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Abstract. Classical variational data assimilation methods address the

problem of optimally combining model predictions with observations in the

presence of zero-mean Gaussian random errors. However, in many natural

systems, uncertainty in model structure and/or model parameters often re-

sults in systematic errors or biases. Prior knowledge about such systematic

model error for parametric removal is not always feasible in practice, lim-

iting the efficient use of observations for improved prediction. The main con-

tribution of this work is to advocate the relevance of transportation metrics

for quantifying non-random model error in variational data assimilation for

non-negative natural states and fluxes. Transportation metrics (also known

as Wasserstein metrics) originate in the theory of Optimal Mass Transport

(OMT) and provide a non-parametric way to compare distributions which

is natural in the sense that it penalizes mismatch in the values and relative

position of “masses” in the two distributions. We demonstrate the promise

of the proposed methodology using 1D and 2D advection-diffusion dynam-

ics with systematic error in the velocity and diffusivity parameters. More-

over, we combine this methodology with additional regularization function-

als, such as the ℓ1-norm of the state in a properly chosen domain, to incor-

porate both model error and potential prior information in the presence of

sparsity or sharp fronts in the underlying state of interest.
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1. Introduction

Data assimilation aims at estimating the state of a physical system based on time-

distributed observations, a dynamical model describing the space-time evolution of the

underlying state, and a possible piece of prior information on the initial condition. In

hydrologic and atmospheric systems, variational data assimilation is now a necessary com-

ponent of any operational forecast system [see, Kalnay et al., 2007]. It is also an essential

element of re-analysis methods which aim at producing physically consistent historical

records for applications related to identifying climatic trends, testing and calibrating cli-

mate models, and detecting regional changes in moisture, precipitation, and temperature

[see, Bengtsson et al., 2004]. From the statistical point of view, classic formulations of

variational data assimilation methods rely on the assumption of random errors in obser-

vations and models. However, in reality most variational data assimilation systems are

affected by systematic errors. By systematic errors, we refer to biases and all structured

deviations of the model predictions from the true state. In these cases, even when effort

is made to remove biases, the presence of residual biases prevents optimal usage of the

available data [Dee, 2005].

In the classic 3D and 4D variational data assimilation methods, typically a quadratic

functional is defined which encodes the weighted Euclidean distance of the true initial state

to the background and observation states, while the best estimate of the initial state is

its stationary point. Using variational calculus for data assimilation problems traces back

to the pioneering work of Sasaki [1970], Lorenc [1986], Courtier and Talagrand [1990],

among others. Nowadays, variational data assimilation methodologies are at the core of
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atmospheric prediction [e.g., Lorenc et al., 2000; Kleist et al., 2009; Johnson et al., 2005;

Kalnay et al., 2007; Houtekamer et al., 2005], soil moisture, land surface flux estimation

[e.g., Crow and Wood , 2003; Caparrini et al., 2004; Houser et al., 1998; Reichle et al.,

2008; Sini et al., 2008; Kumar et al., 2008; Bateni and Entekhabi , 2012], and hydrologic

forecasting [McLaughlin, 2002; Vrugt et al., 2005; Liu and Gupta, 2007; Durand and Mar-

gulis , 2007; Hendricks Franssen and Kinzelbach, 2008; Moradkhani et al., 2012] – see also

overviews by Reichle et al. [2002] and Liu et al. [2012].

There is a large body of research in variational data assimilation devoted to accounting

for the characterization of systematic and random model errors. For instance, the problem

of accounting for bias has been tackled by considering serially correlated random error

[e.g., Lorenc, 1986; Derber , 1989; Zupanski , 1997a] while Ghahramani and Roweis [1999]

introduced a semi-parametric framework. Griffith and Nichols [2000] presented a general

parametric framework to treat the model error in the context of a non-zero mean Gaussian

process, which has been further explored in Martin et al. [2002] for bias treatment in

oceanic data assimilation problems. In this approach, simple assumptions about the

evolution of the error are made, enabling the systematic error to be taken into account in

the standard formulation of variational data assimilation [see, Nichols , 2003]. Also, Dee

[2005] argued that one of the easiest ways to detect and treat model bias is to evaluate

whether the behavior of the analysis has a tendency to make systematic corrections to the

model background. Consequently, Dee [2005] suggested introducing an augmented state

vector which includes bias terms as a set of constants that can be estimated by finding the

stationary point of the augmented variational cost function in a semi-supervised fashion.
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Model error in a variational data assimilation framework will typically lead to an incor-

rect distribution of the predicted states. Discrepancies between these predicted states and

the (unknown) true states might include a translational bias, an incorrect spread of the

mass, or higher-order distortion of the entire distribution, all considered as special cases

of what we call systematic model errors. The central focus of this paper is to address

the question as to whether there is a distance metric that can naturally characterize the

mismatch between model predicted and true states and non-parametrically account for

systematic errors. We propose that the optimal mass transportation (OMT) metric (or

Wasserstein metric) serves as a natural metric to quantify such systematic errors since it

captures and rewards the “similarity” between two distributions with respect to the val-

ues and relative position of the “mass” of the distributions (see also Rubner et al. [2000]

for a complementary viewpoint on why the OMT metric is natural in this context). By

incorporating this metric within the classical variational data assimilation framework, we

present a methodology for obtaining improved estimates of the states in the presence of

systematic errors.

