Integrated DC-DC Converter Design

Ramesh Harjani

Department of Electrical & Computer Engineering harjani@umn.edu

UNIVERSITY OF MINNESOTA

Talk Outline

Introduction to DC-DC converters

Motivation, uses

Types of DC-DC

Linear converters

- Series/shunt
- Classification, design

Inductive converters

- Passives + integration
- Control, design methodology
- Examples, SIMO

Capacitive converters

- Framework
- Design methodology
- Control, circuits

Special capacitive converters

Design example - capacitive

MOTIVATION

Power Is Precious

Smartphone teardown

Motivation: Mobile Devices

- Rapid advancement in VLSI technology
 - Multi-core processors in battery powered devices
 - Si technology moved from 350nm in 1995 → 22nm NOW
- Battery capacity does not follow Moore's law
 - Li-ion battery energy density only 2X since 90s !!!! *

Apple A9 GPU core

Intel core i7 mobile

http://thisweekinbatteries.blogspot.com/2010/02/moores-law-for-batteries-maybe-not.html)

University of Minnesota

5

Leakage Power & Multiple Domains

Leakage power is an increasing contributor

Increase in the number of power domains

One-chip 3G Cellular Phone processor with 20 power domains, 90nm 8M, dual VT CMOS, Y. Kanno, et al, ISSCC 2006

Why Integration?

TYPES OF DC-DC CONVERTORS

DC-DC Converters Are Everywhere

■ Need large, high-Q inductors → not easily integrated

DC-DC Converter Modelling (Ideal)

LINEAR CONVERTERS

Linear Regulators

Series Regulator

- The output voltage Vo is kept constant by varying R_R
- Efficiency = power in load /power from source

• If same current is flowing in R_R and R_L then $\eta = \frac{Vo}{Vin}$

Linear Converter Block Diagram

$$\eta = \frac{Vo^2}{R_L} \frac{R_R + R_L}{Vin^2} = \left(\frac{Vo}{Vin}\right)^2 \frac{R_R + R_L}{R_L}$$
$$= \left(\frac{R_L}{R_R + R_L}\right)^2 \frac{R_R + R_L}{R_L} = \left(\frac{Vo}{Vin}\right)^2$$
$$\eta = \frac{I_L \cdot Vo}{I_L \cdot Vin} = \frac{Vo}{Vin}$$

Voltage divider → efficiency is ratio of voltages

13

Model For Linear Converter

- Linear regulator = linear converter = aka LDO
- ■Linear regulator model ←→ transformer model
- Transformer has a turns ratio of 1
- Conversion efficiencies

Linear Converter Model

Linear Converter Transformer Model

Characteristics

- DC characteristics
 - Line regulation

$$\frac{\Delta V_o}{\Delta V_{in}} = \frac{1}{1 + \beta A}$$

Load regulation

$$\frac{\Delta V_o}{\Delta I_o} = \frac{R_{o,open}}{1 + \beta A}$$

- AC characteristics
 - Input ripple rejection (PSR) \rightarrow AC equivalent of line regulation
 - Output ripple rejection \rightarrow AC equivalent of load regulation

Low Drop Out Regulator

- Low Drop Out (LDO) regulator
 - (Vi-Vo) is desired as low as possible
 - Most popular/researched topology

- With Cap LDOs
 - Off-chip output capacitor, higher power levers, discrete

Cap-Less LDOs

Integrated, fast/higher bandwidth, large load transient droop

With-Cap LDOs

With Cap LDOs

- Output capacitor, CL, is the dominant pole capacitor
- Small bandwidth, less droop
- Easy compensation

Design constraints

- V_E cannot be lower than a ΔV
- Vo,max = VDD $-\Delta V$
- AE, AP must be constant during the operation of regulation
- Width of the pass transistor goes up rapidly for lower VDD

Compensation

- Dominant pole
 - Output capacitor, CL, is dominant pole capacitor
 - Small bandwidth, Easy compensation
- Non dominant poles
 - EA internal poles
 - Gate of the pass transistor
- Impact of load
 - More instability at lighter load

CAP-Less LDOs

- Dominant pole
 - Dominant pole of the EA
 - Large bandwidth, difficult compensation
- Non dominant poles
 - Gate of pass transistor
 - EA internal poles
- Impact of load
 - More instability at lighter loads as gain increases

