
INVITED: ALIGN – Open-Source Analog Layout
Automation from the Ground Up

Kishor Kunal
University of Minnesota

Minneapolis, MN
kunal001@umn.edu

Meghna Madhusudan
University of Minnesota

Minneapolis, MN
madhu028@umn.edu

Arvind K. Sharma
University of Minnesota

Minneapolis, MN
aksharma@umn.edu

Wenbin Xu
Texas A&M University
College Station, TX
wbxu@tamu.edu

Steven M. Burns
Intel Corporation
Hillsboro, OR

steven.m.burns@intel.com

Ramesh Harjani
University of Minnesota

Minneapolis, MN
harjani@umn.edu

Jiang Hu
Texas A&M University
College Station, TX
jianghu@tamu.edu

Desmond A. Kirkpatrick
Intel Corporation
Hillsboro, OR

desmond.a.kirkpatrick@intel.com

Sachin S. Sapatnekar
University of Minnesota

Minneapolis, MN
sachin@umn.edu

ABSTRACT

This paper presents analog layout automation efforts under the

ALIGN (“Analog Layout, Intelligently Generated from Netlists”)

project for fast layout generation using a modular approach based

on a mix of algorithmic and machine learning-based tools. The road

to rapid turnaround is based on an approach that detects structure

and hierarchy in the input netlist and uses a grid based philosophy

for layout. The paper provides a view of the current status of the

project, challenges in developing open-source code with an aca-

demic/industry team, and nuts-and-bolts issues such as working

with abstracted PDKs, navigating the “wall” between secured IP

and open-source software, and securing access to example designs.

KEYWORDS

Analog circuits, physical design, hierarchy, machine learning.

ACM Reference Format:

Kishor Kunal, Meghna Madhusudan, Arvind K. Sharma, Wenbin Xu, Steven

M. Burns, Ramesh Harjani, Jiang Hu, Desmond A. Kirkpatrick, and Sachin

S. Sapatnekar. 2019. INVITED: ALIGN – Open-Source Analog Layout Au-

tomation from the Ground Up. In Design Automation Conference 2019 (DAC

’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/XXXXXXX.XXXXXXX

1 MOTIVATION AND GOALS

The problem of analog layout synthesis has attracted considerable

interest for several decades [1–8, 10], but these efforts have not

seen very widespread adoption by circuit designers. The traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX. . . $15.00
https://doi.org/10.1145/XXXXXXX.XXXXXXX

perception has been that the results of these tools are unable to

match the expert designer, both in terms of the ability to compre-

hend and implement specialized layout tricks, and the number and

variety of topologies with circuit-specific constraints. Consequently,

automated layouts were unable to match the performance of hand-

crafted layouts. The first generation of approaches for solving the

problem used rule-based methods. However, distilling designer

intent into a limited set of rules can be challenging.

In recent years, the landscape has shifted in several ways, mak-

ing automated layout solutions attractive. First, in nanometer-scale

technologies, restricted design rules with fixed pitches and unidi-

rectional routing limit the full freedom for layout that was available

in older technologies, thus reducing the design space to be explored

during layout, reducing the advantage to the human expert. Second,

today more analog blocks are required in integrated systems than

before, and several of these require correct functionality andmodest

performance. The combination of increasing analog content with

the relaxation in specifications creates a sweet spot for analog au-

tomation. Even for high-performance blocks, an automated layout

generator could considerably reduce the iterations between circuit

optimization and layout, where layout generation is the primary

bottleneck. Third, the advent of machine learning (ML) provides

the promise for attacking the analog layout problem in a manner

that was not previously possible.

TheALIGN (Analog Layout, Intelligently Generated fromNetlists)

project engages a joint academic/industry team to develop open-

source software for analog/mixed-signal circuit layout to translate

a netlist into a physical layout, with 24-hour turnaround and no

human in the loop. The ALIGN flow inputs a netlist whose topology

and transistor sizes have already been chosen, specifications, and a

process design kit (PDK), and outputs GDSII.

The philosophy of ALIGN is to use a mix of algorithmic tech-

niques, template-driven design, and ML to create layouts that are

at the level of sophistication of the expert designer. The solution

proceeds through a compositional approach that builds designs by

assembling structures multiple levels of hierarchy. Thus, ALIGN

identifies hierarchies to recognize the building blocks of the design

so that they may be appropriately optimized, in much the way that

an expert analog designer builds a circuit. At the lowest level of

this hierarchy is an individual transistor; these transistors are then

combined into larger fundamental primitives (e.g., differential pairs,

current mirrors), then modules (e.g., opamps), up through several

levels of hierarchy to the system level (e.g., an RF transceiver).

In fact, the key to making ALIGN generally applicable to circuits

lies in its use of hierarchy. By defining an appropriate set of primi-

tives at the lowest level of hierarchy, and by using ML capabilities

to handle ambiguity in the way these primitives are assembled, we

believe that it is possible to mimic the expert designer.