This paper is structured as follows. In Section 2, classical formulations of variational

data assimilation are reviewed. Section 3 explains the relevant theory of OMT while the

essence of this metric for model error characterization is presented via a simple example.

Section 4 presents the main contribution of this paper and incorporates the OMT-metric

in the formulation of the variational data assimilation problem. Section 5 focuses on

advection-diffusion dynamics for which we can explicitly demonstrate that the OMT-

metric is a continuous function of the error in the space of model parameters and derive

an upper bound on the distance between modeled and true states. Detailed examples
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that show the effectiveness and potential of the proposed methodology are also reported

in this section. Finally, conclusions are drawn in Section 6.

2. Variational data assimilation

Let us denote the dynamical evolution of the state space and the observation model as

follows:

xk+1 = Fk(xk) +wk (1a)

yk = Hk(xk) + vk, (1b)

where F (·), H(·) denote the model and observation operators, respectively, and the (col-

umn) vectors w,v represent process and observation noise. A prior estimate of the true

initial state x0 in data assimilation is typically referred to as the “background state” xb,

which is often obtained from a previous-time forecast or climatological information. Then,

starting with K + 1 sequential measurements y0, y1, . . . , yK , the problem is to estimate

the states x0,x1, . . . ,xK . In the statistical filtering theory, this problem is referred to as

a fixed-interval smoothing problem. If the error components wk,vk (k ∈ {0, . . . , K}) and

x0 − xb are independent zero-mean Gaussian random variables while Fk(·) and Hk(·) are

both linear time-varying operators, the solution is provided by the well-known Kalman

filter [Kalman, 1960]. In the data assimilation literature, this problem is typically called

4-dimensional variational (4D-Var) data assimilation [see, e.g., Trémolet , 2006; Sasaki ,

1970] and its equivalence to Kalman smoothing has been pointed out by Fisher et al.

[2005]. In the classic formulation of the 4D-Var problem for deterministic dynamics with

no model error w, estimation of the underlying states amounts to minimizing the following
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quadratic expression:

min
x0

{
∥x0 − xb∥2P−1 +

K∑
k=0

∥yk −HkFk . . . F1F0(x0)∥2R−1
k

}
, (2)

where P and Rk represent the covariances of the background error e := x0 − xb and vk,

respectively. Here, the notation ∥e∥2P−1 represents the weighted quadratic norm, that is

eTP−1e, where T is the transpose operator. In order to account for model error in varia-

tional data assimilation, several techniques have been proposed [Derber and Rosati , 1989;

Zupanski , 1997b; Vidard et al., 2004; Trémolet , 2006, among many others]. Typically, a

stochastic model errorw is incorporated which leads to the following problem formulation,

which is often called weak constraint 4D-Var:

min
x0,...,xK

{
∥x0 − xb∥2P−1 +

K∑
k=0

∥yk −Hk(xk)∥2R−1
k

+
K∑
k=1

∥xk − Fk−1(xk−1)∥2Q−1
k

}
, (3)

where similarly Qk represents the covariance of wk.

More recently, the use of ℓ1-regularization in data assimilation was suggested by Freitag

et al. [2012], Ebtehaj and Foufoula-Georgiou [2013] and Ebtehaj et al. [2014], to account

for distinct geometrical features and the singular structure of the underlying state such

as ridges and isolated jumps (e.g., sharp weather fronts or extreme rain cells) as well

as sparsity of the underlying state in suitable transform domains. For instance, if it is

known that x0 is “smooth,” except for a few distinct jumps or that the derivative of x0

has a Laplace-like distribution, then the ℓ1–norm ∥Φ(x0)∥1 with Φ a linear derivative-like

operator (e.g., wavelet transform) can be used as a regularization term as follows:

min
x0,...,xK

{
∥x0 − xb∥2P−1 +

K∑
k=0

∥yk −Hk(xk)∥2R−1
k

+
K∑
k=1

∥xk − Fk−1(xk−1)∥2Q−1
k

+ γ∥Φ(x0)∥1

}
,

(4)
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where γ is a non-negative constant maintaining a balance between goodness of fit to the

available information (model output and observations) and the underlying regularity of

the initial state.

3. Monge-Kantorovich Optimal Mass Transport (OMT)

The main drawback of the above formalisms of the variational data assimilation problem

is that we are implicitly attributing the model error entirely to a stochastic (Gaussian)

noise w. This attribution is not typically consistent with the commonly observed struc-

tural error in physically-based environmental models, which may deteriorate the quality

of analysis and forecast skills of data assimilation systems. The main contribution of

this work is to advocate the relevance of transportation metrics for quantifying model

error in the variational data assimilation framework. These types of metrics are based on

the theory of Monge-Kantorovich optimal mass transport (OMT) [see, Villani , 2003]. In

particular, using transportation metrics in data assimilation problems allows us to natu-

rally characterize the distance between the state of the model forecast and the unknown

true state in a non-parametric fashion, without requiring any prior assumption about the

model error which might be physically unrealistic or practically prohibitive.

