
1

Compressive Distilled Sensing: Sparse Recovery
Using Adaptivity in Compressive Measurements

Jarvis D. Haupt1, Richard G. Baraniuk1, Rui M. Castro2, and Robert D. Nowak3

1Dept. of Electrical and Computer Engineering, Rice University, Houston TX 77005
2Dept. of Electrical Engineering, Columbia University, New York NY 10027

3Dept. of Electrical and Computer Engineering, University of Wisconsin, Madison WI 53706

Abstract—The recently-proposed theory of distilled sensing
establishes that adaptivity in sampling can dramatically improve
the performance of sparse recovery in noisy settings. In par-
ticular, it is now known that adaptive point sampling enables
the detection and/or support recovery of sparse signals that are
otherwise too weak to be recovered using any method based on
non-adaptive point sampling. In this paper the theory of dis-
tilled sensing is extended to highly-undersampled regimes, as in
compressive sensing. A simple adaptive sampling-and-refinement
procedure called compressive distilled sensing is proposed, where
each step of the procedure utilizes information from previous
observations to focus subsequent measurements into the proper
signal subspace, resulting in a significant improvement in effective
measurement SNR on the signal subspace. As a result, for the
same budget of sensing resources, compressive distilled sensing
can result in significantly improved error bounds compared to
those for traditional compressive sensing.

I. INTRODUCTION

Let x ∈ Rn be a sparse vector supported on the set S =
{i : xi 6= 0}, where |S| = s ¿ n, and consider observing x
according to the linear observation model

y = Ax+ w, (1)

where A is an m × n real-valued matrix (possibly random)
that satisfies E

[‖A‖2F
] ≤ n, and where wi

iid∼ N (0, σ2) for
some σ ≥ 0. This model is central to the emerging field of
compressive sensing (CS), which deals primarily with recovery
of x in highly-underdetermined settings (that is, where the
number of measurements m ¿ n).

Initial results in CS establish a rather surprising result—
using certain observation matrices A for which the number of
rows is a constant multiple of s log n, it is possible to recover
x exactly from {y,A}, and in addition, the recovery can be
accomplished by solving a tractable convex optimization [1]–
[3]. Matrices A for which this exact recovery is possible are
easy to construct in practice. For example, matrices whose
entries are i.i.d. realizations of certain zero-mean distributions
(Gaussian, symmetric Bernoulli, etc.) are sufficient to allow
this recovery with high probability [2]–[4].

In practice, however, it is rarely the case that observations
are perfectly noise-free. In these settings, rather than attempt
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to recover x exactly the goal becomes to estimate x to high
accuracy in some metric (such as `2 norm) [5], [6]. One
such estimation procedure is the Dantzig selector, proposed
in [6], which establishes that CS recovery remains stable in
the presence of noise. We state the result here as a lemma.

Lemma 1 (Dantzig selector). For m = Ω(s logn), generate
a random m×n matrix A whose entries are i.i.d. N (0, 1/m),
and collect observations y according to (1). The estimate

x̂ = arg min
z∈Rn

‖z‖`1 subject to ‖AT (y −Az)‖`∞ < λ,

where λ = Θ(σ
√
logn), satisfies ‖x̂ − x‖2`2 = O(sσ2 logn),

with probability 1−O(n−C0) for some constant C0 > 0.

Remark 1. The constants in the above can be specified
explicitly (or bounded appropriately), but we choose to present
the results here and where appropriate in the sequel in terms
of scaling relationships1 in the interest of simplicity.

On the other hand, suppose that an oracle were to identify
the locations of the nonzero signal components (or equiv-
alently, the support S) prior to recovery. Then one could
construct the least-squares estimate x̂LS = (AT

SAS)−1AT
Sy,

where AS denotes the submatrix of A formed from the
columns indexed by the elements of S. The error of this esti-
mate is ‖x̂LS −x‖2`2 = O(sσ2) with probability 1−O(n−C1)
for some C1 > 0, as shown in [6]. Comparing this oracle-
assisted bound with the result of Lemma 1, we see that the
primary difference is the presence of the logarithmic term in
the error bound of the latter, which can be interpreted as the
“searching penalty” associated with having to learn the correct
signal subspace.

