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ABSTRACT
Compressive Sampling (CS), also called Compressed Sens-
ing, entails making observations of an unknown signal by
projecting it onto random vectors. Recent theoretical results
show that if the signal is sparse (or nearly sparse) in some ba-
sis, then with high probability such observations essentially
encode the salient information in the signal. Further, the sig-
nal can be reconstructed from these “random projections,”
even when the number of observations is far less than the am-
bient signal dimension. The provable success of CS for signal
reconstruction motivates the study of its potential in other ap-
plications. This paper investigates the utility of CS projection
observations for signal classification (more specifically, m-
ary hypothesis testing). Theoretical error bounds are derived
and verified with several simulations.

1. INTRODUCTION AND MOTIVATION

Compressive Sampling (CS), also called Compressed Sens-
ing, involves sampling signals in a non-traditional way - each
observation is obtained by projecting the signal onto a ran-
domly chosen vector. Formally, we describe these “random
projections” as inner products between the unknown vector
being observed and a set of random vectors (for example,
vectors whose entries are independent and identically dis-
tributed (i.i.d.) Gaussian or Binary random variables, or ran-
dom Fourier basis vectors). Recent theoretical results show
that if the signal is sparse (or nearly sparse) in some basis,
then with high probability, such observations essentially en-
code the salient information in the signal. Further, the un-
known vector can be estimated from these random projec-
tions observations to within a controllable mean-squared er-
ror, even when the observations are corrupted with additive
noise [1, 2, 3, 4, 5]. These remarkable results show that
the number of samples required for reconstruction can be far
fewer than the ambient dimension of the observations!

One key advantage offered by the CS approach is that
samples can be collected without assuming any prior infor-
mation about the signal being observed (aside from sparsity
in some basis). The fact that consistent estimation is possible
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using (a relatively small number of) these agnostic observa-
tions quantifies the universality of CS, and hence CS has be-
come an attractive technology for several applications of ever-
increasing importance. Specifically, CS has been proposed as
a viable candidate for wideband communications monitoring
systems, where the goal is to intercept communication sig-
nals over frequency range so large that conventional Nyquist
sampling is technologically impossible. CS is also being ex-
amined in imaging systems, where the potential benefits in-
clude improved storage efficiency, reduced form-factor, and
reduced cost [6].

While the abilities of CS for signal reconstruction have
been examined, the full capability of random projection sam-
pling is still not fully known. For example, in some practical
settings the goal might be to reliably determine, from a set
of noisy observations, which signal from a set of known can-
didates is present - a far less aggressive goal than full signal
reconstruction. If the class of candidate signals is known prior
to the observation process than specialized projection obser-
vations can be made, yielding optimal performance in the
presence of Gaussian noise. This procedure is called matched
filtering. This specialized approach offers no guarantee of
universality over a broad class of signals, and in many scenar-
ios the observations are made before knowledge of the signal
class is available, precluding the construction of a matched
filter. A natural question emerges, can the universality of CS
be leveraged in this hypothesis testing (candidate identifica-
tion) problem? The answer, of course, is yes, and this paper
examines the performance such a system.

The CS classification problem we investigate here has re-
ceived only a minimal treatment to date. Preliminary work by
some of the authors of this paper considered a problem where
the goal was to detect the presence or absence of a known
signal. Bounds on the probability of error were obtained (for
detecting very simple signals) by analyzing the likelihood ra-
tio test that balances the probability of false alarm with the
probability of missed detection [7]. Related to this work is an
experimental evaluation of CS for signal detection based on
partial signal reconstruction [8]. Some of the authors of this
work also considered signal classification via CS for special
classes of signals [9]; the work presented here essentially gen-



eralizes that contribution to more general classes of signals.
To clarify the exposition in following sections, we make a

brief summary of notation here. We will use bold-face capital
letters to denote matrices (such as A). Vectors will be written
using bold-face lower-case letters (f ) or superscripted upper-
case letters, such as Aj , which denotes the jth row vector of
the matrix A. The inner product of two vectors f , g ∈ Rn

is defined as 〈f , g〉 =
∑n

i=1 f(i)g(i). We use the notation
‖f‖2 = 〈f ,f〉 to denote the standard Euclidean distance.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of known CS reconstruction re-
sults. The main contribution of this paper is in Section 3, in
which the problem is described and the new results are pre-
sented. The theory is verified in Section 4, where simulations
of the main result are presented. Conclusions are given in
Section 5, and a proof of the main result is given in Section 6.