In the following, we confine our discussion to the quadratic form of the OMT-metric

(also known as Monge-Kantorovich problem of exponent 2) in discrete space and specialize

its definition for variational data assimilation problems. To this end, let us consider two

n-element density vectors x and x̃, having a support on a discrete set of points {xi}Ni=1

and {x̃i}Ni=1, respectively. Usually the density vectors are obtained from discretization

of continuous densities and the support sets correspond to space-time locations that are

dictated by resolution and sampling rates. For now, assume that x and x̃ have equal
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mass, i.e.
∑N

i=1 x(xi) =
∑N

i=1 x̃(x̃i), and the cost of transporting one unit of mass from

location xi to x̃j is denoted by ci, j. The Monge-Kantorovich mass transport problem

considers the minimum cost of transferring all the mass from the distribution x to the

distribution x̃. The original formulation goes back to the work by Monge [1781], while

the modern formulation is due to Kantorovich [1942]. Note that, this formulation casts

the problem as a linear programming which can be solved efficiently in large dimensions.

More specifically, if m(xi, x̃j) denotes the mass that is to be transported from location xi

to location x̃j, the OMT-metric T (x, x̃) can be computed as follows:

T (x, x̃) := min
m

∑
i,j

ci, j m(xi, x̃j)

subject to m(xi, x̃j) ≥ 0,∑
j

m(xi, x̃j) = x(xi),∑
i

m(xi, x̃j) = x̃(x̃j). (5)

The above formulation can be expressed more compactly if we let 1 denote an N -

dimensional vector with all the entries equal to one, C denote an N × N matrix with

the (i, j)th entry ci, j and, M denote an N ×N matrix with M(i, j) = m(xi, x̃j). Then,

T (x, x̃) := min
M

tr(CM)

subject to M1 = x, MT1 = x̃,M(i, j) ≥ 0 ∀i, j. (6)

Here, the matrix M is a joint density matrix with positive elements, often referred to as

the transportation plan [Villani , 2003], where x and x̃ are the marginal mass functions.

Note that for the rest of the paper we specialize our consideration to C(i, j) = ∥xi − x̃j∥2

for which the transportation cost is characterized by the Euclidean distance between the

location of masses in xi and x̃i. This selection of the quadratic transportation cost,
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known as the OMT of exponent 2, allows us to remain in the domain of smooth and

convex optimization.

The above definition of the OMT-metric assumes that the total mass of the state of

interest is fully conserved. This assumption might be restrictive in data assimilation of

non-conservative states, as for example in the presence of source and sink elements in

the underlying dynamics. To this end, a more relaxed OMT formulation is required.

Different methods have been proposed for generalizing the OMT-metric to account for

non-equal masses [see, e.g., Benamou, 2003; Georgiou et al., 2009]. For example, the

method proposed in Benamou [2003] was to use a mixture of the OMT-metric and ℓ2-

norm as follows:

Tσ(x, x̃) := min
x̂

{
T (x̂, x̃) + σ∥x− x̂∥22

}
, (7)

where the non-negative parameter σ is used to denote the relative significance of the

ℓ2-cost. Notice that the above relaxed OMT metric is obtained through a nested mini-

mization problem based on an intermediate state x̂ with minimal ℓ2 distance to the true

state x (second term within the bracket), while at the same time its mass is considered

to be equal to x̃, through the use of the classic T (x̂, x̃) metric (first term within the

bracket). In other words, this new relaxed OMT metric penalizes the distance of x̂ from

the model predicted state x̃ in the OMT sense, while it keeps the solution close enough

to the true state x without strictly enforcing mass equality due to the presence of model

error. Obviously, the parameter σ accommodates this relaxation.

Before we proceed with formal technical details and more rigorous exposition of the

use of OMT in variational data assimilation, we deem necessary to present a simple and

intuitive example that illustrates the difference between T (x, x̃) and ∥x−x̃∥2 and elaborate
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on the essence of utilizing the transportation metric for exhaustive quantification of the

model error. We also provide insight via an example on how naturally OMT reconciles two

(oppositively) biased estimates. More specifically, when biases are in opposing directions,

averaging in a quadratic sense will necessarily distort the original shapes while OMT

preserves them.

Consider that the state xk(x) at time k represents a density function with a compact

support in a bounded set D where xk(x) > 0 for ∀x ∈ D. To this end, consider a simple

non-diffusive advective state space as follows:

xk+1(x) = xk(x− d),

in which, for example we consider a drift value of d = 3 representing a velocity vector field.