Of course, the signal subspace will rarely (if ever) be
known a priori. But suppose that it were possible to learn
the signal subspace from the data, in a sequential, adaptive
fashion, as the data are collected. In this case, sensing energy
could be focused only into the true signal subspace, gradually
improving the effective measurement SNR. Intuitively, one
might expect that this type of procedure could ultimately
yield an estimate whose accuracy would be closer to that of

1Recall that for functions f = f(n) and g = g(n), f = O(g) means
f ≤ cg for some constant c for all n sufficiently large, f = Ω(g) means
f ≥ c′g for a constant c′ for all n sufficiently large, and f = Θ(g) means
that f = O(g) and f = Ω(g). In addition, we will use the notation f = o(g)
to indicate that limn→∞ f/g = 0.
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the oracle-assisted estimator, since the effective observation
matrix would begin to assume the structure of AS . Such
adaptive compressive sampling methods have been proposed
and examined empirically [7]–[9], but to date the performance
benefits of adaptivity in compressive sampling have not been
established theoretically.

In this paper we take a step in that direction by ana-
lyzing the performance of a multi-step adaptive sampling-
and-refinement procedure called compressive distilled sensing
(CDS), extending our own prior work in distilled sensing,
where the theoretical advantages of adaptive sampling in
“uncompressed” settings were quantified [10], [11]. Our main
results here guarantee that, for signals having not too many
nonzero entries, and for which the dynamic range is not too
large, a total of O(s log n) adaptively-collected measurements
yield an estimator that, with high probability, achieves the
O(sσ2) error bound of the oracle-assisted estimator.

The remainder of the paper is organized as follows. The
CDS procedure is described in Sec. II, and its performance is
quantified as a theorem in Sec. III. Extensions and conclusions
are briefly described in Sec. IV, and a sketch of the proof of the
main result and associated lemmata appear in the Appendix.

II. COMPRESSIVE DISTILLED SENSING

In this section we describe the compressive distilled sensing
(CDS) procedure, which is a natural generalization of the dis-
tilled sensing (DS) procedure [10], [11]. The CDS procedure,
given in Algorithm 1, is an adaptive procedure comprised of an
alternating sequence of sampling (or observation) steps and re-
finement (or distillation) steps, and for which the observations
are subject to a global budget of sensing resources (or “sensing
energy”) that effectively quantifies the average measurement
precision. The key point is that the adaptive nature of the
procedure allows for sensing resources to be allocated non-
uniformly; in particular, proportionally more of the resources
can be devoted to subspaces of interest as they are identified.

In the jth sampling step (for j = 1, . . . , k), we collect
measurements only at locations of x corresponding to indices
in a set I(j) (where I(1) = {1, . . . , n} initially). The jth
refinement step (for j = 1, . . . , k − 1) identifies the set of
locations I(j+1) ⊂ I(j) for which the corresponding signal
components are to be measured in step j + 1. It is clear that
in order to leverage the benefit of adaptivity, the distillation
step should have the property that I(j+1) contains most (or
ideally, all) of the indices in I(j) that correspond to true signal
components. In addition, and perhaps more importantly, we
also want the set I(j+1) to be significantly smaller than I(j),
since in that case we can realize an SNR improvement from
focusing our sensing resources into the appropriate subspace.

In the DS procedure examined in [10], [11], observations
were in the form of noisy samples of x at any location
i ∈ {1, . . . , n} at each step j. In that case it was shown
a simple refinement operation—identifying all locations for
which the corresponding observation exceeded a threshold—
was sufficient to ensure that (with high probability) I(j+1)

would contain most of the indices in I(j) corresponding to
true signal components, but only about half of the remaining

Algorithm 1: Compressive distilled sensing (CDS).