Classification

- Analog amplitude
 - No steady state output ripple
 - Analog compensation
- Digital amplitude
 - Steady state ripple
 - Digital compensation

Digital LDOs

- Motivation analog vs digital
 - As VDD lowers, Ve is bottleneck
 - Make Ve zero

DLDOs

- Pass transistor either OFF/ON
- Mimic LDO operation
- Complex design
- Easy compensation
- Intrinsic ripple due to quantization

A 100nA-to-2mA SAR DLDO With PD Compensation And Sub-LSB Duty Control

Process: IBM 130nm CMOS Loai G Salem, Patrick Mercier ISSCC 2017

Example - SAR DLDO

Measurement Results

	Proposed LDO	Prior LDO
Response time (<i>T_R</i>)	15.1ns	377.5ns
Settling time	<100ns	1.37µs
FOM	199.4ps 🗲	→ 638ns
	>221	V/N

Shunt Regulator

- Motivation
 - Lowest operating point (Minimum Vin-Vo)
 - If power supply is high (|Vin| is high)
 - Good for making
 - Negative reference
 - Floating reference
 - Voltage limiting reference
- Unequal input and output currents
- Shunt resistor regulates
- Less popular (bulky)

Current divider \rightarrow efficiency is ratio of currents

INDUCTIVE CONVERTER

Inductive Power Converter

Switch

- Chops up the input voltage
- Can be implemented using a Diode-FET, NMOS-PMOS, or NMOS-NMOS combinations

 $Vout = D \cdot Vin$

Filter

- Ripple current is proportional to switching frequency and inductance
- Ripple voltage is proportional to ripple current and output capacitance

$$Iripple = \frac{1}{L}Vin \cdot D(1-D)\frac{1}{f}$$

Why Fully Integrated Converters ?

Integration - Inductors

- Output filters require high inductance (1µH to 100µH)
- High inductance results in
 - Large area
 - High series resistance resulting in low efficiency
- 1-3nH integrated inductors have reasonable series resistances
- Low inductance generates large current ripple resulting in
 - Large output voltage ripple
 - Low efficiency

- Strategy for integration
 - Interleaving: makes output independent of inductor current ripple
 - Magnetic coupling: reduces current ripple magnitude at inductor
 - On-chips are close and so have coupling

Inductors

Inductors

- Area bulky (1nH/0.2mm2)
- High quality factor a problem (typically 1nH/150mOhm)

Examples

Fully Integrated On-Chip DC-DC Converter with a 450x Output Range

Process: IBM 130nm CMOS Sudhir Kudva CICC 2010, JSSC 2011

Typical Buck Converter

Switching power significant % of wasted power @ lower currents

Modified Circuit

- Split PMOS switch and the drivers
- Size of the nail decides the hammer
- Only PMOS variable larger PMOS to handle larger current

Hysteresis Controller

- Improved efficiency at high output loads
- However, still low efficiency at low loads
- Switch pulse frequency depend on the load current
- Effectively variable switching frequency
- PMOS and NMOS both OFF for some time

Integrated Converter

■ Variable PMOS switches \rightarrow 10x,4x,1x

■ High load → PWM, Low load → Hysteresis

Chip Photograph

- IBM 130nm CMOS process
- Converter core area 1.13mm²
- Total area with supply decaps 1.592mm²
- Capacitance 5nF Inductance 2nH

Measurement Results: Efficiency

- Current increases quadratically with voltage
- Quadratic fit shown

Efficiency is maximized at all loads by changing operating modes

Inductive: Comparison

	O/P Power (mW)	O/P Power range	Efficiency (%)	Inductor/ Capacitor	Passive Components
Musunuri PESC 2005	50 – 200	~4X	40 - 60	0.1µH/30nF	MEMS inductor
Xiao JSSC 2004	0.15-600	~4000X	70 - 92	10µH/47µF	Off-chip inductor and capacitor
Wibben JSSC 2008	3 – 315	~100X	10 - 78	2x2nH/5nF	On-chip inductor and capacitor
Abedinpour T PE 2007	95 – 400	~4X	35 - 64	2x11nH/6nF	On-chip inductor and capacitor
This work	0.6–266	~450X	42.8 - 74.5	2nH/5nF	On-chip Inductor and capacitor