Thus, comparing to (1), w is absent while F is a constant shift matrix. For example, let

the initial state be

x0 =

{
10 for− 0.5 ≤ x ≤ 0.5

0 otherwise,

which is shown in the black solid line in Figure 1, while the state x1(x) is shown in the red

solid line. To elaborate on the advantages of the OMT-metric for bias correction purposes,

let us now consider four biased model outputs (estimates) of the above state space (ground

truth) obtained by the erroneous advection parameters d ∈ {3.5, 4, 5.5, 7}, respectively.

The corresponding estimates
{
x̃
(i)
1

}4

i=1
and a comparison of their distance from the true

state based on the metrics ∥ · ∥22 and T (·) are shown in Figure 1. It can be seen that when

the support sets of x1 and x̃1 are not overlapping, ∥x1− x̃1∥22 is constant and independent

of the bias magnitude whereas the transportation distance increases monotonically. In

other words, the OMT-metric penalizes larger biases monotonically in this case, while the
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ℓ2-cost is insensitive to the bias magnitudes after a certain threshold, depending on the

structure of the support sets.

To further exemplify differences between the quadratic and OMT metrics we consider

an (academic) example of reconciling two oppositely biased densities in Figure 2. The left

panel displays the true density x and two biased and noisy estimates on either side. The

right panel displays the reconciled estimate of x obtained via averaging the two biased

states using the ℓ2 norm, x̂ℓ2 , and using an OMT metric, x̂omt, and compares these with

the true density x. In essence, the reconciled estimate represents a “mean” (in the ℓ2-sense

and in the OMT-sense, respectively). Naturally, the ℓ2-estimate is bi-modal (whereas, the

original density was not). As is evident, the OMT-estimate has a tendency to preserve

and reconcile the shapes of the two biased densities.

4. OMT in variational data assimilation

We denote the transportation distance between the state xk and the predicted state

Fk−1(xk−1) as T (xk, Fk−1(xk−1)) and, likewise, the transportation distance between the

true and background states as T (x0,xb). Our proposed formulation of the variational

data assimilation problem is as follows:

min
x0,...,xK

{
T (x0,xb) +

K∑
k=0

∥yk −Hk(xk)∥2R−1
k

+
K∑
k=1

T (xk, Fk−1(xk−1))

}
(8)

where the ℓ2–norm is replaced with the OMT metric for taking into account both system-

atic and random model errors. Here, the term corresponding to the measurement error is

quantified by a quadratic norm under the assumption that observational errors are well

represented by additive (Gaussian) random noise.
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For the purposes of this paper, we specialize to the case where the model Fk and the

observation operator Hk are linear operators. A refinement of (8), where we have replaced

the T ’s by Tσ’s to allow for the possibility of non-conservative states, is as follows:

min
x0,...,xK

{
Tσ(x0,xb) +

K∑
k=0

∥yk −Hkxk∥2R−1
k

+
K∑
k=1

Tσ(xk, Fk−1xk−1) + γ∥Φx0∥1

}
.

This includes also a regularization term ∥Φx0∥1 that could be used to promote particular

features in the state (e.g., see Freitag et al. [2012] and Ebtehaj et al. [2014]). In view of

(7), the optimization problem (8) can be written as

min
x0,...,xK

x̃b,x̃1,...,x̃K

{
σ

(
∥x0 − x̃b∥2 +

K∑
k=1

∥xk − x̃k∥2
)

+
K∑
k=0

∥yk −Hkxk∥2R−1
k

+ γ∥Φx0∥1

+ T (x̃b,xb) +
K∑
k=1

T (x̃k, Fk−1xk−1)

}
(9)

where, in general, the terms T (x̃b,xb) +
∑K

k=1 T (x̃k, Fk−1xk−1) account for systematic

model error (bias) of the states as explained before. Notice that Tσ is itself the solution

of an optimization problem in equation (7) and thus x̃b, x̃1, . . . , x̃K have been added as

optimization variables.

Recalling that the OMT-metric is obtained by minimizing over the joint density matrix,

the last term in (9) can be expanded as follows:

T (x̃k, Fk−1xk−1) = min
Mk

tr(CMk)

subject to Mk(i, j) ≥ 0, Mk1 = x̂k, M
T
k 1 = Fk−1xk−1.

Thus the problem (9) can be comprehensively represented as follows:

min
x0,...,xK

Mb,M1,...,MK

{
σ

(
∥x0 −Mb1∥2 +

K∑
k=1

∥xk −Mk1∥2
)

+
K∑
k=0

∥yk −Hkxk∥2R−1
k

+

tr

(
C(Mb +

K∑
k=1

Mk)

)
+ γ∥Φx0∥1

}
subject to Mb(i, j),Mk(i, j) ≥ 0, MT

b 1 = x0, M
T
k 1 = Fk−1xk−1, k = 1, . . . , K,
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where we replaced x̂b by Mb1 and x̃k by Mk1. We note that the size of Mk’s is N ×

N since xk’s are N dimensional states. Clearly, the computational complexity of this

optimization problem is higher than that of the classic 4D-Var method (see comparison

in the examples presented below). However, more efficient algorithms for solving large-

scale OMT problems are being developed [Haker et al., 2004; Haber et al., 2010] and their

adaptation to variational data assimilation problems will be the subject of future research.