Input:
Number of observation steps k;
R(j), j = 1, . . . , k, such that

∑k
j=1 R

(j) ≤ n;
m(j), j = 1, . . . , k, such that

∑k
j=1 m

(j) ≤ m;

Initialize:
Initial index set I(1) = {1, 2, . . . , n};

Distillation:
for j = 1 to k do

Compute τ (j) = R(j)/|I(j)|;
Construct A(j), where A

(j)
u,v

iid∼{
N

(
0, τ(j)

m(j)

)
, u ∈ {1, . . . ,m(j)}, v ∈ I(j)

0, u ∈ {1, . . . ,m(j)}, v /∈ I(j)
;

Collect y(j) = A(j)x+ w(j);
Compute x̂(j) =

(
A(j)

)T
y(j);

Refine I(j+1) = {i ∈ I(j) : x̂
(j)
i > 0};

end

Output:
Distilled observations

{
y(j), A(j)

}k

j=1
;

indices, even when the signal is very weak. On the other
hand, here we utilize a compressive sensing observation model
where at each step the observations are in the form of a low-
dimensional vector y ∈ Rm, with m ¿ n. In an attempt
to mimic the uncompressed case, here we propose a simi-
lar refinement step applied to the “back-projection” estimate(
A(j)

)T
y(j) = x̂(j) ∈ Rn, which can essentially be thought

of as one of many possible estimates or reconstructions of x
that can be obtained from y(j) and A(j). The results in the
next section quantify the improvements that can be achieved
using this approach.

III. MAIN RESULTS

To state our main results, we set the input parameters of
Algorithm 1 as follows. Choose α ∈ (0, 1/3), let b = (1 −
α)/(1 − 2α), and let k = 1 + dlogb log ne. Allocate sensing
resources according to

R(j) =

{
αn

(
1−2α
1−α

)j−1

, j = 1, . . . , k − 1

αn, j = k

}
,

and note that this allocation guarantees that R(j+1)/R(j) >
1/2 and

∑k
j=1 R

(j) ≤ n. The latter inequality ensures that
the total sensing energy does not exceed the total sensing
energy used in conventional CS. The number of measurements
acquired in each step is

m(j) =

{
ρ0s logn/(k − 1), j = 1, . . . , k − 1

ρ1s logn, j = k

}
,

for some constants ρ0 (which depends on the dynamic range)
and ρ1 (sufficiently large so that the results of Lemma 1 hold).
Note that m = O(s log n), the same order as the minimum
number of measurements required by conventional CS.
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Our main result of the paper, stated below and proved in the
Appendix, quantifies the error performance of one particular
estimate obtained from adaptive observations collected using
the CDS procedure.

Theorem 1. Assume that x ∈ Rn is sparse with s =
nβ/ log logn for some constant 0 < β < 1. Furthemore, assume
that each non-zero component of x satisfies σµ ≤ xi ≤ Dσµ,
for some µ > 0. Here σ is the noise standard deviation,
D > 1 is the dynamic range of the signal, and µ2 is the SNR.
Adaptively measure x according to Algorithm 1 with the input
parameters as specified above, and construct the estimator
x̂CDS by applying the Dantzig selector with λ = Θ(σ) to the
output of the algorithm (i.e., with A = A(k) and y = y(k)).

1) There exists µ0 = Ω(
√
log n/ log log n) such that if µ ≥

µ0, then ‖x̂CDS − x‖2`2 = O(sσ2), with probability 1−
O(n−C′

0/ log logn), for some C ′
0 > 0.

2) There exists µ1 = Ω(
√
log log log n) such that if µ1 ≤

µ < µ0, then ‖x̂CDS − x‖2`2 = O(sσ2), with probability
1−O(e−C′

1µ
2

), for some C ′
1 > 0.

3) If µ < µ1, then ‖x̂CDS − x‖2`2 = O(sσ2 log log log n),
with probability 1−O(n−C′

2), for some C ′
2 > 0.

In words, when the SNR is sufficiently large, the estimate
achieves the error performance of the oracle-assisted estimator,
albeit with a lower (slightly sub-polynomial) convergence rate.
For a class of slightly weaker signals the oracle-assisted error
performance is still achieved, but with a rate of convergence
that is inversely proportional to the SNR. Note that we may
summarize the results of the theorem with the general claim
‖x̂CDS−x‖2`2 = O(sσ2 log log log n) with probability 1−o(1).
It is worth pointing out that for many problems of practical
interest the log log log n term can be negligible, whereas log n
is not; for example, log log log(106) < 1, but log(106) ≈ 14.

