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Ultra-Low-Power Processors

An Overview of Time-Based 
Computing with Stochastic 
Constructs

Computing on time-based data is a recent evolution of research in 
stochastic computing (SC). As with SC, complex functions can be 
computed with low area cost, but the latency and energy efficiency 
are favorable compared to computations on conventional binary 
radix. This article reviews the design and implementation of 
arithmetic operations on time-encoded signals and discusses the 
advantages, challenges, and potential applications.

S
tochastic computing (SC), a paradigm first introduced by W.J. Poppelbaum1 and 
Brian Gaines2 in the 1960s, has received considerable attention in recent years, 
particularly after Weikang Qian and colleagues reintroduced the concept to the 
electronic design automation community.3,4 It has since been explored as a poten-

tial paradigm for emerging technologies and “post-CMOS” computing. SC systems have 
very low area cost. This generally translates to low power consumption, making the para-
digm interesting for ultra-low-power processing systems.

In SC systems, logical computation is performed on random bitstreams called stochastic 
numbers (SNs). Two representations are used:

•	 In the unipolar representation, each real valued number x (0 # x # 1) is represented by 
a sequence of random bits, each of which has probability x of being 1 and probability 
1 – x of being 0.

•	 In the bipolar representation (– 1 # x # 1), each bit in the stream has a probability  
(x 1 1)/2 of being 1 and 1 – (x 1 1)/2 of being 0.

For example, 10011, 10101, and 11100 are all SNs representing 0.60 in the unipolar and 
0.2 in the bipolar representations.

SC offers some intriguing advantages over conventional binary radix. Complex func-
tions can be implemented with simple hardware. This enables the design of low-area and 
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low-power arithmetic units. For instance, 
multiplication can be performed with a single 
AND gate, and scaled addition can be formed 
with a single multiplexer unit. Also, SC pro-
vides tolerance to soft errors (that is, bit flips),4 
timing errors,5 and clock skew.6 The obvious 
disadvantage of SC is the latency. A stochastic 
representation is exponentially longer than con-
ventional binary radix. This translates to long 
operation times, particularly if high accuracy is 
required.7 Long bitstreams can be compensated 
for, to some extent, by shortened clock cycles. 
Nevertheless, long latencies translate into high 
energy consumption and so offset any gains 
made by simplified hardware.

This article explores an evolution of the 
concept of SC. Instead of encoding data in 
space, as random bitstreams, we encode values 
in time. The time encoding consists of periodic 
signals, with the value encoded as the fraction 
of the time that the signal is in the high (on) 
state compared to the low (off) state in each 
cycle. We call these pulse-width modulated 
(PWM) signals (see Figure 1).

Our approach is motivated by the obser-
vation that, as technology has scaled and device 
sizes have gotten smaller, the supply voltages 
have dropped while the device speeds have 
improved.8 Control of the dynamic range in 
the voltage domain is limited; however, con-
trol of the length of pulses in the time domain 
can be precise.8,9 Encoding data in the time 
domain may be more accurate and efficient 
than converting signals into binary radix.

This time-based representation is an excel-
lent fit for low-power applications that include 
time-based sensors, such as image processing 
circuits in vision chips. Converting a variety of 
signals from an external voltage to a time-based 
representation can be done much more effi-
ciently than a full conversion to binary radix. 
This enables a savings of at least 10 times in 
power at the outset.10

By exploiting pulse width modulation, 
signals with specific probabilities can be gen-
erated by adjusting the frequency and duty 
cycles of the PWM signals. These signals can 
be treated as inputs to the same logical struc-
tures used in stochastic computation, with the 
value defined by the duty cycle. This obser-
vation is motivated by noting that the sto-
chastic representation is a uniform, fractional 

representation. All that matters in terms of 
the value that is computed is the fraction  
of time that the signal is high.6 For example, 
if a signal is high 68.7 percent of the time, it 
is evaluated as 0.687 (see Figure 1).

