) = −B(t)′P̂ (t)−1 (ξ(t) − Φ(t, 1)ξ1)

where P̂ (t) satisfies the differential Lyapunov equation (17) with
boundary condition P̂ (1) = F−1. Once again the limit as F → ∞
corresponds to P̂ (1) = 0. We now verify that the resulting “con-
trolled” SDE realizes the sought bridge.

Proposition 2: Under the above assumptions on A, B, P̂ , and w,
the SDE

dξ(t) = Â(t)ξ(t)dt + B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1dt

+ B(t)dw(t), ξ(0) = ξ0 a.s.

with

Â(t) = A(t) − B(t)B(t)′P̂ (t)−1

generates a bridge of (22).
Proof: The second order statistics of (24) coincide with those of

(18) and, by Proposition 1 with those of (13) and therefore (22) as well.
Next we show that the first order statistics are also consistent. For this,
it suffices to show that L(t) in (23) satisfies

L̇(t) = Â(t)L(t) + B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1.

Using the same argument as in the proof of Proposition 1 we obtain

L̇(t) − Â(t)L(t) − B(t)B(t)′P̂ (t)−1Φ(t, 1)ξ1

= B(t)B(t)′P̂ (t)−1

×(Φ(t, 1) (ξ1 − Φ(1, 0)ξ0) + Φ(t, 0)ξ0 − Φ(t, 1)ξ1)

= 0.

This completes the proof. !

VI. ILLUSTRATIVE EXAMPLES

We consider a double integrator as in Section III with state ξ(t) =
[x(t) v(t)]′, and plot two representative sample paths of (12). More
specifically, Figs. 1 and 2 show position and velocity, respectively,
while Fig. 3 displays the two paths in phase space. Phase plots of a
2-dimensional Brownian bridge are shown in Fig. 4 for comparison.

Fig. 1. Position x(t) of Ornstein–Uhlenbeck bridge (for two representative
sample paths in black and gray, respectively).

Fig. 2. Velocity v(t) of Ornstein–Uhlenbeck bridge (for two representative
sample paths in black and gray, respectively).

Fig. 3. Phase plots of Ornstein–Uhlenbeck bridge two sample paths with
coordinates representing position and velocity (in black and gray, respectively).

VII. CONCLUSION

The present correspondence was motivated by questions regarding
the transport of particles having inertia. In this context, two typical
questions arise. How to steer the particles between given end-point
constraints and, how to model sample trajectories based on observed
end-point measurements. Traditionally such questions have been lim-
ited to diffusive particles where the stochastic excitation impacts all
directions in the coordinate space as in the Brownian bridge. Herein,
our aim has been to draw attention to the possibility of utilizing models
with diffusion coefficient of reduced rank. These are more suitable to
represent the movement of particles having inertia and be subject only
to stochastic forcing/acceleration.
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Fig. 4. Phase plots of two 2-dimensional Browian bridge sample paths with co-
ordinates representing two spacial directions (in black and gray, respectively).

Stochastic models for processes with linear dynamics, conditioned
on the two end-point constraints, are constructed using ideas from
stochastic optimal control. Indeed, the appropriate drift that ensures
that the statistics of the diffusion coincide with those of the bridge,
is obtained by solving a Lyapunov differential equation. The end-
point conditions can alternatively be viewed as Dirac distributions for
particles emanating and absorbed at particular points in phase space,
and the control problem that we solve here can be seen as steering
a corresponding Fokker-Planck equation between the two end-point
one-time marginal Dirac distributions.

The example of a pinned process with Dirac marginals was seen as
a first step towards a more general Schrödinger bridge and the steering
of particles between specified marginal distributions (see [10], [13],
[15], [27], [28] and the references therein). Extending the framework
of this correspondence to this more general setting has been the subject
of recent and on-going work [23], [25], [26], [29], [30]. The scope
of this work includes applications to steering particle systems and
cooling of oscillators by actively damping thermal noise, but also the
development of geometric tools for use in problems spectral analysis
and system identification, cf. [22], [31].
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