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Abstract Classical variational data assimilation methods address the problem of optimally combining
model predictions with observations in the presence of zero-mean Gaussian random errors. However, in
many natural systems, uncertainty in model structure and/or model parameters often results in systematic
errors or biases. Prior knowledge about such systematic model error for parametric removal is not always
feasible in practice, limiting the efficient use of observations for improved prediction. The main contribution
of this work is to advocate the relevance of transportation metrics for quantifying nonrandom model error
in variational data assimilation for nonnegative natural states and fluxes. Transportation metrics (also known
as Wasserstein metrics) originate in the theory of Optimal Mass Transport (OMT) and provide a nonparamet-
ric way to compare distributions which is natural in the sense that it penalizes mismatch in the values and
relative position of “masses” in the two distributions. We demonstrate the promise of the proposed method-
ology using 1-D and 2-D advection-diffusion dynamics with systematic error in the velocity and diffusivity
parameters. Moreover, we combine this methodology with additional regularization functionals, such as the
£1-norm of the state in a properly chosen domain, to incorporate both model error and potential prior infor-
mation in the presence of sparsity or sharp fronts in the underlying state of interest.

1. Introduction

Data assimilation aims at estimating the state of a physical system based on time-distributed observa-
tions, a dynamical model describing the space-time evolution of the underlying state, and a possible
piece of prior information on the initial condition. In hydrologic and atmospheric systems, variational
data assimilation is now a necessary component of any operational forecast system [see Kalnay et al.,
2007]. It is also an essential element of re-analysis methods which aim at producing physically consistent
historical records for applications related to identifying climatic trends, testing and calibrating climate
models, and detecting regional changes in moisture, precipitation, and temperature [see Bengtsson

et al., 2004]. From the statistical point of view, classic formulations of variational data assimilation meth-
ods rely on the assumption of random errors in observations and models. However, in reality most varia-
tional data assimilation systems are affected by systematic errors. By systematic errors, we refer to biases
and all structured deviations of the model predictions from the true state. In these cases, even when
effort is made to remove biases, the presence of residual biases prevents optimal usage of the available
data [Dee, 2005].

In the classic 3-D and 4-D variational data assimilation methods, typically a quadratic functional is defined
which encodes the weighted Euclidean distance of the true initial state to the background and observation
states, while the best estimate of the initial state is its stationary point. Using variational calculus for data
assimilation problems traces back to the pioneering work of Sasaki [1970], Lorenc [1981], Lorenc [1986],
Courtier and Talagrand [1990], Talagrand [1981], among others. Nowadays, variational data assimilation
methodologies are at the core of atmospheric prediction [e.g., Lorenc et al., 2000; Kleist et al., 2009; Johnson
et al., 2005; Kalnay et al., 2007; Houtekamer et al., 2005], soil moisture, land surface flux estimation [e.g., Crow
and Wood, 2003; Caparrini et al., 2004; Houser et al., 1998; Reichle et al., 2008; Sini et al., 2008; Kumar et al.,
2008; Bateni and Entekhabi, 2012], and hydrologic forecasting [McLaughlin, 2002; Vrugt et al., 2005; Liu and
Gupta, 2007; Durand and Margulis, 2007; Hendricks and Kinzelbach, 2008; Moradkhani et al., 2012]—see also
overviews by Reichle et al. [2002] and Liu et al. [2012].
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There is a large body of research in variational data assimilation devoted to accounting for the characteriza-
tion of systematic and random model errors. For instance, the problem of accounting for bias has been
tackled by considering serially correlated random error [e.g., Lorenc, 1986; Derber, 1989; Zupanski, 1997;
Griffith and Nichols, 1996] while Ghahramani and Roweis [1999] introduced a semiparametric framework.
Griffith and Nichols [2000] presented a general parametric framework to treat the model error in the context
of a nonzero-mean Gaussian process, which has been further explored in Martin et al. [2002] for bias treat-
ment in oceanic data assimilation problems. In this approach, simple assumptions about the evolution of the
error are made, enabling the systematic error to be taken into account in the standard formulation of varia-
tional data assimilation [see Nichols, 2003; Carassi and Vannitsem, 2010]. Also, Dee [2005] argued that one of
the easiest ways to detect and treat model bias is to evaluate whether the behavior of the analysis has a tend-
ency to make systematic corrections to the model background. Consequently, Dee [2005] suggested introduc-
ing an augmented state vector which includes bias terms as a set of constants that can be estimated by
finding the stationary point of the augmented variational cost function in a semisupervised fashion.