The sets of circuits targeted by ALIGN fall into four broad classes:

• Low-frequency components that include analog-to-digital

converters (ADCs), amplifiers, and filters.

• Wireline components that include clock/data recovery, equal-

izers, and phase interpolators.

• RF/Wireless components that implement transmitters, re-

ceivers, etc.

• Power delivery components include capacitor and inductor

based DC-to-DC converters.

Each class is characterized by similar building blocks that have a

similar set of specifications, although it should be mentioned that

there is considerable diversity even within each class.

2 OVERVIEW

The ALIGN flow consists of five modules, illustrated in Fig. 1:1

• Design Rule Capture abstracts the proprietary PDK into a set

of constraints that must be obeyed by the layout generator.

• Netlist Auto-annotation groups transistors and passives in

the input netlist into building blocks and identifies geometric

constraints on the layout of each block.

• Electrical Constraint Generation identifies the performance

constraints to be obeyed, and transforms them into layout

constraints, such as the maximum allowable route length.

• Parameterized Layout Generation of Primitives automatically

builds layouts for primitives, the lowest-level blocks in the

ALIGN hierarchy, parameterized by variables that charac-

terize the size of a transistor, the capacitance of a MOM

capacitor, the resistance of a serpentine, etc.

• Block Assembly takes all blocks and places/routes the design

hierarchy to build the overall layout.

The first three derive the netlist structure and the constraints that

guide the last two modules that perform constraint-driven layout

generation. The flow creates a separation between open-source code

from proprietary data. Proprietary PDK models must be translated

into an abstraction that is used by the layout generators. Various

parts of the flow are driven by ML models: the flow provides infras-

tructure for training these models on proprietary data. The models

are trained on public data, and ALIGN is also assembling a set of

public-domain benchmark circuits from all available sources.

1It is important to point out that ALIGN is a multiyear project that is not yet a year
old, and therefore, not all of these modules are fully populated at this time.

��������
	
���

	��	���

��������	��
�����	���
����	���

����������
�	��
��

����	���

������	��������
���	�������

�������	������
����

�
�����
�
���

��
� �
!	��	��"�
������

#
��
� �
$�%��

��
� ���&

���'�('�)�*��������	���
��
��
�	�	�������+��	��������,��-���	������������	�	�	�����*��
"����	���
��
����.�	"���/0������

'1�$��1	��
��$���	���

������� �������

2	�3�����	������"���

*#.��1'4#!(�$���.'(�#����$���

Figure 1: Overview of the ALIGN flow.

2.1 Design rule abstraction

A key step in closing the interface between a proprietary PDK and

the layout generation engine is an appropriate abstraction of the

PDK that can be comprehended by the layout generation engines.

Several efforts in this direction have been made (e.g., [9])), and

ALIGN attempts to abstract the design rules using a simplified grid,

for both the FEOL and BEOL layers.

Major features of advanced process nodes (22nm, 10nm, 7nm,

beyond) have been abstracted into a simplified form. The abstraction

enables layout tools to comprehend PDK features such as regular

and irregular width and spacing grids (for each layer), minimum

end to end spacing design rules (between metals in the same track),

minimum length design rules, and enforced stopping point grids.

Our simplest uniform grid, for a specific metal layer, is illustrated

in Fig. 2. The grid consists of major grid (dark) lines on which fea-

tures are centered, and minor grid (light) lines that act as stopping

points. Here, metal2 (horizontal, blue) and metal3 (vertical, pink)

grids are shown, along with a grid-based minimum length and mini-

mum end-to-end rules. Each center line (routing track) is associated

with a specific wire width. The diagram also shows via enclosures

(metal surrounding the via cut) and how their dimensions corre-

spond to the stopping point grid lines. These abstract grids for base

layers and metals are described in simple JSON files.

Figure 2: A uniform grid to simplify more complex design rules.

2.2 Auto-annotation of input netlists

The input to ALIGN is an unannotated input netlist. The netlist

is first represented by a graph, and then features in the graph

are recognized at various levels of hierarchy. If the input netlist

is partitioned into subcircuits, such information is used during

recognition, but ALIGN does not count on netlist hierarchy. Instead,

hierarchies are automatically identified and annotated.

NMOS NMOS�Floating�Bulk
Twell�or�finFET

PMOS

NMOS�Cascode NMOS�RDegenerated NMOS�Body�Input

NMOS�GainBoosted�
RDegenerated

(a)
Symmetrical�OTA

Telescopic[FD]

CMF[SC]
����

Vo1Vo2

Vo
c
m

Vb1

Vb2

GainBoosted[FD]

`

2Stage�Miller�Compensated

C
S
A
m
p

CC[RC]

5TPair

DP

CM

��

��

��

��

��

��

��

Dynamic[CMOS]
LittleOTA[FD]

(CMF�not�shown)

(b)

Figure 3: Example variants of (a) the differential pair (DP)

primitive (b) the opamp/OTA, showing fundamental primitives.