5. Applications using the advection–diffusion equation

In this section we elaborate on the advantages of the proposed variational data assimila-

tion focusing on the advection–diffusion model, which forms the basis of many geophysical

models in atmospheric, oceanic, hydrologic, and land-surface data assimilation applica-

tions. In this model, we specifically explore the suitability of the OMT-metric to quantify

structural model error due to uncertainty in model parameters including the advection

velocity and diffusivity coefficient. We show that the OMT-metric is a continuous func-

tion of the model error and admits well defined upper bounds expressed as functions of

the model parameters.

5.1. Quantifying advection–diffusion model error via OMT

Consider the one–dimensional-advection diffusion equation

∂tx+ u ∂xx = D∂xxx (10)

where u and D denote the constant advection and diffusion rate, respectively. It is well

known that the advection–diffusion equation transfers a point mass distribution to a

Gaussian density with mean ut and variance 2Dt. In particular, if the initial state is the
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Dirac delta δ(x), then the solution of (10) is

x(t, x) =
1√
4πDt

e−
(x−ut)2

4Dt

which is a Gaussian distribution with mean ut and variance 2Dt [see e.g., Rubin and

Atkinson, 2001]. We denote the fundamental kernel of a general advection-diffusion as

follows:

Put,Dt(x) :=
1√
4πDt

e−
(x−ut)2

4Dt .

We also use the notation Put,Dt or Put,Dt(·) to denote this function. Given an arbitrary

initial state x0, the advection–diffusion equation (10) is linear in x, with the following

solution:

x(t, x) =

∫
Put,Dt(x− y)x0(y)dy . (11)

Now, let us consider the advection–diffusion equations

∂tx+ ui ∂xx = Di ∂xxx, for i = p, q , (12)

which, in this context, might represent a true state-evolution equation and an erroneous

one, say one with the true parameter set and one with the erroneous set. Let xp(t, x) and

xq(t, x) denote the solutions of these two equations, respectively, with initial state

xp(0, x) = xq(0, x) = x0(x) ≥ 0.

Then, the solutions of (12) for i = p, q , can be written as

xi(t, x) =

∫
Puit,Dit(x− y)x0(y)dy, for i = p, q .

In other words, each xi(t, x) is a convolution of a Gaussian kernel with x0(y).

A possible strategy to transport the mass from the distribution xp(t, ·) to the distri-

bution xq(t, ·) is to transfer separately Pupt,Dpt(· − y) to Puqt,Dqt(· − y) for each y and
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average the individual costs with weight x0(y)dy. This observation leads to the following

inequality

T (xp(t, ·),xq(t, ·)) ≤
∫

T (Pupt,Dpt(· − y), Puqt,Dqt(· − y))x0(y)dy (13)

=

∫
T (Pupt,Dpt(·), Puqt,Dqt(·))x0(y)dy

= T (Pupt,Dpt(·), Puqt,Dqt(·))
∫

x0(y)dy

since the OMT cost T (Pupt,Dpt(·), Puqt,Dqt(·)) between the Gaussian distributions Pupt,Dpt(·)

and Puqt,Dqt(·) is not affected when we simultaneously transport both by y. The OMT–

metric between two independent Gaussian distributions has the following closed form

expression

T (Pupt,Dpt, Puqt,Dqt) = (uq − up)
2t2 + (

√
2Dq −

√
2Dp)

2t,

[see e.g., Knott and Smith, 1984], and therefore (13) leads to

T (xp(t, ·),xq(t, ·)) ≤ ∥x0∥1
(
(uq − up)

2t2 + (
√

2Dq −
√
2Dp)

2t
)
, (14)

where ∥x0∥1 is the total mass of the initial state, i.e. ∥x0∥1 =
∫
x0(y)dy, as x0(y) ≥ 0.

Inequality (14) provides an upper bound for the transportation distance between the

solutions of the advection–diffusion equation with different parameters. In particular it

implies that, in a short time interval, small errors in the advection–diffusion parameters

lead to small errors in the states in term of the OMT-metric. Notice that the upper bound

(14) is a continuous function of the error in the model parameters (u,
√
D), which is tight

when the initial state corresponds to a pulse (Dirac delta).

On the contrary, as previously explained (see Figure 1), we recall that the ℓ2-norm was

unable to capture errors in the shift parameter, as it saturates to a certain constant value

when the union of the support sets is an empty set.
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5.2. 1-D advection-diffusion model

In this example, the proposed approach is tested by hypothesizing an erroneous constant

advection parameter. It is also assumed that the measurements are downsampled versions

of the states (observation operator H as in (18) below).

Consider a one–dimensional state x evolving according to (10). Let the spatial and time

resolutions be δx = 0.025 and δt = 1, respectively and

xk =

 x(x1, kδt)
...

x(xN , kδt).