Model error in a variational data assimilation framework will typically lead to an incorrect distribution of the
predicted states. Discrepancies between these predicted states and the (unknown) true states might
include a translational bias, an incorrect spread of the mass, or higher-order distortion of the entire distribu-
tion, all considered as special cases of what we call systematic model errors. The central focus of this paper
is to address the question as to whether there is a distance metric that can naturally characterize the mis-
match between model predicted and true states and nonparametrically account for systematic errors. We
propose that the optimal mass transportation (OMT) metric (or Wasserstein metric) serves as a natural met-
ric to quantify such systematic errors since it captures and rewards the “similarity” between two distribu-
tions with respect to the values and relative position of the “mass” of the distributions (see also Rubner et al.
[2000] for a complementary viewpoint on why the OMT metric is natural in this context). By incorporating
this metric within the classical variational data assimilation framework, we present a methodology for
obtaining improved estimates of the states in the presence of systematic errors.

This paper is structured as follows. In section 2, classical formulations of variational data assimilation are
reviewed. Section 3 explains the relevant theory of OMT while the essence of this metric for model error
characterization is presented via a simple example. Section 4 presents the main contribution of this paper
and incorporates the OMT metric in the formulation of the variational data assimilation problem. Section 5
focuses on advection-diffusion dynamics for which we can explicitly demonstrate that the OMT metric is a
continuous function of the error in the space of model parameters and derive an upper bound on the dis-
tance between modeled and true states. Detailed examples that show the effectiveness and potential of
the proposed methodology are also reported in this section. Finally, conclusions are drawn in section 6.

2. Variational Data Assimilation

Let us denote the dynamical evolution of the state space and the observation model as follows:

X1 =Fie (%) Wy, (1a)

¥ =Hi (Xk) + i, (1b)

where F(-), H(-) denote the model and observation operators, respectively, and the (column) vectors w, v
represent process and observation noise. A prior estimate of the true initial state X, in data assimilation is
typically referred to as the “background state” x;,, which is often obtained from a previous time forecast or
climatological information. Then, starting with K + 1 sequential measurements yo, y1, . . . , ¥k, the problem is
to estimate the states xo, X1, . . ., X. In the statistical filtering theory, this problem is referred to as a fixed-
interval smoothing problem. If the error components wy, vk (k € {0, ...,K}) and X, —X, are independent
zero-mean Gaussian random variables while Fi(-) and Hk(-) are both linear time-varying operators, the solu-
tion is provided by the well-known Kalman filter [Kalman, 1960]. In the data assimilation literature, this prob-
lem is typically called four-dimensional variational (4D-Var) data assimilation [see, e.g., Trémolet, 2006;
Sasaki, 1970], and its equivalence to Kalman smoothing has been pointed out by Fisher et al. [2005]. In the
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classic formulation of the 4D-Var problem for deterministic dynamics with no model error w, estimation of
the underlying states amounts to minimizing the following quadratic expression:

K
min {||x0—xb||,271 +Z ||y —HiF - - - FiFo(%o)|[5 - }, )
Xo = k
where P and R, represent the covariances of the background error e : =xo—X, and vy, respectively. Here,
the notation |[e||5-, represents the weighted quadratic norm, that is, e’ P~"e, where " is the transpose oper-
ator. In order to account for model error in variational data assimilation, several techniques have been pro-
posed [Derber and Rosati, 1989; Zupanski, 1997; Vidard et al., 2004; Trémolet, 2006]. Typically, a stochastic
model error w is incorporated which leads to the following problem formulation, which is often called
weak-constraint 4D-Var:

K K
mank{nxo—xbﬁwzyk—Hk<xk>n;,+znxk—Fk1<xk1>z,}7 o

X5, X =0 P
where similarly Q, represents the covariance of wy.

More recently, the use of /;-regularization in data assimilation was suggested by Freitag et al. [2012], Ebtehaj
and Foufoula-Georgiou [2013], Foufoula-Georgiou et al. [2013], and Ebtehaj et al. [2014], to account for dis-
tinct geometrical features and the singular structure of the underlying state such as ridges and isolated
jumps (e.g., sharp weather fronts or extreme rain cells) as well as sparsity of the underlying state in suitable
transform domains. For instance, if it is known that x, is “smooth,” except for a few distinct jumps or that
the derivative of Xo has a Laplace-like distribution, then the ¢;-norm ||®(xo)||,; with @ a linear derivative-like
operator (e.g., wavelet transform) can be used as a regularization term as follows:

K K
min {||X0—Xb|§1+z|Yk—Hk(Xk)||;2ek1+ZXk—Fk1(Xk1)|ék1+v
k=1

X0, Xk prd

CI>(Xo)|1}, (4)

where 7 is a nonnegative constant maintaining a balance between goodness of fit to the available informa-
tion (model output and observations) and the underlying regularity of the initial state.