IV. EXTENSIONS AND CONCLUSIONS

Although the CDS procedure was specified under the as-
sumption that the nonzero signal components were positive,
it can be easily extended to signals having negative entries
as well. In that case, one could split the budget of sensing
resources in half, executing the procedure once as written
and again replacing the refinement step by I(j+1) = {i ∈
I(j) : x̂

(j)
i < 0}. In addition, the results presented here

also apply if the signal is sparse another basis. To implement
the procedure in that case, one would generate the A(j) as
above, but observations of x would be obtained using A(j)T ,
where T ∈ Rn×n is an appropriate orthonormal transformation
matrix (discrete wavelet or cosine transform, for example). In
either case the qualitative behavior is the same—observations
are collected by projecting x onto a superposition of basis
elements from the appropriate basis.

We have shown here that the compressive distilled sensing
procedure can significantly improve the theoretical perfor-
mance of compressive sensing. In experiments, not shown
here due to space limitations, we have found that CDS can
perform significantly better than CS in practice, like similar
previously proposed adaptive methods [7]–[9]. We remark
that our theoretical analysis shows that CDS is sensitive to

the dynamic range of the signal. This is an artifact of the
method for obtaining the signal estimate x̂(j) at each step.
As alluded at the end of Section II, x̂(j) could be obtained
using any of a number of methods including, for example,
Dantzig selector estimation (with a smaller value of λ) or other
mixed-norm reconstruction techniques such as LASSO with
sufficiently small regularization parameters. Such extensions
will be explored in future work.

V. APPENDIX

A. Lemmata

We first establish several key lemmata that will be used in
the sketch of the proof of the main result. In particular, the
first two results presented below quantify the effects of each
refinement step.

Lemma 2. Let x ∈ Rn be supported on S with |S| = s,
and let xS denote the subvector of x composed of entries of x
whose indices are in S . Let A be an m×n matrix whose entries
are i.i.d. N (0, τ/m) for some 0 < τmin ≤ τ , and let AS
and ASc be submatrices of A composed of the columns of A
corresponding to the indices in the sets S and Sc, respectively.
Let w ∈ Rm be independent of A and have i.i.d. N (0, σ2)
entries. For the z × 1 vector U = AT

ScASxS + AT
Scw, where

z = |Sc| = n − s, we have (1/2− ε) z ≤ ∑z
j=1 1{Ui>0} ≤

(1/2 + ε) z for any ε ∈ (0, 1/2) with probability at least 1−
2 exp(−2ε2z).

Proof: Define Y = Ax+ w = ASxS + w, and note that
given Y , the entries of U = AT

ScY are i.i.d. N (0, ‖Y ‖22τ/m).
Thus, when Y 6= 0 we have Pr(Ui > 0) = 1/2 for all i =
1, . . . , z. Let Ti = 1{Ui>0} and apply Hoeffding’s inequality
to obtain that for any ε ∈ (0, 1/2),

Pr

(∣∣∣∣∣
z∑

i=1

Ti − z

2

∣∣∣∣∣ > εz

∣∣∣∣∣ Y : Y 6= 0

)
≤ 2 exp (−2ε2z).

Now, we integrate to obtain

Pr

(∣∣∣∣∣
z∑

i=1

Ti − z

2

∣∣∣∣∣ > εz

)

≤
∫

Y :Y 6=0

2 exp (−2ε2z) dPY +

∫

Y :Y=0

1 dPY

≤ 2 exp (−2ε2z).

The last result follows from the fact that the event Y = 0 has
probability zero since Y is Gaussian-distributed.

Lemma 3. Let x, S , xS , A, AS , and w be as defined in the
previous lemma. Assume further that the entries of x satisfy
σµ ≤ xi ≤ Dσµ for i ∈ S for some µ > 0 and fixed D > 1.
Define

∆ = exp

(
− m

32 (sD2 +mµ−2/τmin)

)
< 1,

then for the s× 1 vector V = AT
SASxS +AT

Sw, either of the
following bounds are valid:

Pr

(
s∑

i=1

1{Vi>0} 6= s

)
≤ 2s∆2,
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or

Pr

(
s∑

i=1

1{Vi>0} < s(1− 3∆)

)
≤ 4∆.