This article reviews a transformative new 
idea: a technique for performing computa-
tion on time-encoded analog values directly 
with ordinary CMOS digital logic.10 This is 
related to work on a deterministic approach 
to SC.10–12 We have shown that, if properly 
structured, computation on deterministic bit-
streams can be performed with the same cir-
cuits as are used in SC, yielding the following 
benefits:

•	 Unlike stochastic methods, our determin-
istic methods produce completely accurate 
results, not approximations, with no errors 
or fluctuations.

•	 The cost of generating deterministic 
streams is a small fraction of the cost of 
generating streams from random or pseu-
dorandom sources.

•	 Most importantly, the latency is reduced 
by a factor of 1/2n, where n is the equiv-
alent number of bits of precision in 
binary.

Computation on signals encoded in time 
is directly analogous to this deterministic 
approach to SC. In this article, we review the 
performance of different stochastic operations 
for data processing of inputs generated by a 
sensing circuit; such data is time-encoded with 
PWM signals. We discuss the advantages, chal-
lenges, and potential applications for computa-
tion on such time-encoded signals.

Figure 1. Encoding in time with a periodic analog signal. The value 
represented is the fraction of the time that the signal is high in each cycle—
in this case, 0.687.
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Time-Based Encoding of Stochastic 
Numbers
Conventionally, the inputs to stochastic circuits 
are random bitstreams. Sensing circuits, such 
as image sensors, convert the sensed data (for 
example, light intensity) to an analog voltage 
or current. The voltages or currents are then 
converted to digital form, as binary radix, with 
costly analog-to-digital convertors (ADCs). 
Finally, stochastic bitstream generators, con-
sisting of random number generators (that is, 
linear-feedback shift registers) and compara-
tors, are used to convert the data from binary 
radix format to stochastic bitstreams.4

Recent work has demonstrated low-cost 
converters that directly convert sensed data 
from analog form to stochastic bitstreams.13,14 
These greatly reduce the hardware footprint 
and power consumption of the front end of sto-
chastic circuits. Nevertheless, due to the long 
latency of operating on random bitstreams, the 
overall energy consumption—defined as the 
integral of power consumption over time—
remains high. In particular, when high accuracy 
is needed, the length of stochastic bitstreams 
becomes prohibitive (for example, more than 
1,024 cycles). Even with a higher working fre-
quency, the latency is high; this makes stochas-
tic processing of digital bitstreams inefficient in 
terms of energy.

However, with sensors that produce 
time-encoded outputs, which in turn become 
inputs to the SC circuit, we can work directly 
with these analog signals instead of converting 
them into digital bitstreams. This results in a 
significant saving in energy at the front end. 
Another compelling advantage is the improve-
ment in the processing time. By using time- 
encoded signals, the total processing time 
can be reduced to a time equal to only one 
clock cycle.12 The precision of the compu-
tation now depends on the precision of the 
PWM signal in time, rather than the length 
of the bitstream. Experimental results on image 

processing applications show up to 99 percent 
speedup in performance and 98 percent saving 
in energy dissipation when processing time- 
encoded signals instead of conventional digital 
bitstreams10,12

Figure 2 shows the flow of computing 
on time-encoding signals. Assuming that the 
sensing circuit’s output is in voltage or cur-
rent form, an analog-to-time converter (ATC) 
circuit (that is, a PWM signal generator) 
is used to convert the sensed data to a time- 
encoded pulse signal. This circuit is very low 
cost, both in terms of hardware area and energy  
consumption (approximately 30 mm2 and 
0.08 pJ, respectively, for 1 GHz frequency, 
when supplying the converter with an external 
clock source). The converted signal is processed 
using the same circuit constructs as are used in 
SC. The output is converted back to a desired  
analog format using a time-to-analog converter 
(TAC). This is simply a voltage integrator.