3. Monge-Kantorovich Optimal Mass Transport (OMT)

The main drawback of the above formalisms of the variational data assimilation problem is that we are
implicitly attributing the model error entirely to a stochastic (Gaussian) noise w. This attribution is not typi-
cally consistent with the commonly observed structural error in physically based environmental models,
which may deteriorate the quality of analysis and forecast skills of data assimilation systems. The main con-
tribution of this work is to advocate the relevance of transportation metrics for quantifying model error in
the variational data assimilation framework. These types of metrics are based on the theory of Monge-
Kantorovich optimal mass transport (OMT) [see Villani, 2003]. In particular, using transportation metrics in
data assimilation problems allows us to naturally characterize the distance between the state of the model
forecast and the unknown true state in a nonparametric fashion, without requiring any prior assumption
about the model error which might be physically unrealistic or practically prohibitive.

In the following, we confine our discussion to the quadratic form of the OMT metric (also known as Monge-
Kantorovich problem of exponent 2) in discrete space and specialize its definition for variational data assim-
ilation problems. To this end, let us consider two n-element density vectors x and x, having a support on a
discrete set of points {x}" , and {X;} ,, respectively. Usually the density vectors are obtained from discre-
tization of continuous densities and the support sets correspond to space-time locations that are dictated
by resolution and sampling rates. For now, assume that x and x have equal mass, i.e.,

N N . . . o

2[21 X(X’):Z;=1 x(x;), and the cost of transporting one unit of mass from location x; to x; is denoted by
¢ij- The Monge-Kantorovich mass transport problem considers the minimum cost of transferring all the
mass from the distribution x to the distribution x. The original formulation goes back to the work by Monge

[1781], while the modern formulation is due to Kantorovich [1942]. Note that this formulation casts the
problem as a linear programming which can be solved efficiently in large dimensions. More specifically, if m
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(i, X;) denotes the mass that is to be transported from location x; to location X;, the OMT metric 7 (x, X)
can be computed as follows:

7 (x,Xx) i = m”i)n Zcum(x,-,)?j)
i
subjectto  m(x;,X;) >0,

> mix, %) =x(x), ©
)
Zm(x,-,)?,-):i()?,-).

The above formulation can be expressed more compactly if we let 1 denote an N-dimensional vector with
all the entries equal to 1, C denote an NXN matrix with the (i, j)th entry ¢;;, and M denote an NXN matrix
with M(i,j)=m(x;,X;). Then,

T (x,X) :=min tr(CM)
M (©)
subjectto  M1=x, M"1=x, M(i,j) > OVi,j.

Here, the matrix M is a joint density matrix with positive elements, often referred to as the transportation plan
[Villani, 2003], where x and x are the marginal mass functions. Note that for the rest of the paper we specialize
our consideration to C(i,j)=||x;—X;| |? for which the transportation cost is characterized by the Euclidean dis-
tance between the location of masses in x; and x;. This selection of the quadratic transportation cost, known
as the OMT of exponent 2, allows us to remain in the domain of smooth and convex optimization.

The above definition of the OMT metric assumes that the total mass of the state of interest is fully con-
served. This assumption might be restrictive in data assimilation of nonconservative states, as for example
in the presence of source and sink elements in the underlying dynamics. To this end, a more relaxed OMT
formulation is required. Different methods have been proposed for generalizing the OMT metric to account
for nonequal masses [see, e.g., Benamou, 2003; Georgiou et al., 2009]. For example, the method proposed in
Benamou [2003] was to use a mixture of the OMT metric and ¢,-norm as follows:

T,(x.%) : = min {T(ﬁ,i)+o||x—ﬁ\\§}, ?)

where the nonnegative parameter ¢ is used to denote the relative significance of the ¢,-cost. Notice that the
above relaxed OMT metric is obtained through a nested minimization problem based on an intermediate
state X with minimal ¢, distance to the true state x (second term within the bracket), while at the same time
its mass is considered to be equal to x, through the use of the classic 7 (x, x) metric (first term within the
bracket). In other words, this new relaxed OMT metric penalizes the distance of x from the model predicted
state x in the OMT-sense, while it keeps the solution close enough to the true state x without strictly enforcing
mass equality due to the presence of model error. Obviously, the parameter ¢ accommodates this relaxation.