This work provides best on-chip performance

An Error Based Controlled Single Inductor 10 Output DC-DC Buck Converter with High Efficiency at Light Load

Process: 0.35um Process Min-yong Jung ISSCC 2015

Advanced Inductive Converter

Single Inductor Multiple Output (SIMO) inductive converter

Error Based Control

Turning on the switch which has the largest error

 $\Phi_{CLK} \rightarrow \text{Error Compare} \rightarrow \text{Turn on the Switch (Max Error)}$

CAPACITIVE CONVERTER

Capacitive Conversion Efficiency Trends

- Conduction loss : Fundamental – sets upper limit
- Parasitic loss: sets peak value
- DC control losses: almost constant with load – dominate at lighter loads
- Partial charging loss: dominates at higher loads

Capacitive DC-DC converter

 I_L (Load current)

Present Day Integrated Capacitors

- Power density → capacitive density
- Desired qualities of integrated capacitor
 - Low bottom plate capacitance
 - High density, low leakage, low ESR
- MIM (Metal Insulated Metal)
 - Low density, low bottom plate parasitic, expensive
- MOM (Metal Oxide Metal)
 - High parasitic, low density, cheap
- MOS (Inversion)
 - High density, high leakage, medium bottom plate
- Floating Junction High Density Capacitor
 - Low Leakage, higher density

Passives I: Floating Junction HD Cap

Wide output power range

- Desired constant efficiency over output
- Modular open loop helps

Passives II

Cross section - Accumulation Floating Junction (AFJ)

Passives III (Leakage Measurement)

- 40X improvement
- Floating source/drain

Unified Series Parallel Capacitive DC-DC Converter Framework

Ramesh Harjani, Saurabh Chaubey, CICC 2014

1:1 Converter (IPG-OPG)

- Figure shows a 1: 1 capacitor converter
 - I.e., the maximum voltage at the output is Vin,
- Bucket capacitor, C_b, charged to Vin during input Φ_1
- C_b discharge to Vo during Φ_2
- The tank capacitor is much larger C_T >> C_b
 - I.e., Vo can be assumed to be fairly constant

$$\Delta Q = (Vin - Vo)Cb \text{ per cycle}$$

$$I_{avg} = \Delta Q \cdot F_c = (Vin - Vo)Cb \cdot F_c = I_L$$

$$R_{avg} = \frac{\Delta V}{I_{avg}} = \frac{(Vin - Vo)}{(Vin - Vo)Cb \cdot F_c} = \frac{1}{Cb \cdot F_c}$$

IPG-OPG Capacitive Converter

 $(Vo \leq Vin)$

Transformer Model for IPG-OPG

- Transformer model for 1:1 capacitive converter
- Load line for IPG-OPG converter
- Maximum current when Vo approaches zero
- When Vo=Vin \rightarrow no charge transferred to output

IPG-OPG Converter Transformer Model

IPG-OPG Load Line

Buck Converter #1 (ISG-OPG)(1 : 1/2)

- Φ₁ each capacitor charged to Vi/2
- Φ₂ both capacitors discharged to Vo

$$Vmax = \frac{Vi}{2}$$
$$Ro = \frac{1}{N \cdot C \cdot Fc}$$

 $Area = N \cdot Area_{c}$

Buck Converter #2 (IPO-OPG))(1 : 1/2)

- Φ_2 caps parallel to Vout
 - Charged to Vout
- Φ₁ caps in parallel between input and output
 - Caps charged to Vin-Vo
- Charge transferred to output during each phase
- Calculating Vmax

$$(Vin - Vo) = Vo \rightarrow V_{max} = \frac{Vin}{2}$$

Area = $N \cdot Area_c$

Quick Summary: Topology Selection

- Same total capacitance used to compare designs
 N=2, C=1
- Some topologies are just better than others
 - Lower Ro → can provide larger current
 - IPO-OPG: charges during $\Phi 1$ and $\Phi 2 \rightarrow$ lower ripple

Boost Converter: (IPG-OPI))(1:2)