The implementation cost of an ATC, 
which consists of an analog comparator, a ramp 
generator, and a clock generator, is a function 
of its frequency. Increasing the frequency (and 
thus decreasing the period of the PWM signal) 
increases the implementation cost of the com-
parator and ramp generator, but lowers the cost 
of the clock generator (for example, a lower 
number of inverters in a ring oscillator leads to 
a higher oscillation frequency). For frequency 
ranges of lower than 3 GHz, the clock gener-
ator has the dominant cost and so increasing 
the frequency lowers the total implementation 
cost of the ATC. However, care must be taken 
because increasing the frequency lowers the 
effective number of bit (ENOB) of time-based 
representation, which might then decrease the 
accuracy of the computation. For comparable 
accuracy levels, the synthesis results in our pre-
vious work show a 40 percent hardware cost 
reduction when replacing the conventional 
SN generator with ATCs in image-processing 
applications.10

Figure 2. Time-based computing with stochastic constructs. An ATC converts the sensed data to a 
time-encoded pulse signal. The converted signal is processed using the stochastic circuit, and the 
output is converted back to a desired analog format using a TAC.
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Independence in Stochastic Circuits
Stochastic operations can be divided into two 
main categories with respect to correlation 
between their inputs: operations that require 
independent (that is, uncorrelated) inputs, 
and operations that require highly correlated 
inputs. Multiplication and scaled addition 
and subtraction are the most common sto-
chastic operations that require independent 
inputs for correct functionality. An AND 
gate multiplies two unipolar SNs only if its 
inputs are independent bitstreams. A multi-
plexer (MUX) connected to two SNs as the 
main inputs and another SN as the select 
input accurately performs scaled addition and 
subtraction only if the select input is indepen-
dent of the two main inputs. (Note, however, 
that the main inputs need not be independent 
of each other.)

With time-encoded PWM signals, we set 
the duty cycle to be the value represented. For 
operations that require independent inputs, 
such as multiplication using an AND gate or 
scaled addition using a MUX, PWM signals 
that are not harmonically related must be 
used.10 To see why, consider connecting two 
PWM signals with the same duty cycle and the 
same frequency to the inputs of an AND gate. 
This produces an output equal to the inputs 
and not the product of the values. Inharmonic 
frequencies are selected for the input signals, 
and the operation is run for the least-common 
multiple (LCM) or multiples of the LCM of 
the period of the input signals, to produce 

highly accurate results. Figure 3 shows exam-
ples of performing multiplication and scaled 
addition using time-encoded PWM signals.

Three properties are exclusive to the oper-
ations with independent time-encoded inputs:

•	 Property 1. Each independent input must 
have a frequency inharmonic to the fre-
quencies of other independent inputs. A 
separate clock source is, therefore, required 
for each independent input.

•	 Property 2. Increasing the number of inde-
pendent inputs increases the operation 
time. The period of the output signal and 
so the operation time equals the product 
of the periods (1/frequency) of the inde-
pendent time-encoded inputs. Thus, by 
increasing the number of independent 
inputs, the circuit must run for a longer 
time to produce accurate results.

•	 Property 3. The accuracy of operations is 
inversely proportional to the frequency 
of input signals. Although increasing the 
frequency lowers the operation time, it 
decreases the ENOB in representing the 
input values and so the accuracy in the 
computations.

Compared to conventional bitstream-based 
SC, time-encoding the inputs can significantly 
improve the processing time and hardware area 
and power cost, and so the energy consump-
tion of operations that require independent 
inputs.

Figure 3. Examples of stochastic operations with independent time-encoded inputs. (a) Multiplying two time-encoded 
pulse-width modulated (PWM) signals using an AND gate. IN1 represents 0.5 with a period of 20 ns, and IN2 represents 0.6 
with a period of 13 ns. The output signal represents 0.30 (78 ns/260 ns), the expected value from multiplication of the inputs.  
(b) Scaled addition using a multiplexer (MUX). IN1 and IN2 represent 0.2 and 0.6 with a period of 5 ns, and Sel represents 0.5 
with a period of 4 ns. The output signal represents 0.40 (8 ns / 20 ns), the expected value from the scaled addition of the inputs.
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Correlation in Stochastic Circuits
The second category of stochastic operations 
includes those that require highly correlated 
inputs. An XOR gate implements absolute- 
valued subtraction |x1 – x2| when it is supplied 
with highly correlated inputs—that is to say, 
where the two input streams have maximum 
overlap in their 1s.15 As an example, connect-
ing S1 5 11101 and S2 5 10001, two cor-
related stochastic streams representing 4/5 and 
2/5, to the inputs of an XOR gate produces 
S3 5 01100, the expected value for absolute- 
valued subtraction. This operation is partic-
ularly useful in stochastic implementation of 
image-processing algorithms, such as Robert’s 
cross-edge detection algorithm.16