Before we proceed with formal technical details and more rigorous exposition of the use of OMT in varia-
tional data assimilation, we deem necessary to present a simple and intuitive example that illustrates the
difference between 7 (x,x) and ||x—x||, and elaborate on the essence of utilizing the transportation metric
for exhaustive quantification of the model error. We also provide insight via an example on how naturally
OMT reconciles two (oppositively) biased estimates. More specifically, when biases are in opposing direc-
tions, averaging in a quadratic sense will necessarily distort the original shapes while OMT preserves them.

Consider that the state x,(x) at time k represents a density function with a compact support in a bounded set
D where x,(x) > 0 for ¥x € D. To this end, consider a simple nondiffusive advective state space as follows:

Xi+1(X) =Xk (x—d),

in which, for example, we consider a drift value of d = 3 representing a velocity vector field. Thus, compar-
ing to (1), w is absent while F is a constant shift matrix. For example, let the initial state be
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Figure 1. (left) Initial state xo, true x;, and incorrect states igi),i € {1,2,3,4} obtained by an erroneous model, here, a biased estimate of

the shift coefficient at time t = 1; (right) quadratic norm ||x; —f(ﬁ” |3 and OMT metric 7 (x;, f(ﬁ” between the true and incorrect states at
time t = 1 for the four erroneous values of the shift coefficient shown in the left plot. Observe how the quadratic metric is insensitive to
the model error when the supports of the true and erroneous states are not overlapping while the OMT metric increases monotonically
proportionally to the model error (here a shift).

{10 for—0.5 < x < 0.5
x:

0 otherwise,

which is shown in the black solid line in Figure 1, while the state x;(x) is shown in the red solid line. To elab-
orate on the advantages of the OMT metric for bias correction purposes, let us now consider four biased
model outputs (estimates) of the above state space (ground truth) obtained by the erroneous advection

AN 4
parameters d € {3.5,4,5.5,7}, respectively. The corresponding estimates {iﬁ')} and a comparison of
i=1

their distance from the true state based on the metrics || - ||3 and 7 (-) are shown in Figure 1. It can be seen

that when the support sets of x; and X; are not overlapping, ||x; —X; ||§ is constant and independent of the
bias magnitude whereas the transportation distance increases monotonically. In other words, the OMT met-
ric penalizes larger biases monotonically in this case, while the ¢,-cost is insensitive to the bias magnitudes
after a certain threshold, depending on the structure of the support sets.

To further exemplify differences between the quadratic and OMT metrics, we consider an (academic) exam-
ple of reconciling two oppositely biased densities in Figure 2. The left plot displays the true density x and
two biased and noisy estimates on either side. The right plot displays the reconciled estimate of x obtained
via averaging the two biased states using the ¢,-norm, %, and using an OMT metric, x°™, and compares
these with the true density x. In essence, the reconciled estimate represents a “mean” (in the ¢,-sense and
in the OMT-sense, respectively). Naturally, the ¢;-estimate is bimodal (whereas, the original density was
not). As is evident, the OMT-estimate has a tendency to preserve and reconcile the shapes of the two biased
densities.

4, OMT in Variational Data Assimilation

We denote the transportation distance between the state x, and the predicted state Fx—q(Xk—1) as 7 (X,
Fk—1(xk—1)) and, likewise, the transportation distance between the true and background states as 7 (X, X5 ).
Our proposed formulation of the variational data assimilation problem is as follows:

K K
min {T(xo, X6)+ > 1Yk —Hie ()l + > T (%, Fiem1 (X1 ))}7 ®)
0, XK =

k=0

where the /;-norm is replaced with the OMT metric for taking into account both systematic and random
model errors. Here, the term corresponding to the measurement error is quantified by a quadratic norm
under the assumption that observational errors are well represented by additive (Gaussian) random noise.
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Figure 2. (left) True density x (in the solid line) and two oppositely biased and noisy densities x; (in the dashed line) and y (in the dash-
dotted line). (right) True density x (in the solid blue line) and the ¢, (X in the dashed green line) and OMT-estimates (x°™ in dash-dotted
green line), respectively.