2. COMPRESSIVE SAMPLING BACKGROUND

Suppose that an observer makes measurements of an un-
known vector f ∈ Rn, where each measurement is the inner
product between the signal vector f and a sampling vector
Aj chosen by and known to the observer. The observations
may be corrupted by additive noise. Formally, the observer
measures

y(j) =
〈
Aj ,f

〉
+ w(j), j = 1, . . . , k, (1)

where Aj ∈ Rn are the sampling vectors, and {w(j)} is a
collection of independent and identically distributed (i.i.d.)
N (0, σ2) random variables, modeling observation noise. For
convenience and ease of notation, we will sometimes use the
matrix representation of the observation model, y = Af +w.

The appeal of CS is that in many situations, the sig-
nal f can be accurately recovered from k CS observations,
even when k < n. CS reconstruction algorithms essentially
attempt to identify a solution which matches the observa-
tions, but also has a low-complexity (sparse) representation
in some basis. Many formulations are possible, but all entail
a search for a candidate reconstruction vector f̃ , simultane-
ously satisfying a goodness of fit criteria (such as minimizing
‖y−Af̃‖2) and a complexity criteria (promoting sparsity of
f̃ , quantified with the l0 quasinorm or its closest convex sur-
rogate, the l1 norm). If the signal f is m-sparse in some rep-
resentation (i.e., has m or fewer non-zero coefficients), then
an estimate f̂k can be derived from (y,A) that satisfies

E

[
‖f − f̂k‖2

n

]
≤ CS

(
k

m log n

)−1

,

where CS is a constant that depends on noise power σ2 and
the signal energy ‖f‖2, and the expectation is over the distri-
bution of the noise and the projection vector entries. Similar
techniques can be applied to derive error bounds for nearly
sparse signals [4, 5], though we omit discussion of those here.

3. MAIN RESULT

In this paper, we investigate an additional utility of the obser-
vations (y,A), defined in equation (1), in another sparse set-
ting. Recall that the reconstruction results presented in Sec-
tion 2 are possible because the signals of interest were as-
sumed to be sparse (or nearly sparse) in some representation.
In contrast, here we will be concerned with discrimination
among members of a known set (a set of vectors in Rn). The
results we will present here implicitly leverage the fact that
the known set is a sparse subset of the set of all possible n-
dimensional vectors.

Formally, the problem we consider can be described as
follows. Let F = {f1,f2, . . . ,fm} denote a known set of
m unique candidate signals, and assume that each element f i

in F satisfies ‖f i‖2 = 1. We denote by fT ∈ F the “true”
signal being presented to the observer, who makes k random
projection observations of the signal. The goal is to use the
observations (y,A) to select a candidate function f̂k ∈ F
such that f̂k = fT most of the time. Success will be quanti-
fied in terms of the error probability, Pr

(
f̂k 6= fT

)
.

One point is worthy of mention here - in order to exploit
the “universality” of CS observations, we assume that the set
F is not known at the time that observations are collected (if
it were known, then specialized observations would be more
powerful). The benefit of this approach is that the same set
of observations (y,A) could be used for reconstruction (de-
scribed in Section 2) and in the classification problem de-
scribed here (along with other applications not described here,
such as signal detection [7]). We make no specific claims
about how the “auxiliary information” about the set F is ob-
tained, though various intelligence channels could all be fea-
sible sources.

The main result of this paper is stated here as a theorem.
A sketch of the proof is given in Section 6.

Theorem 1 Suppose that fT ∈ F where the class F is as
defined above, and we make k observations of the form

y(j) =
〈
Aj , αfT

〉
+ w(j), j = 1, . . . , k,

where α ∈ R, the entries of Aj are i.i.d. N (0, 1/n) random
variables, and wj are i.i.d. N

(
0, σ2

)
and independent of the

projection vector entries. The empirical risk minimizer

f̂k = arg min
f∈F

‖y − αAf‖2

satisfies

P
(
f̂k 6= fT

)
≤ (m− 1)

(
1 +

α2dmin

4nσ2

)−k/2

where
dmin = min

f i,fj∈F,i 6=j
‖f i − f j‖2



is the minimum Euclidean distance between elements in the
set F .

In certain practical scenarios the candidate vectors in F
may have norm different than one. The factor α can be used
to account for those cases. The results stated in Theorem 1
are derived assuming that α is known exactly, though in Sec-
tion 4 we also simulate this method in a situation where α is
estimated from the data.

It is important to note here that the error bound decays ex-
ponentially in the number of observations, in stark contrast
to the polynomial rates that were achievable in the recon-
struction problem. This effect illustrates the benefit of the
more restricted setting. This is in essence the same relation-
ship between the performance of classical estimation prob-
lems (polynomial error rates) and hypothesis testing problems
(exponential error rates).