An AND gate with independent inputs 
works as a multiplier. However, with highly 
correlated inputs, it gives the minimum of the 
two stochastic streams. An OR gate supplied 
with highly correlated streams gives the max-
imum of the two stochastic streams. Thus, a 
basic sorting unit can be constructed with 
only an AND and an OR gate: supplied with 
two correlated inputs, it produces the smaller 
of the two values on one output line, and 
the greater of the two on the other. Such a 

low-cost implementation of sorting can save 
orders of magnitude in hardware resources 
and power when compared to the costs of a 
conventional binary implementation. Such cir-
cuits are important for applications such as the 
median filtering noise-reduction algorithm.17

Comparison of SNs is another common 
operation in stochastic circuits. A low-cost sto-
chastic comparator using a simple D-type flip-
flop was proposed in our previous work.12 For 
correct functionality, the inputs of the flip-flop 
must be correlated. For a digital representation, 
all 1s in each stream must be placed together 
at the beginning of the stream. The first SN 
should be connected to the D input, and the 
second one should be connected to the falling 
edge triggered clock input. The output of com-
paring two SNs, N1 and N2, will be 0 if IN1 
, IN2, and 1 otherwise.

When representing SNs with time- 
encoded PWM signals, high correlation or 
maximum overlap is provided by satisfying two 
requirements: choosing the same frequency 
for the signals, and having maximum over-
lap between the high parts of the signals. For 
example, two PWM signals that have the same 
frequency, and each has the high part located 

Figure 4. Examples of stochastic operations with correlated time-encoded inputs. (a) Performing stochastic absolute-valued 
subtraction, minimum, and maximum operations on two synchronized PWM signals: IN1 represents 0.3 and IN2 represents 0.7. 
Both PWM signals have a period of 10 ns. (b) Comparing stochastic numbers (SNs), represented by synchronized PWM signals, 
using a D-type flip-flop: (up) IN1 , IN2, and thus Out 5 0; (down) IN1 . IN2, and thus Out 5 1.
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at the beginning or end of each period, are 
called “correlated” or “synchronized” signals.12  
Figure 4a shows two synchronized PWM sig-
nals and the outputs of performing the sto-
chastic absolute-valued subtraction, minimum, 
and maximum operations on these. Note that 
the expected output is produced after a single 
cycle of the PWM input signals. Continuing 
the operations for additional cycles (the dot-
ted lines) does not improve the accuracy of the 
results.

Figure 4b also shows two possible cases of 
comparing SNs, represented by PWM signals 
using a D-type flip-flop. When IN1 is smaller 
than IN2, the falling edge of the PWM signal 
representing N2 causes the flip-flop to sample a 
low-level signal, and thus logical-0 is produced 
at the output. When N1 is greater than N2, the 
PWM signal representing N1 is still at a high 
level when the falling edge of IN2 occurs. So, 
logical-1 will be produced at the output of the 
flip-flop.

The exclusive properties of operations  
with correlated time-encoded inputs include 
the following:

•	 Property 1. The output of performing sto-
chastic operations on synchronized PWM 
signals is ready after running the operation 
for only one period of the input signals. As 
Figure 4 shows, the fraction of time each 
output signal is high is the same in all peri-
ods of each output signal. In such cases, 
continuing the operation for additional 
periods (the dotted lines in the figures) 
does not change the value or, most impor-
tantly, the accuracy of the output.