For the purposes of this paper, we specialize to the case where the model F, and the observation operator
Hy are linear operators. A refinement of (8), where we have replaced the 7's by 7,'s to allow for the possi-
bility of nonconservative states, is as follows:

K K
min {T(,(xo,xb)+2||yk—Hkxk||§k1+ZTU(xk,Fk_1xk_1)+y||(on1}.
k=1

X0 XK k=0

This includes also a regularization term ||®xo||, that could be used to promote particular features in the
state [e.g., see Freitag et al., 2012; Ebtehaj et al., 2014]. In view of (7), the optimization problem (8) can be
written as

K K K
min {0(|Xo—f(b|2+2|xk—f(k|2> Iy Hixilz 711D, +T(ib,xb)+ZT(ik,Fk_1xk_1)},
X055 Xk k=1 k=0 k=1

Xp,X1,..., XK

©)

- K - . .
where, in general, the terms T(xb,xb)Jer:1 T (Xk,Fk—1X%¢—1) account for systematic model error (bias) of
the states as explained before. Notice that 7, is itself the solution of an optimization problem in equation
(7) and thus Xp,X1,...,Xx have been added as optimization variables.

Recalling that the OMT metric is obtained by minimizing over the joint density matrix, the last term in (9)
can be expanded as follows:

T(f(k, Fk,1xk,1) = n)\/lin tr (CMk)
k
subject to Mk(i,j) >0, Mk1=ﬁk, M,Z1=Fk_1xk_1.

Thus the problem (9) can be comprehensively represented as follows:

K K K
min {G<IIXo—Mb1|2+Z|IXk—Mk1|2>+ [y —Hexil [ +tr (C(Mb+ZMk)> +V‘DX0||1}
Xo, ...y Xk k=1 k=0 k=1

My, My, ... Mk subject to My(i,j), Mi(i,j) > 0, MI1=xo, M[1=Fi_1X¢—1, k=1,....K,

where we replaced x, by My1 and x, by My 1. We note that the size of M,'s is NXN since x,'s are N-dimen-
sional states. Clearly, the computational complexity of this optimization problem is higher than that of the
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classic 4D-Var method (see comparison in the examples presented below). However, more efficient algo-
rithms for solving large-scale OMT problems are being developed [Haker et al., 2004; Haber et al., 2010] and
their adaptation to variational data assimilation problems will be the subject of future research.

5. Applications Using the Advection-Diffusion Equation

In this section, we elaborate on the advantages of the proposed variational data assimilation focusing on
the advection-diffusion model, which forms the basis of many geophysical models in atmospheric, oce-
anic, hydrologic, and land-surface data assimilation applications. In this model, we specifically explore the
suitability of the OMT metric to quantify structural model error due to uncertainty in model parameters
including the advection velocity and diffusivity coefficient. We show that the OMT metric is a continuous
function of the model error and admits well-defined upper bounds expressed as functions of the model
parameters.

5.1. Quantifying Advection-Diffusion Model Error via OMT
Consider the one-dimensional advection-diffusion equation

O X+ udX=DOyy X, (10)

where u and D denote the constant advection and diffusion rate, respectively. It is well known that the
advection-diffusion equation transfers a point mass distribution to a Gaussian density with mean ut and var-
iance 2Dt. In particular, if the initial state is the Dirac delta d(x), then the solution of (10) is

1 (x—ut?

x(t,x)= 4Dt .

e

)

:

which is a Gaussian distribution with mean ut and variance 2Dt [see, e.g., Rubin and Atkinson, 2001]. We
denote the fundamental kernel of a general advection-diffusion as follows:

1 _(ur)?
PUI,D!(X) L= 7 Dte 4t
T

:

We also use the notation Py pr or Pyept(-) to denote this function. Given an arbitrary initial state X, the
advection-diffusion equation (10) is linear in x, with the following solution:

(00 [ Puor - raly)cy. ()
Now, let us consider the advection-diffusion equations

OX+U;0xX=D;0uX, fori=p, q, (12)

which, in this context, might represent a true state evolution equation and an erroneous one, say one with
the true parameter set and one with the erroneous set. Let x,(t, x) and x,(t, x) denote the solutions of
these two equations, respectively, with initial state

X,(0,X)=X4(0,x)=%o(x) > 0.
Then, the solutions of (12) for i=p, g, can be written as
X(6.X)= | Pusos(x—y o). fori=p.a.

In other words, each x;(t, x) is a convolution of a Gaussian kernel with xo(y).