4. SIMULATIONS

For the first simulation, we construct the class F by sampling
a collection of linear chirp signals. The starting frequency
for each chirp is 0 Hz, and the ending instantaneous frequen-
cies range from 1 MHz to 100 MHz in 1 MHz increments
(m = 100 candidates). The sampling rate is 200 MHz and
the observation window is 2 µsec in duration, so the vector
length is n = 400. In other words, the elements of the class
F are vectors f l, l = 1, . . . , 100, whose entries are given by

f l(i) = γl cos

(
2π

l × 106

2

[
i

200× 106

]2 [200× 106

400

])
,

for i = 1, . . . , 400. The constant γl is a scaling factor that
ensures that ‖f l‖2 = 1. We consider collecting k projection
observations, and we evaluate the probability of misclassifi-
cation for each value of k by averaging the empirical errors of
100000 trials of the proposed algorithm, where for each trial,
independent realizations of noise and projection vectors were
generated, and the “true” candidate was chosen uniformly at
random from the set F . Figure 1 shows the results of this
simulation, where the SNR is α2/nσ2 = 2 (or 3dB).

For the second simulation, we examine the detector per-
formance on a class of unit-norm sinusoids. As in the pre-
vious example, there are m = 100 candidates, but this time
each candidate is a cosine wave. The frequencies range from
1 MHz to 100 MHz in 1 MHz increments. The observation
window is 2 µsec, the sampling frequency is 200 MHz, and
the SNR is α2/nσ2 = 2 (or 3dB). In this case, the elements
of the class F are vectors f l, l = 1, . . . , 100, with entries

f l(i) = γl cos
(

2π106l

[
i

2× 108

])
,

for i = 1, . . . , 400, where again γl is again chosen so that
‖f l‖2 = 1.The misclassification probabilities are again com-
puted for each value of k by averaging over 100000 trials, and
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Fig. 1. Empirical and Theoretical Misclassification Probabil-
ity vs. Number of Observations for Unit-Norm Chirp Sig-
nals. For this set of templates, dmin = 1.325 and the SNR is
α2/nσ2 = 2 (3dB).

the results are shown in Figure 2. Notice that the error perfor-
mance in this case is similar to the performance depicted in
Figure 1, although the bound is tighter in the sinusoidal case.
This is because in the sinusoidal case, the worst-case behavior
(quantified by dmin) is representative of the typical behavior,
while for the chirp class the worst case and the typical cases
are significantly different. As a result, the bound for the chirp
case is more conservative.

The next simulation reexamines the setting of the last
paragraph (depicted in Figure 2), but in this case we assume
that α is not known exactly. Instead, we leverage the fact that,
since the noise and projection vector entries are independent,

E
[
‖y‖2

]
= α2 k

n
+ σ2.

It is realistic to assume that the noise background is known
(or could be accurately estimated a priori), so with (nearly)
exact knowledge of σ2 we can estimate α by

α̂ =
√

n

k
(‖y‖2 − σ2)

and use this estimate in the empirical risk minimization. The
results presented in Figure 3 suggest that this algorithm can
fairly robust to the unknown parameter α, at least for this
range of SNR.

5. CONCLUSIONS

We have shown that CS observations can be effectively used
in signal classification problems, where the goal is to iden-
tify a signal from a class of candidates. The misclassification
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Fig. 2. Empirical and Theoretical Misclassification Proba-
bility vs. Number of Observations for Unit-Norm Cosine
Signals. For this set of templates, dmin = 2 and the SNR
S = α2/nσ2 = 2 (3dB).

probability was shown to decay exponentially in the number
of observations, in contrast to the rates achievable when CS
observations are used for full signal reconstruction. The the-
oretical bound presented was validated through several simu-
lations.

6. PROOF OF THEOREM 1

The method of proof is similar to that presented in [9]. Al-
though the proposed methodology is the maximum likelihood
estimator, it is convenient to formulate the estimation strat-
egy in a Bayesian-like setting. For each candidate f l, l ∈
{1, . . . ,m}, define the posterior probability given j observa-
tions to be pj(l) = Pr(fT = f l|y(1), . . . , y(j),A1, . . . Aj),
where we let p0(l) = 1/m. In other words, in the absence of
any observations we assume a uniform prior over F . Notice
that under this prior assumption the posterior probabilities and
likelihood values coincide. Whenever we get an observation
we can update the posterior probabilities by applying Bayes’
rule:

pj+1(l) =
pj(l) exp

(
−(y(j+1)−α〈Aj+1,f l〉)