•	 Property 2. In contrast to stochastic opera-
tions with independent inputs that needed 
time-encoded signals with inharmonic 
frequencies, the inputs of correlated opera-
tions must have the same frequency. Thus, 
only one source, generating one clock sig-
nal, suffices.

Similar to operations that require independent 
inputs, by time-encoding of inputs, the pro-
cessing time, area, and power cost, and con-
sequently, energy consumption of operations 
that require highly correlated inputs can all be 
greatly reduced when compared to those of the 
conventional bitstream based processing.

Applications
Growth in digital and video imaging cameras, 
mobile imaging, biomedical imaging, robotics, 
and optical sensors has spurred demand for low-
cost, energy-efficient circuits for image process-
ing. Prior work on SC has shown this computing 
paradigm’s potential in low-cost implementa-
tion of image and video-processing algorithms. 
Image processing based on time-encoded signals 
could have significant impact in this applica-
tion area, particularly when power constraints 
dominate. Time-encoded, mixed-signal process-
ing can be performed on the same chip, with 
analog-to-time conversion followed by logical 
computation on the time-encoded signals, using 
stochastic constructs.

Figure 5 shows the conventional binary 
implementation and the core stochastic logic 
for the Robert’s cross edge-detection algo-
rithm. The figure summarizes the synthe-
sis results, which are based on a 45-nm gate 
library. Two sets of numbers are reported: one 

Figure 5. The Robert’s cross edge-detection circuit: (a) conventional binary 
implementation, (b) core stochastic logic, and (c) synthesis results and the 
results of processing a 128 3 128 sample input image using the binary 
design, a stochastic design with 256-bit random SNs, and time-based SNs. 
(For details of the implementations, see our previous work.10)
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for a stochastic design, processing 256-bit ran-
dom streams, and one for a time-based design. 
Both of these designs share the same core 
logic, shown in Figure 5b. The conventional 
bitstream-based stochastic design uses the ran-
dom stochastic stream generator proposed by 
Qian and colleagues.4 The time-based design 
uses the ATC proposed in our previous work10 
for time-encoding the inputs.

Considering the critical path of the core 
stochastic logic as the minimum allowed 
period of the signals when time-encoding 
the input data, 0.51 ns is selected as the 
period of the four main inputs and 0.34 ns 
is selected for the period of the select input. 
(For more details on choosing the period of 
the time-encoded signals, see our previous 
work.10) As Figure 5 shows, the time-based 
design has significantly lower area and power 
costs than the conventional binary and sto-
chastic designs. The processing time and the 
energy consumption are also dramatically 
improved.

Mixed-signal design is attractive for VLSI 
implementations of neural networks (NNs) 
for reasons of speed and energy efficiency. 
Also, mixed-signal solutions do not suffer 
from the quantization effects that arise with 
analog-to-digital conversion. NNs are com-
putationally complex, which makes them a 
good candidate for processing with low-cost 
stochastic logic. Digital bitstream-based pro-
cessing of data in stochastic NN often requires 
running for more than 1,000 clock cycles 
to achieve an accuracy close to that of con-
ventional deterministic fixed-point binary 
designs, which then leads to high energy con-
sumption. Time-based SC has the potential to 
mitigate these costs, offering energy-efficient 
designs. Unlike conventional SC, the com-
putations can be completely accurate with no 
random fluctuation. The approach could have 
a significant impact in the design of near-sen-
sor NN accelerators.

Challenges
Time-based computing is a mixed-signal tech-
nology that combines an analog representation 
in time with digital processing, using stochastic 
constructs. In this section, we briefly discuss 
different challenges in the development and 
application of method.

Analog Noise
Recent work has shown that by properly struc-
turing digital bitstreams, completely deter-
ministic computation can be performed with 
stochastic logic.11 The results are completely 
accurate with no random fluctuations. Due to 
the mixed-signal nature of time-based process-
ing, computations on time-encoded signals are 
susceptible to noise; one cannot promise 100 
percent accuracy. Analog noise cannot be com-
pletely eliminated from signals and therefore 
from computation. By careful design of ATC 
and TAC, and by choosing appropriate fre-
quencies, however, the error can be made very 
low (less than 0.001 percent mean absolute 
error).