- Φ₁ parallel capacitors connected to Vi
- Φ₂ parallel capacitors between Vo and Vi
 - Note phase of capacitors
- Calculating Vmax

$$Vi = -(Vo - Vi)$$

Vmax = 2Vi

$$\Delta Q_1 = \mathbf{0}$$

$$\Delta Q_2 = \left[(Vi - Vo) + Vi \right] 2C$$

$$Io = \left[\mathbf{0} + (2Vi - Vo) 2C \right] Fc$$

$$Ro = \frac{1}{N \cdot C \cdot Fc}$$

$$Area = N \cdot Area_c$$

Design Rules

- Motivation
 - Currently, ad hoc single point solutions
 - No generalized set of topologies & equations
- Heuristic rules
 - Ripple voltage is small
 - Only three terminal designs
 - All bucket caps same size
 - All bucket caps move as one group
 - The bucket caps are in series or parallel
 - A cycle is composed of two phases
 - All three terminals used during each cycle

Nomenclature

Phase notation we will use

Position	Code	Description	
lst	I, G, O	Ist connection (Input, Output, Gnd)	
2nd	P, S	Series or Parallel	
3rd	I, G, O	2nd connection (Input, Output, Gnd)	

12 Distinct Configurations

Configuration Topology

Configuration to Topology

Enumeration

- 12 configurations for 1st phase
- For two phases (12 x 11=132) combinations
- Apply the heuristic rules: reduces to 96
- More heuristic rules
 - Same 2 phases but different order: ISG-IPO ; IPO-ISG
 - Series or parallel in both phases: ISG-ISO = IPG-IPO
 - Flipping 1st and 3rd letter (IPG-IPO=GPI-OPI)

18 structurally unique topologies

 IPG-IPO
 IPG-GPO
 IPG-OPI
 IPG-OPG
 IPG-ISO
 IPG-GSO

 IPO-GPO
 IPO-OPG
 IPO-ISG
 IPO-GSI
 IPO-GSO
 GPO-ISG

 GPO-OSI
 IPG-OSI
 IPO-OSG
 IPO-OSG
 GPO-ISG
 GPO-GSI

Derivation of Performance

Performance Equations: Final Set

MODE	К	Rout	Nmin	MODE	К	Rout	Nmin
IPG- OSI	N+I	$\frac{N}{fC}$	2	ISG- GPO	$-\frac{1}{N}$	$\frac{1}{fCN}$	2
IPG- OPI	2	$\frac{1}{fCN}$	I	IPG- GPO	-1	N fCN	I
ISG- OPI	$\frac{N+1}{N}$	$\frac{1}{fCN}$	2	IPG- GSO	-N	$\frac{N}{fC}$	2

Boost performance equations

MODE	K	Rout	Nmin
IPG- OPG	I	$\frac{1}{fCN}$	2
IPO- OSG	$\frac{N}{N+1}$	$\frac{N}{f\mathcal{C}(N+1)^2}$	I
IPO- OPG	$\frac{1}{2}$	$\frac{1}{4fCN}$	2
ISO- OPG	$\frac{1}{N+1}$	$\frac{N}{fC(N+1)^2}$	2

Negative performance equations

IPG-OSG	OPI-OSG	IPO-ISG	ISG-OPG
ISO-GPO	IPG-ISO	IPG-IPO	OPG- OPI

Non-optimum cases

Only 10 Optimum Topologies

Modeling Capacitor Parasitics

- Top / bottom parasitics modeled as conduction loss
- Capacitor parasitics
 - Parasitic input load
 - Parasitic output load
 - Parasitic parallel converter

Effect Of Parasitics

Example: IPO-OPG

- Top plate acts as 1:1 parallel converter
 - Takes charge from Vin in Φ_1 dumps on load in Φ_2
- Bottom plate acts as a passive load
 - Takes charge from Vout in Φ_1 and dumps to ground Φ_2

Parasitic Modeling

Bottom plate further reduces efficiency

Parasitics

- All 10 topologies
- For each topology
 - Primary converter
 - Parasitic input load
 - Parasitic output load

University of Minnesota

Parasitic converter

Software Defined 3000X Output Current Range SC DC-DC Converter

Process: TSMC 65 GP Saurabh Chaubey CICC 2017

Single DC-DC Conversion Module

Converter consists of standard cells

- Each cell → 2:1 converter (IPO-OPG)
- \blacksquare 2:1 \rightarrow 1 IPO-OPG , 3:1 \rightarrow 2 IPO-OPG and so on
- Passives \rightarrow custom high density cap \rightarrow 180 pF