NING ET AL.
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A possible strategy to transport the mass from the distribution x,(t, -) to the distribution x4(t, -) is to trans-
fer separately Py, p,t(-—Y) to Py, p,:(-—y) for each y and average the individual costs with weight xo(y)dy.
This observation leads to the following inequality:

T(xp(t,),%q(t,)) < JT (Puyt.0,t (=¥, Pugt.0gt (- —¥)) %o (y)dy,
=JT(Pupw,,t(->, Puvre())Xo(y)dy, (13)

=T<Pupr,opt<->7Puqr,oqzc))Jxo<y>dy7

since the OMT cost 7 (Py,tp,t(+), Pu,t.0,t(-)) between the Gaussian distributions Py, p,¢(-) and Py ¢ p,¢(+) is not
affected when we simultaneously transport both by y. The OMT metric between two independent Gaussian
distributions has the following closed form expression:

T (Puyen,ts Pugt.0yt) = (Ug—Up)*2+(1/2Dg —/2D,)t,

[see, e.g., Knott and Smith, 1984], and therefore (13) leads to

T((t.):%g(t.)) < [olly ((ug =)+ (/20— /2D 1) (14)

where [|Xo][; is the total mass of the initial state, i.e., |[Xo||; = [ Xo(y)dy, as Xo(y) > 0. Inequality (14) provides
an upper bound for the transportation distance between the solutions of the advection-diffusion equation
with different parameters. In particular, it implies that, in a short-time interval, small errors in the advection-
diffusion parameters lead to small errors in the states in term of the OMT metric. Notice that the upper

bound (14) is a continuous function of the error in the model parameters (u, v/D), which is tight when the
initial state corresponds to a pulse (Dirac delta).

On the contrary, as previously explained (see Figure 1), we recall that the ¢,-norm was unable to capture errors in

the shift parameter, as it saturates to a certain constant value when the union of the support sets is an empty set.

5.2. One-Dimensional Advection-Diffusion Model

In this example, the proposed approach is tested by hypothesizing an erroneous constant advection param-
eter. It is also assumed that the measurements are downsampled versions of the states (observation opera-
tor H as in (18) below).

Consider a one-dimensional state x evolving according to (10). Let the spatial and time resolutions be d,=
0.025 and d;=1, respectively, and

X(x7, ko)
Xk = ¢ (15)
X(XN7 kér)

In addition, let us assume that the state is contaminated by additive Gaussian noise and thus (10) leads to
the following difference equation for the state evolution:

Xi+1=FXg+wy, (16)

where, according to (11), the matrix F has the (i, j)th entry given by

Ox Gi—x—u)?

T4, 17
VarD® a7

In this example, x is considered to have support on [0, 5], hence, numerically, x is a vector in
F c RZOOXZOO

F(i.j)=

R200X1 and
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Figure 3. (left) Initial state X, (solid line), background state x;, (dotted line), and two model simulated states x;, x, at time steps t = 1, 2
(dash-dotted and dashed lines, respectively). The simulated states x;, x, were produced from Xq using the advection-diffusion model with
parameters u = 0.75 and D = 0.02, while x,, was taken to be a lagged and diffused variant of x. (right) Noisy observations y,, y,, and y, at
time steps t = 0, 1, 2 produced from Xo, X1, X,, respectively. The components of the process and observation noises were assumed Gaus-
sian with zero-mean and variance R = 0.2.

We assume that the true advection and diffusion process evolves with the following (but unknown)
parameters:

u(t)=0.75,D(t)=0.02, Vt,

and the error wy can be well explained by a zero-mean Gaussian noise with covariance Q=0.2/. Note that
we chose t = 0 as a reference point to denote the initial time of interest (e.g., to=0). Moreover, we assume
that the measurement model is

Y =HX, v
with the following observation operator:
11711 0000 ... 0000
1
=2|0000 1111 ... 0000 € R30*200, (18)

Selection of the above operator resembles a low-resolution sensor, which can only capture the mean of
four neighboring elements of the state vector. Here, the observation error vy is considered to be a zero-
mean Gaussian distribution with covariance R=0.2I.

To make the problem formulation complete, let the initial state be given by

10 for1.25<x<25
Xo(x)= _
0 otherwise
which is shown by the solid line in the left plot of Figure 3. This initial state might be hypothesized as a pol-

lutant concentration pulse propagated through a medium, a pulse of heat flux propagated through a soil
column, or a convective mass of moisture evolving through the atmosphere.