 (15)

In addition, let us assume that the state is contaminated by additive Gaussian noise and

thus (10) leads to the following difference equation for the state evolution

xk+1 = Fxk +wk, (16)

where, according to (11), the matrix F has the (i, j)th entry given by

F (i, j) =
δx√
4πD

e−
(xi−xj−u)2

4D . (17)

In this example, x is considered to have support on [0, 5], hence, numerically, x is a vector

in R200×1 and F ∈ R200×200.

We assume that the true advection and diffusion process evolves with the following (but

unknown) parameters

u(t) = 0.75, D(t) = 0.02, ∀t,

and the error wk can be well explained by a zero–mean Gaussian noise with covariance

Q = 0.2 I. Note that we chose t = 0 as a reference point to denote the initial time of

interest (e.g., t0 = 0). Moreover, we assume that the measurement model is

yk = Hxk + vk
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with the following observation operator:

H =
1

4

1 1 1 1 0 0 0 0 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0

...
...

...
...

 ∈ R50×200. (18)

Selection of the above operator resembles a low-resolution sensor, which can only capture

the mean of four neighboring elements of the state vector. Here, the observation error vk

is considered to be a zero–mean Gaussian distribution with covariance R = 0.2I.

To make the problem formulation complete, let the initial state be given by

x0(x) =

{
10 for 1.25 ≤ x ≤ 2.5

0 otherwise

which is shown by the solid line in the left panel of Figure 3. This initial state might be

hypothesized as a pollutant concentration pulse propagated through a medium, a pulse

of heat flux propagated through a soil column, or a convective mass of moisture evolving

through the atmosphere.

Now assume that the model parameters are not exactly known. In particular, we used

an erroneous (biased) advection-diffusion model with parameters

ũ(t) = 0.5, D̃(t) = 0.02,∀t.

The background state xb, being a model prediction from a previous time step, is also

biased and lags behind the true state by ũ(t)−u(t) = 0.25 as shown by the dotted line in

the left panel of Figure 3. We consider that three measurements y0,y1,y2 are available

(here obtained by adding zero-mean Gaussian noise with covariance R = 0.2I to the

model states predicted with the correct model), and these are plotted in solid blue line,

dash-dotted red line and dashed green line in the right panel of Figure 3.

We examined the estimation using the ℓ1-norm regularized 4D–Var formulation in (4)

and the proposed formulation in (9). The estimated states of the two cost functions are
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demonstrated in Figure 4. The left panel of Figure 4 demonstrates the true and estimated

state x0. It is apparent that the procedure employing the OMT-metric is very effective

in removing the bias and preserving the shape of the state. The estimated x̂omt+ℓ1
0 is

much closer to the true state than the estimate x̂ℓ2+ℓ1
0 given by the ℓ1-norm regularized

classical 4D–Var in (4). From the middle and the right panels, it is also apparent that the

estimated states (at time step k = 1, 2) x̂ℓ2
1 and x̂ℓ2

2 are more biased and more diffused

than those of the x̂omt
1 and x̂omt

2 states given by the proposed method.

In order to provide a quantitative comparison, we computed the normalized squared

error (NSE),

NSE :=
∥x̂− x∥2

∥x∥2

recognizing its limitation in capturing the type of discrepancies that motivated us to

introduce the OMT-formalism in the first place. The normalized-squared errors of the

three states using the ℓ2-based method (4) are NSEℓ2,x0 = 0.12, NSEℓ2,x1 = 0.12 and

NSEℓ2,x2 = 0.20 respectively, while for the proposed method in equation (9), this error is

NSEomt,x0 = 0.03, NSEomt,x1 = 0.02 and NSEomt,x2 = 0.05, respectively. It is worth noting

that the computation of this example was implemented using cvx optimization toolbox

in Matlab R⃝ [Grant et al., 2012] on a desktop with a 2.4GHz CPU clock rate. It took 9.7

seconds to get the result for the ℓ2-based method while the OMT-based method required

more than 88 seconds, highlighting the need to develop more computationally efficient

algorithms for application to real problems.

In the above example, the ℓ1-norm regularization evoked for the estimation of the initial

state x0 which exhibits sparsity, was implemented using the following linear transformation

D R A F T June 20, 2014, 3:00pm D R A F T



X - 20 NING ET AL.: DATA ASSIMILATION USING OPTIMAL MASS TRANSPORT

Φ as stated in problem (9):

Φ =

 1 −1 0 0 . . . 0
0 0 1 −1 0 . . .
...

...
...

...
...

...

 .

As is evident, the above choice of the Φ transformation is a first order differencing

operator. This particular choice of Φ refers back to our prior knowledge with respect

to the degree of smoothness and sparsity of the first order derivative of x0. In other

words, one can see that the state of interest x0 is piece-wise constant and thus its first

order differences form a sparse vector with a large number of zero elements. Indeed, the

incorporation of the ℓ1-norm regularization of ∥Φx0∥1 is a reflection of this prior knowledge

in our data assimilation scheme which leads to an effective removal of the high-frequency

random errors and recovery of sharp jumps and singularities.