While graph-based methods can be very efficient at recogniz-

ing fixed structures through subgraph isomorphism operations, a

problem in analog design is that there may be a large number of

variations in how each circuit functionality can be implemented.

For example, Fig. 3a shows various implementations of a differential

pair. Many of these are purely transistor-level structures, but the

last configuration in the figure uses a mix of transistors and ampli-

fier building blocks. At a higher level of design hierarchy, Fig. 3b

demonstrates different ways of building an operational amplifier:

here, the sub-blocks include groups of transistors recognized as

differential pairs, current mirrors, differential loads, or OTA blocks.

Enumerating graph patterns for recognizing these structures is

feasible at lower levels of design hierarchy, but the number of per-

mutations becomes impractically large at higher levels. An expert

human designer who examines a schematic instinctively performs

such recognition based on patterns learned from prior experience.

The ALIGN approach matches this through the use of ML methods

that recognized standard structures based on their features.

2.3 Constraint generation

Based on the recognized hierarchical blocks, further annotations

are added at each level to identify geometric constraints such as

symmetry, matching, or common centroid. Electrical performance

metrics for the system are percolated down to individual sub-blocks

and translated into layout rules (e.g., maximum routing lengths or

parasitic requirements). All such constraints are passed on to the

layout generation engine to guide layout at all levels of hierarchy.

(a) (b)

Figure 4: Parameterized primitive layouts for (a) a differential pair

with transistors placed using common centroid, and (b) a 2 × 2
MOM capacitor array.

2.4 Parameterized primitive layout generation

The first level of structures above the elemental (transistor or wire)

level are referred to as primitives. Predefined parameterized tem-

plates for the layouts of these blocks are stored in a library. A

gridded layout style is used, following the grids defined by PDK

abstraction. The template parameters define specific implementa-

tional details, e.g., a current mirror is parameterized by the number

of outputs and the sizes (or number of fins) of each transistor; a

MOM capacitor array is parameterized by the desired capacitance

value. The templates interact with the PDK abstraction and are

constructed to guarantee design-rule-correct layouts, including op-

timal transistor placement and within-primitive routing. Example

primitive layouts are shown in Fig. 4.

2.5 Block assembly, placement, and routing

During block assembly, layouts for all blocks are progressively

created from their subblocks, with the leaf-cell layouts correspond-

ing to the parameterized primitive layouts described above. Prim-

itives have rigid shapes and use placement-like algorithms, and

multiple layout options with different shapes are be generated for

each module. At higher levels of hierarchy, flexible shapes drive

floorplanning-like placement algorithms that deliver compact lay-

outs under the electrical and geometric constraints passed on to

them by the constraint generation step. Routing is integrated into

each hierarchical level, accounting for net length/parasitic con-

straints, net density/dummy fill constraints, and design rules, again

obeying electrical and geometric constraints.

3 OPEN SOURCE CHALLENGES

Several significant challenges are being surmounted in building

open-source EDA software for analog layout, as outlined below:

Working with common PDKs: The process of obtaining legal access

to a commercial PDK requires considerable patience and involves

signoffs on nondisclosure agreements (NDAs). Even PDKs that are

freely available to academia are restricted for circulation to non-

academic institutions, such as industry or government laboratories.

This limits our ability to exchange information across institutions

within the ALIGN team, and with external designers.

To circumvent this issue, we have developed realistic “mock

PDKs” representing typical bulk and FinFET technology nodes,

based on published data. While they do not represent a real tech-

nology, validation of the design tools on these PDKs, which can

be freely shared, helps the software development process. Once

the software has been developed and proven on mock PDKs, a

developer with full PDK access can run ALIGN on real PDKs.

Access to design examples: Sharing designs based on a commercial

PDK over multiple institutions requires a multiway NDA involv-

ing the institutions, the foundry, and the foundry access provider.

Within the ALIGN team, this issue was complicated by the need

for such an agreement to cover both academia and industry.

We have chosen a multipronged approach to solving this prob-

lem by (a) mining prior academic designs from the Harjani group

at Minnesota (b) collaborating with other design teams through

multiway NDAs (c) building new designs, or retargeting old designs

to new technologies. To carry the designs through the entire design

flow, the input must be an optimized netlist with appropriately cho-

sen device sizes, and each of these methods provides an avenue to

access such designs. We choose representative designs in the space

of low-frequency analog, wireline, wireless, and power delivery

circuits to build and exercise the ALIGN flow.