Now assume that the model parameters are not exactly known. In particular, we used an erroneous (biased)
advection-diffusion model with parameters

(t)=0.5,D(t)=0.02, Vt.

The background state x,, being a model prediction from a previous time step, is also biased and lags
behind the true state by 4 (t)—u(t)=0.25 as shown by the dotted line in the left plot of Figure 3. We
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Figure 4. (left to right) True states x; (solid blue line) and estimated states X, at time steps t = 0, 1, 2 in successive plots, using ¢/, and OMT and the erroneous advection-diffusion model
with parameters t=0.5 and D=0.02. At t = 0, ¢; regularization has also been used to promote the sparseness of the state in the derivative space. The accuracy of the OMT-estimates is

notable.

consider that three measurements y,, y,,y, are available (here obtained by adding zero-mean Gaussian
noise with covariance R=0.2/ to the model states predicted with the correct model), and these are plotted
in solid blue line, dash-dotted red line, and dashed green line in the right plot of Figure 3.

We examined the estimation using the ¢;-norm-regularized 4D-Var formulation in (4) and the proposed for-
mulation in (9). The estimated states of the two cost functions are demonstrated in Figure 4. The left plot of
Figure 4 demonstrates the true and estimated state xo. It is apparent that the procedure employing the
OMT metric is very effective in removing the bias and preserving the shape of the state. The estimated
ﬁgmt% is much closer to the true state than the estimate )“(ff”’ given by the ¢;-norm-regularized classical
4D-Var in (4). From the middle and the right plots, it is also apparent that the estimated states (at time step
k=1,2) x!? and X are more biased and more diffused than those of the x°™ and states given by the

proposed method.

)A(cz)mt
In order to provide a quantitative comparison, we computed the normalized squared error (NSE)

NSE : :7\\5(—)(2”27

1]
recognizing its limitation in capturing the type of discrepancies that motivated us to introduce the OMT-
formalism in the first place. The normalized squared errors of the three states using the /,-based method
(4) are NSE 4, x,=0.12, NSE ¢, x, =0.12, and NSE 4, x, =0.20, respectively, while for the proposed method in
equation (9), this error is NSE om¢ x, =0.03, NSE omt x, =0.02, and NSE om¢ x, =0.05, respectively. It is worth not-
ing that the computation of this example was implemented using cvx optimization toolbox in Matlab®
[Grant et al., 2012] on a desktop with a 2.4 GHz CPU clock rate. It took 9.7 s to get the result for the ¢,-based
method while the OMT-based method required more than 88 s, highlighting the need to develop more
computationally efficient algorithms for application to real problems.

In the above example, the /;-norm regularization evoked for the estimation of the initial state xo which
exhibits sparsity was implemented using the following linear transformation ® as stated in problem (9):

As is evident, the above choice of the ® transformation is a first-order differencing operator. This particular
choice of ® refers back to our prior knowledge with respect to the degree of smoothness and sparsity of
the first-order derivative of xo. In other words, one can see that the state of interest x, is piece-wise con-
stant, and thus its first-order differences form a sparse vector with a large number of zero elements. Indeed,
the incorporation of the ¢;-norm regularization of ||®@xo||, is a reflection of this prior knowledge in our data
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Figure 5. (left to right) The biased background state X, (produced as a prediction from a previous time step using the biased model t,=t,=0.1 and Dx=f)y=0.015) and the observa-
tions Yo, Y1, and Y, at time steps t = 0, 1, 2. The observations Y =HXiH +V; are downsampled and noisy version of the states X, produced by the true model with parameters u, =u, =
0.15 and D, =D, =0.02, while the entries of the observation noise V, are zero-mean Gaussian random variables with variance 0.1.

assimilation scheme which leads to an effective removal of the high-frequency random errors and recovery
of sharp jumps and singularities.

5.3. Two-Dimensional Advection-Diffusion Model
In this example, the evolution of the state is dictated by a two-dimensional advection-diffusion equation

Orx+uy () Oxx+uy (t) 0y x =Dy O X+ Dy Oy X, (19)

where u,, u, and D,, D, represent the advection and diffusion parameters in the x and y direction, respec-
tively. We discretize (19) with time and spatial resolutions 6;=1 and J,=0,=0.1, respectively. If we define

X(thhkét) X(X1»YN7k5r)
Xe= , (20)
X(Xn, Y1, ko) ... X(Xw, YN, KOt)

then (19) leads to the following difference equation for the evolution of the state:

X1 =FeiXiF)  + W,

where F, x and Fy  are given by (17) with advection and diffusion parameters set to u,, D, and uy, D),
respectively. In this example, we consider an advection-diffusion model with parameters

ux(t)=uy(t)=0.15and D (t)=D,(t)=0.02, Vt,

and the process noise is considered zero-mean Gaussian with covariance Q=0.1/.