5.3. 2–D advection–diffusion model

In this example, the evolution of the state is dictated by a two–dimensional advection–

diffusion equation

∂tx+ ux(t) ∂xx+ uy(t) ∂yx = Dx ∂xxx+Dy ∂yyx (19)

where ux, uy and Dx, Dy represent the advection and diffusion parameters in the x and

y direction, respectively. We discretize (19) with time and spatial resolutions δt = 1 and

δx = δy = 0.1, respectively. If we define

Xk =

x(x1, y1, kδt) . . . x(x1, yN , kδt)

x(xN , y1, kδt) . . . x(xN , yN , kδt)

 (20)

then (19) leads to the following difference equation for the evolution of the state

Xk+1 = Fx,kXkF
T
y,k +Wk
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where Fx,k and Fy,k are given by (17) with advection and diffusion parameters set to ux, Dx

and uy, Dy, respectively. In this example, we consider an advection-diffusion model with

parameters

ux(t) = uy(t) = 0.15 and Dx(t) = Dy(t) = 0.02, ∀t.

and the process noise is considered zero mean Gaussian with covariance Q = 0.1I.

The measurement equation is cast as follows:

Yk = HXkH
T + Vk (21)

where H is as in (18) but in a two dimensional setting, i.e., the sensor output is a noisy

and averaged representation of the true state over a box of size 2 × 2. In this example,

Fx,k, Fy,k ∈ R12×12 and H ∈ R6×12 and the observation noise is also zero mean Gaussian

with covariance R = 0.1I.

The true state X0 is chosen to be piecewise constant as shown in the top left most panel

of Figure 6 and the subsequent states X1 and X2 are generated with the true model. Once

again, due to some imperfect knowledge of the model, we are led to consider the following

erroneous advection and diffusion parameters

ũx(t) = ũy(t) = 0.1 and D̃x(t) = D̃y(t) = 0.015, ∀t,

(a biased model) and seek to estimate the true states X0, X1 and X2. The background

state Xb, being itself a model prediction from the previous time step, is also biased (it

lags behind and is less diffused than the true state X0 according to the biased model as

shown in the left panel of Figure 5). Using the background state Xb and the available

measurements up to time t = 2, shown in Figure 5, we estimate the states X0, X1, X2 by

solving the weak–constraint 4D–Var problem and the variational problem based on the
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OMT–metric. In both cases we also use suitable regularizations to promote the shape and

the smoothness of the states.

The estimation results are shown in Figure 6 along with the true states at time t = 0, 1, 2.

Once again, it can be seen that the proposed methodology produces improved estimates of

the true states. This fact seems more apparent in the estimation quality of the initial state

in the first row panels of Figure 6, in which not only the bias but also the involved random

error are well removed and the true shape is properly recovered. It is apparent that the

OMT metric captures more accurately the drift and diffusion and facilitates extracting

more accurate estimates from subsequent observations. The normalized squared errors

of the estimated states using (4) are respectively NSEℓ2,X0 = 0.20, NSEℓ2,X1 = 0.06 and

NSEℓ2,X2 = 0.10 while the proposed method in equation (9) leads to NSEomt,X0 = 0.03,

NSEomt,X1 = 0.04 and NSEomt,X2 = 0.09. The computation time for the ℓ2-based method

and the OMT-based method are 8.5 seconds and 43 seconds, respectively.

6. Conclusions

Environmental models often suffer from structural errors due to inadequate and/or

over simplified characterization of the underlying physics. In this paper, we presented

an approach which allows us to take into account non-parametrically both random and

in particular systematic model error in data assimilation using an unbalanced Optimal

Mass Transport (OMT) metric. Using 1-D and 2-D advection-diffusion dynamics, we

specifically elaborated on the effectiveness of the OMT-metric for tackling systematic

model error. We also showed that the OMT-metric in combination with ℓ1-regularization

can be very useful for estimation of state variables exhibiting singular structures with a

sparse representation in a properly chosen transform domain, e.g., in a derivative domain.
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The formalism proposed in here can be considered as an extension to the classic variational

data assimilation that can allow us to non-parametrically account for the model systematic

error in data assimilation. We suggest that the proposed OMT-equipped variational data

assimilation formalism has the potential to handle problems with complicated model error

dynamics and deserves further study both in theory and in its application to geophysical

data assimilation problems.
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Royale.

D R A F T June 20, 2014, 3:00pm D R A F T



X - 30 NING ET AL.: DATA ASSIMILATION USING OPTIMAL MASS TRANSPORT

Moradkhani, H., C. M. DeChant, and S. Sorooshian (2012), Evolution of ensemble data

assimilation for uncertainty quantification using the particle filter-markov chain monte

carlo method, Water Resources Research, 48 (12), doi:10.1029/2012WR012144.

Nichols, N. (2003), Treating Model Error in 3-D and 4-D Data Assimilation, in Data As-

similation for the Earth System, NATO Science Series, vol. 26, edited by R. Swinbank,

V. Shutyaev, and W. Lahoz, pp. 127–135, Springer Netherlands.

Noye, B., and H. Tan (1989), Finite difference methods for solving the two-dimensional

advection–diffusion equation, International Journal for Numerical Methods in Fluids,

9 (1), 75–98.