2

2σ2
u

)
∑m

i=1 pj(i) exp
(
−(y(j+1)−α〈Aj+1,f i〉)2

2σ2
u

)
for j ∈ {0, . . . , k − 1}. Notice that in our update rule we
implicitly assume that the variance of w(j) is σ2

u. In princi-
ple σ2

u = σ2, but the final outcome of the estimator does not
change as long as σ2

u > 0. Having this extra degree of free-
dom is going to allow tightening of the bounds. We choose
our estimator f̂k to be the candidate f ∈ F for which the
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Fig. 3. Empirical and Theoretical Misclassification Probabil-
ity vs. Number of Observations for Unit-Norm Cosine Sig-
nals, using an estimated signal amplitude. As in the second
example, dmin = 2 and the SNR S = α2/nσ2 = 2 (3dB).

value of pk(l) is maximum, which is equivalent to

f̂k = arg min
f∈F

‖y − αAf‖2.

The proof proceeds by recasting the misclassification
probability as a tractable expectation. This approach first ap-
peared in [10], and can be viewed as Chernoff-like bounding
technique. Define Mj = (1− pj(T ))/pj(T ) and

Nj+1 =
Mj+1

Mj
=

pj(T )(1− pj+1(T ))
pj+1(T )(1− pj(T ))

,

and let pj = {pj(1), . . . , pj(m)} denote the vector whose
entries are the posterior values for each candidate given j ob-
servations. Note that since

∑m
l=1 pj(m) = 1 we have

P
(
f̂k 6= fT

)
≤ P

(
pk(T ) <

1
2

)
= P (Mk > 1) ≤ E [Mk] ,

where the last step follows from Markov’s inequality. Now
we condition to obtain

P
(
f̂k 6= fT

)
≤ E [Mk]

= E [Mk−1Nk]
= E

[
Mk−1E

[
Nk|pk−1

]]
...

= M0E

k−1∏
j=0

E
[
Nj+1|pj

]
≤ M0

{
max

j∈{0,k−1}
max
p(j)

E
[
Nj+1|pj

]}k

.



The remainder of the proof consists of deriving an upper
bound for the quantity

E
[
Nj+1|pj

]
that holds for j ∈ {0, . . . , k − 1}. Straightforward algebra
gives

E
[
Nj+1|pj

]
=

m∑
i=1,i 6=T

pj(i)E
[
exp

(
y(j+1)αDi

σ2
u

− α2DiSi

2σ2
u

)]
1− pj(T )

(2)

where Di = 〈Aj+1,f i − fT 〉 and Si = 〈Aj+1,f i + fT 〉,
and the letters “D” and “S” were chosen to denote differ-
ence and sum, respectively. Now recall that given knowl-
edge of the projection vector Aj+1, y(j + 1) is distributed
as N (α〈Aj+1,fT 〉, σ2). Rewriting this in terms of Si and
Di, given Aj+1, y(j + 1) ∼ N (α

(
Si−Di

2

)
, σ2). Therefore

E
[
exp

(
y(j + 1)αDi

σ2
u

− α2DiSi

2σ2
u

)]
= E

[
exp

(
−α2DiSi

2σ2
u

)
×

E
[
exp

(
y(j + 1)αDi

σ2
u

)
|Aj+1

]]
= E

[
exp

(
−α2DiSi

2σ2
u

)
×

exp
(

αDi

σ2
u

α (Si −Di)
2

+
σ2α2D2

i

2σ4
u

)]
= E

[
exp

([
σ2α2

2σ4
u

− α2

2σ2
u

]
D2

i

)]
,

where the second-to-last step follows from the computation of
the moment generating function of a Gaussian random vari-
able. Note that the final expression no longer depends on Si.

Since the linear combination of independent Gaussian
random variable is still a Gaussian random variable, Di ∼
N
(
0, ‖f i − fT ‖2/n

)
, and so it is straightforward to show

that

E
[
exp

([
σ2α2

2σ4
u

− α2

2σ2
u

]
D2

i

)]
=

(
1− 2

[
σ2α2

2σ4
u

− α2

2σ2
u

]
‖f i − fT ‖2

n

)−1/2

. (3)

Now define

dmin = min
f i,fj∈F,i 6=j

‖f i − f j‖2,

and take σ2
u = 2σ2 so that (3) is minimized. We can rewrite

the expectation in (2) as

E
[
exp

(
y(j + 1)αDi

σ2
u

− α2DiSi

2σ2
u

)]
≤

(
1 +

α2dmin

4nσ2

)−1/2

,

and thus

E
[
Nj+1|pj

]
≤
(

1 +
α2dmin

4nσ2

)−1/2

.

Notice that this quantity no longer depends on the posterior
probabilities p or the index j. The final step is to incorporate
knowledge of the prior, M0 = (m−1), from which the stated
result follows.
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