The measurement equation is cast as follows:

Yie=HXH +V,, (21

where H is as in (18) but in a two-dimensional setting, i.e., the sensor output is a noisy and averaged repre-
sentation of the true state over a box of size 2X2. In this example, Fxx, Fyx € R'?*'? and H € R®*'? and the
observation noise is also zero-mean Gaussian with covariance R=0.1/.

The true state Xj is chosen to be piecewise constant as shown in the top left most plot of Figure 6 and
the subsequent states X; and X, are generated with the true model. Once again, due to some imperfect
knowledge of the model, we are led to consider the following erroneous advection and diffusion
parameters:
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Figure 6. First row plots, from left to right, show true state X, and its estimates via weak-constraint 4D-Var plus ¢;-norm regularization and
via the proposed OMT-based methodology, based on the biased background state X, and the observations Yy (shown in Figure 5). Note
that in all cases, the biased model with parameters i, =u,=0.1 and bX:Dy:O.ms was used for the estimation. The second and third row
plots, from left to right, show the true and estimated states at time steps t = 1 and t = 2. Observe how OMT-based 4D-Var accurately recov-
ers the true state, especially at time t = 0, clearly outperforming the weak-constraint 4D-Var.

Ux(t)=0,(t)=0.1and D, (t)=D, (t)=0.015, V/t,

(a biased model) and seek to estimate the true states X, X;, and X,. The background state X, being itself
a model prediction from the previous time step, is also biased (it lags behind and is less diffused than the
true state X, according to the biased model as shown in the left plot of Figure 5). Using the background
state X, and the available measurements up to time t = 2, shown in Figure 5, we estimate the states X,,
X1, X5 by solving the weak-constraint 4D-Var problem and the variational problem based on the OMT met-
ric. In both cases, we also use suitable regularizations to promote the shape and the smoothness of the
states.

The estimation results are shown in Figure 6 along with the true states at time t = 0, 1, 2. Once again, it
can be seen that the proposed methodology produces improved estimates of the true states. This fact
seems more apparent in the estimation quality of the initial state in the first row plots of Figure 6, in
which not only the bias but also the involved random error are well removed and the true shape is prop-
erly recovered. It is apparent that the OMT metric captures more accurately the drift and diffusion and
facilitates extracting more accurate estimates from subsequent observations. The normalized squared
errors of the estimated states using (4) are, respectively, NSE , x, =0.20, NSE (, x, =0.06, and NSE , x, =0.10
while the proposed method in equation (9) leads to NSE om¢ x, =0.03, NSE om¢ x, =0.04, and

NSE omt x, =0.09. The computation time for the ¢,-based method and the OMT-based method are 8.5 and
43 s, respectively.
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6. Conclusions

Environmental models often suffer from structural errors due to inadequate and/or oversimplified charac-
terization of the underlying physics. In this paper, we presented an approach for variational data assimila-
tion which allows taking into account non-parametrically random as well as systematic model errors via an
unbalanced optimal mass transport (OMT) metric. Using 1-D and 2-D advection-diffusion dynamics, we spe-
cifically elaborated on the effectiveness of the OMT-metric for tackling systematic model errors. We also
showed that the OMT-metric in combination with ¢;-regularization can be very useful for estimation of state
variables exhibiting singular structures with a sparse representation in a properly chosen transform domain,
e.g. in a derivative domain. The approach proposed herein can be seen as extending the classical varia-
tional data assimilation formalism of estimating the true state by balancing the error between the back-
ground state and the true state (x, and X, respectively) and the error between predicted states and
observations (x; and y;'s) within the assimilation window, by adding dynamic exibility in dening the model
error. OMT penalizes intrinsic discrepancies in the drift and diffusion of mass as opposed to the point-wise
comparison in other metrics such as when using a quadratic metric. Thus, by replacing the quadratic, appro-
priate for Gaussian random additive error, with the OMT metric, one can non-parametrically account for
structural model errors and, hence, systematic deviations of the predicted state from the observations. We
suggest that the proposed OMT-equipped variational data assimilation formalism has the potential to han-
dle problems with complicated model error dynamics and deserves further study both in theory and in its
application to geophysical data assimilation problems.
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