Parrish, D. F., and J. C. Derber (1992), The National Meteorological Center’s Spectral

Statistical-Interpolation Analysis System, Monthly Weather Review, 120 (8), 1747–1763.

Reichle, R., W. Crow, and C. Keppenne (2008), An adaptive ensemble kalman filter for

soil moisture data assimilation, Water Resources Research, 44 (3).

Reichle, R. H. (2008), Data assimilation methods in the Earth sciences, Advances in Water

Resources, 31 (11), 1411–1418.

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi (2002), Hydrologic data assimilation

with the ensemble Kalman filter, Monthly Weather Review, 130 (1), 103–114.

Rubin, H., and J. F. Atkinson (2001), Environmental fluid mechanics, CRC Press.

Rubner, Y., C. Tomasi, and L. J. Guibas (2000), The earth mover’s distance as a metric

for image retrieval, International Journal of Computer Vision, 40 (2), 99–121.

Sasaki, Y. (1970), Some basic formalisms in numerical variational analysis, Monthly

Weather Review, 98 (12), 875–883.

D R A F T June 20, 2014, 3:00pm D R A F T



NING ET AL.: DATA ASSIMILATION USING OPTIMAL MASS TRANSPORT X - 31

Sini, F., G. Boni, F. Caparrini, and D. Entekhabi (2008), Estimation of large–scale evap-

oration fields based on assimilation of remotely sensed land temperature, Water Re-

sources Research, 44 (6), W06,410.

Talagrand, O. (1981), A study of the dynamics of four–dimensional data assimilation,

Tellus, 33 (1), 43–60.
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Figure 1. Left panel: initial state x0, true x1, and incorrect states x̃
(i)
1 , i ∈ {1, 2, 3, 4}

obtained by an erroneous model, here, a biased estimate of the shift coefficient at time t = 1;

Right panel: quadratic norm
∥∥∥x1 − x̃

(i)
1

∥∥∥2
2
and OMT-metric T

(
x1, x̃

(i)
1

)
between the true and

incorrect states at time t = 1 for the four erroneous values of the shift coefficient shown in the left

panel. Observe how the quadratic metric is insensitive to the model error when the supports of

the true and erroneous states are not overlapping while the OMT-metric increases monotonically

proportionally to the model error (here a shift).
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Figure 2. Left panel: true density x (in the solid line) and two oppositely biased and noisy

densities xb (in the dashed line) and y (in the dash-dotted line). Right panel: true density x

(in the solid blue line) and the ℓ2 (x̂ℓ2 in the dashed green line) and OMT-estimates (x̂omt in

dash-dotted green line), respectively.

Figure 3. Left panel: initial state x0 (solid line), background state xb (dotted line), and two

model simulated states x1, x2 at time steps t = 1, 2 (dash-dotted and dashed lines, respectively).

The simulated states x1,x2 were produced from x0 using the advection diffusion model with

parameters u = 0.75 and D = 0.02, while xb was taken to be a lagged and diffused variant of x0.

Right panel: noisy observations y0, y1, and y2 at time steps t = 0, 1, 2 produced from x0, x1,

x2, respectively. The components of the process and observation noises were assumed Gaussian

with zero mean and variance R = 0.2.

Figure 4. From left to right: true states xt (solid blue line) and estimated states x̂t, at time

steps t = 0, 1, 2 in successive panels, using ℓ2 and OMT and the erroneous advection diffusion

model with parameters ũ = 0.5 and D̃ = 0.02. At t = 0, ℓ1 regularization has also been used to

promote the sparseness of the state in the derivative space. The accuracy of the OMT estimates

is notable.

Figure 5. From left to right: the biased background state Xb (produced as a prediction from

a previous time step using the biased model ũx = ũy = 0.1 and D̃x = D̃y = 0.015) and the

observations Y0, Y1 and Y2 at time steps t = 0, 1, 2. The observations Yk = HXkH
T + Vk are

downsampled and noisy version of the states Xk produced by the true model with parameters

ux = uy = 0.15, and Dx = Dy = 0.02, while the entries of the observation noise Vk are zero–mean

Gaussian random variables with variance 0.1.

D R A F T June 20, 2014, 3:00pm D R A F T



NING ET AL.: DATA ASSIMILATION USING OPTIMAL MASS TRANSPORT X - 35

Figure 6. First row panels, from left to right: true state X0 and its estimates via weak–

constraint 4D-Var plus ℓ1-norm regularization, and via the proposed OMT–based methodology,

based on the biased background state Xb and the observations Yk (shown in Figure 5). Note that

in all cases the biased model with parameters ũx = ũy = 0.1 and D̃x = D̃y = 0.015 was used for

the estimation. The second and third row panels, from left to right, show the true and estimated

states at time steps t = 1 and t = 2. Observe how OMT–based 4D–Var accurately recovers the

true state, especially at time t = 0, clearly outperforming the weak–constraint 4D–Var.
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