Resolution
The resolution in time-based processing is lim-
ited by noise, rather than by the length of bit-
streams, as it is with SC. While there is no limit 
in the resolution of SNs represented by digital 
bitstreams, the resolution in our time-encoded 
approach is limited by the maximum ENOB of 
the ATC (that is, the PWM generator). For a 
minimum frequency of 10 MHz, current ATCs 
can achieve a maximum ENOB of 11 to 12 bits.

Truncation
With time-encoded signals, operations should 
run for a specific amount of time to produce 
correct results. For operations with indepen-
dent inputs, this time equals the product of 
the period of the input signals; for operations 
with correlated inputs, it equals the period of 
the input signals. Running the operation for 
longer or shorter than the required time results 
in truncation error.10 In contrast, stochastic 
bitstreams have the property of progressive pre-
cision, meaning that short subsequences of an 
SN can provide low-precision estimates of its 
value.16 The longer the stream runs, the more 
precise the value. Given enough time, the out-
put converges to the expected correct value, 
and consequently, the truncation error is gen-
erally low.

Synchronization
Operations using synchronized PWM signals 
are limited to only the first level of logic in a cir-
cuit. Providing the required synchronization—
that is, having maximal overlap between the 
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high part of the input signals—is difficult to 
achieve for the second and higher logic levels.

A naive solution is to convert the output 
of each level back to an analog format, then 
perform an analog-to-time conversion and 
feed this to a higher level. However, this naive 
method decreases the accuracy and is costly in 
terms of latency, area, and energy.

Skew
The synchronization must be perfect in oper-
ations that require synchronized inputs. 
On-chip variations or noise sources affecting 
clock generators can result in deviations from 
the expected period, phase shift, or slew rate of 
the signals. Different delays for AND and OR 
gates, for example, can be a source of signifi-
cant skew in implementing sorting-based cir-
cuits. The skew in each stage is propagated to 
the next, resulting in a considerable skew error 
for large circuits. Mitigating the skew by delay-
ing some signals is complex and costly, and may 
offset gains in area and power.

Rotation
Relatively prime stream lengths, clock division, 
and rotation were three methods explored by 
Devon Jenson and Marc Riedel for processing 
bitstreams deterministically.11 Choosing inhar-
monic frequencies for the time-encoded signals 
corresponds to the “relatively prime” method 
in Jenson and Riedel.11 A high-frequency 
time-encoded PWM signal is connected to the 
select input of the MUX in previous work by 
Najafi and Lilja12 for an accurate scaled addi-
tion operation. This approach corresponds  
to the “clock division” method in Jenson and 
Riedel.11 In their “rotation” method,11 digital 
bitstreams are stalled for one cycle at powers 
of the stream length, causing each bit of one 
bitstream to see each bit of the other stream 
exactly once. Considering the high working 
frequency of time-based SC, stalling PWM  
signals for a very short and precise amount of 
time might not be possible.

Sequential Circuits
Sequential finite-state machine (FSM)-based 
approaches exist for implementing complex 
functions with SC.18,19 These methods depend 
on randomness in different ways than combina-
tional methods do. It is not clear how to translate 

these sequential constructs to deterministic com-
putation on time-based PWM signals.

C omputation on time-based encodings 
offers significant advantages over both 

deterministic and conventional stochastic 
approaches. It generally results in circuits that 
are much less costly in terms of area and power, 
particularly for applications where the inputs 
are presented in analog voltage or current form. 
The savings in the analog-to-time conver-
sion step compared to a full analog-to-digital 
conversion are significant. Accordingly, the 
approach is a good fit for low-power real-
time image-processing circuits, such as those 
in vision chips. In future work, we will 
develop an ultra-low-power video-processing  
unit using the discussed time-based processing  
approach. We also use this processing  
approach in a low-cost, energy-efficient 
implementation of convolutional NNs and 
near-sensor NN accelerators 
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