Superficially, it may seem that there is a wealth of available

designs in prominent conferences and journals that cover analog

circuit design, but these sources typically do not specify the details

of a design, and may at best present a coarse schematic, with nu-

merous details hidden within black boxes. This limited information

is also being exercised by ALIGN, primarily by providing training

examples for the auto-annotation block.

4 SOFTWARE INFRASTRUCTURE

The software flow is maintained on a github repository, and is aided

by the use of tools that are vital to a open-source infrastructure

with continuous integration (CI). These include:

• lightweight Docker containers that perform operating sys-

tem virtualization and enable portability and ease of mainte-

nance, and enabling the use of other open-source tools such

as the KLayout layout viewer;

• CI build flows, using CircleCI, for automated build of new

components as they are added to the repository;

• unit testing, using pytest, to verify the correctness of indi-

vidual units of source code that is added to the repository;

• code coverage to measure how much of the code is executed

by the automated tests, using coverage.py with Codecov for

tracking; and

• automated code review for code quality checks using Codacy.

It is worth pointing out that many of these cloud-based software

development tools are free of charge for open-source code.

5 EARLY RESULTS

We show an early application of the ALIGN flow to the layout of a

switched capacitor filter, whose schematic is shown in Fig. 5a. The

auto-annotation component recognizes various blocks of the netlist,

as shown in the figure, and the lines of symmetry are marked out.

Individual primtives are identified and laid out: for example, the

capacitor layouts correspond to Fig. 4b. The primitives are assem-

bled into blocks: Fig. 5b shows how various primitives (differential

pair, differential load, current mirror) are assembled into a layout.

Finally, the top level layout, consisting of all components of the

filter, satisfying all constraints, is shown in Fig. 5c.

(a) (b)

(c)

Figure 5: (a) A switched capacitor (SC) filter, and the

ALIGN-generated layout of (b) the OTA within the SC filter and (c)

the entire SC filter, where “CC” refers to a capacitor array. The

opamp is placed on top; other transistors correspond to switches.

6 CONCLUSION

This paper summarizes early efforts in putting together ALIGN, an

open-source layout generation flow for analog circuits for rapid

turnaround with no human in the loop. The solution is architected

to enable users to incorporate proprietary process and design in-

formation into the flow. The project works with a PDK abstraction

and leverages hierarchy, machine learning, and gridded layouts to

control the complexity of the design space, with hierarchy being a

critical feature that can enable future scalability of this project to

handle a large variety of analog designs.

ACKNOWLEDGMENTS

This work was supported by the DARPA IDEA program under

SPAWAR contract N660011824048.

REFERENCES
[1] J. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley. 1991. KOAN/ANAGRAM II: New Tools for Device-Level

Analog Placement and Routing. IEEE Journal of Solid-State Circuits 26, 3 (March 1991), 330–342.
[2] C. R. C. De Ranter, G. Van der Plas, M. S. J. Steyaert, G. G. E. Gielen, and W. M. C. Sansen. 2002. CYCLONE:

Automated Design and Layout of RF LC-Oscillators. IEEE T. Comput. Aid D. 21, 11 (Oct. 2002), 1161–1170.
[3] M. Eick, M. Strasser, K. Lu, U. Schlichtmann, and H. E. Graeb. 2011. Comprehensive Generation of Hierarchical

Placement Rules for Analog Integrated Circuits. IEEE T. Comput. Aid D. 30, 2 (Feb. 2011), 180–193.
[4] H. E. Graeb (Ed.). 2010. Analog Layout Synthesis: A Survey of Topological Approaches. Springer, New York, NY.
[5] R. Harjani, R. A. Rutenbar, and L. R. Carley. 1989. OASYS: A Framework for Analog Circuit Synthesis. IEEE T.

Comput. Aid D. 8, 12 (Dec. 1989), 1247–1266.
[6] Q. Ma, L. Xiao, Y.-C. Tam, and E. F. Y. Young. 2011. Simultaneous Handling of Symmetry, Common Centroid, and

General Placement Constraints. IEEE T. Comput. Aid D. 30, 1 (Jan. 2011), 85–95.
[7] E. Ochotta, R. A. Rutenbar, and L. R. Carley. 1994. ASTRX/OBLX: Tools for Rapid Synthesis of High-Performance

Analog Circuits. In Proc. DAC. ACM, New York, NY, 24–30.
[8] H.-C. Ou, H.-C. C. Chien, and Y.-W. Chang. 2013. Simultaneous Analog Placement and Routing with Current Flow

and Current Density Considerations. In Proc. DAC. ACM, New York, NY, 6 pages.
[9] G. Soto. 2017. Discover the Power Of OPAL, A New High-Level Design Rule Modeling Language. http://www.

si2.org/events/opal/
[10] C.-Y. Wu, H. Graeb, and J. Hu. 2015. A Pre-search Assisted ILP Approach to Analog Integrated Circuit Routing.

In Proc. ICCD. IEEE, Piscataway, NJ, 244–250.