DC-DC Converter - Open Loop

Architecture

- Modular –digital standard cell based design
 - IPO-OPG cell is standard cell (180pF)
 - 6 cells → 1 core (1.08 nF)
- Dual loop modulation
 - Capacitive modulation (Nine levels) Outer
 - Frequency modulation (RO based VCO) -Inner

Outer Control Loop

Overall Converter Dynamics

Measurement Results I

Combined Efficiency

Comparison

- Widest output current range support
- Supports DVS

Fully Integrated Capacitive Converter with All Digital Ripple Mitigation

Process: IBM 130nm CMOS Sudhir Kudva IEEE CICC 2012, JSSC 2013

Ripple Control Techniques(I)

- Overshoot above nominal voltage
 - Results in wasteful power
- Ripple \downarrow overall system efficiency \uparrow
- Conventional techniques
 - Increase switching frequency
 - Increase the interleaved stages
- ■Losses↑ or area↑ or need high frequency component
- Bucket capacitors designed for maximum load current
- Regulate the amount of charge transferred

Ripple Control Techniques (II)

- Regulate the charge dumped into decap
- Unconventional ways to control charge transfer
- Three possible methods
- Switch resistance (method #1)
 - Gate voltage to vary resistance
 - Requires analog components

Ripple Control Techniques (III)

- Capacitance modulation (method #2)
 - Vary bucket cap size
 - Hard to attain fine resolution

Pulse width modulation (method #3)

- Vary time of charge/discharge
- Limited range of control

University of Minnesota

Cap + Pulse Width Modulation (I)

- Both cap + pulse width modulation digital in nature
 - → No analog components
- Easily scalable with technology
- Primary loop for regulation
 - Changes switching frequency

Freq used as an indirect measure of ripple

Cap + Pulse Width Modulation (II)

Two step control

- Course control \rightarrow capacitance modulation
- Fine control → pulse width modulation

Partial Charge/Dischage → Efficiency

Regulation

- ■Single bound hysteretic control → regulation
- Clk freq = 200MHz
- Two copies of the converter core block
- # of blocks operational decided by state machine

•Converter \rightarrow 2 phase interleaved

Two modes

- ■ISO-OPG (3:1)
- **IPO-OPG** (2:1)

Same bucket caps used in both modes

Fully Integrated Converter

Measurement Results (I)

- Max efficiency mode \rightarrow all bucket caps switching
- State machine control
 - Based on ripple selects mode
 - Lower efficiency \rightarrow higher frequency
 - Less ripple (next slide)
- Experiment
 - Load current varied @ different Vout
 - Manual control (no S/M control)
 - With state machine control

Measurement Results (V)

Comparison With Prior Work

Achieves efficiency comparable to designs in lower tech. nodesEfficiency expected to increase with technology scaling

Work	Technology	Design technique	Max efficiency	Comments
[Lee07]	600nm	Resistance modulation	87%	Off-chip capacitors
[Lell]	32nm	32-phase interleaved	80%	Fully integrated
[Ramadass10]	45nm	Capacitance modulation	69%	Fully integrated
This work	130nm	Cap + time modulation	70%	Fully integrated

SPECIAL CAPACITIVE CONVERTERS

Flying Domain SC DC-DC Process: 180nm SOI Loai G. Salem, ISSCC 2016

Resonant SC DC-DC C. Schaef, ISSCC 2015

Flying Domain DC-DC Converter

- Flying domain DC-DC converter
- Interchange the bucket capacitor with load
- 100X area reduction, no parasitic loss
- Requires SOI

Efficiency Measurement

Resonant Capacitive Converters

Conclusions

Linear converters

- 1:1 conversion ratio, series/shunt
- Easy to implement
- LDOs vs DLDOs (for lower supply voltages)
- Inductive converters
 - Theoretical 100% efficiency
 - Integrated inductors are problem. Low quality factor
- Capacitive converters
 - Series parallel design framework
 - Capacitive and frequency based output regulation
- Special capacitive converters
 - Flying domain
 - Resonant converters

Questions