Proof: Given Ai (the ith column of A) we have

Vi ∼ N


‖Ai‖2`2xi, ‖Ai‖2`2


 τ

m

s∑
j=1

j 6=i

x2
j + σ2





 ,

and so, by a standard Gaussian tail bound

Pr(Vi ≤ 0 | Ai) = Pr


N (0, 1) >

‖Ai‖`2xi√
τ
m

∑s
j=1

j 6=i
x2
j + σ2




≤ exp

(
− ‖Ai‖2`2x2

i

2(τ‖x‖2/m+ σ2)

)

Now, we can leverage a result on the tails of a chi-squared
random variable from [12] to obtain that, for any γ ∈ (0, 1),
Pr

(‖Ai‖2 ≤ (1− γ)τ
) ≤ exp

(−mγ2/4
)
. Again we employ

conditioning to obtain

Pr(Vi ≤ 0) ≤
∫

Ai:‖Ai‖2≤(1−γ)τ

1 dPAi

+

∫

Ai:‖Ai‖2>(1−γ)τ

Pr(Vi ≤ 0 | Ai) dPAi

≤ exp

(
−mγ2

4

)
+ exp

(
− τ(1− γ)x2

i

2(τ‖x‖2/m+ σ2)

)

≤ exp

(
−mγ2

4

)
+ exp

(
− τ(1− γ)µ2

2(τsD2µ2/m+ 1)

)
,

where the last bound follows from the conditions on the xi.
Now, to simplify, we choose γ = γ∗ ∈ (0, 1) to balance the
two terms, obtaining

γ∗ =

(
sD2 +

m

τµ2

)−1
(√

1 + 2

(
sD2 +

m

τµ2

)
− 1

)
.

Using the fact that
√
1 + 2t− 1

t
>

1

2
√
t
,

for t > 1, we can conclude

γ∗ >
1

2

(
sD2 +

m

τµ2

)−1/2

,

since s > 1 by assumption. Now, using the fact that τ ≥ τmin,
we have that Pr(Vi ≤ 0) ≤ 2∆2, where

∆ = exp

(
− m

32 (sD2 +mµ−2/τmin)

)
.

The first result follows from

Pr

(
s∑

i=1

1{Vi>0} 6= s

)
= Pr

(
s⋃

i=1

{Vi ≤ 0}
)

≤ s max
i∈{1,...,s}

Pr (Vi ≤ 0)

≤ 2s∆2.

For the second result, let us simplify notation by introducing
the variables Ti = 1{Vi>0}, and ti = E [Ti]. By Markov’s
Inequality we have

Pr

(∣∣∣∣∣
s∑

i=1

Ti −
s∑

i=1

ti

∣∣∣∣∣ > p

)
≤ p−1E

[∣∣∣∣∣
s∑

i=1

Ti −
s∑

i=1

ti

∣∣∣∣∣

]

≤ p−1
s∑

i=1

E [|Ti − ti|]

≤ p−1s max
i∈{1,...,s}

E [|Ti − ti|] .

Now note that

|Ti − ti| =
{

1− P (Vi > 0), Vi > 0
P (Vi > 0), Vi ≤ 0

,

and so E [|Ti − ti|] ≤ 2P (Vi ≤ 0). Thus, we have that
maxi∈{1,...,s} E [|Ti − ti|] = 2∆2, and so

Pr

(∣∣∣∣∣
s∑

i=1

Ti −
s∑

i=1

ti

∣∣∣∣∣ > p

)
≤ 4p−1s∆2.

Now, let p = s∆ to obtain

Pr

(
s∑

i=1

Ti <

s∑

i=1

ti − s∆

)
≤ 4∆.

Since ti = 1− Pr (Vi ≤ 0), we have
∑s

i=1 ti ≥ s(1− 2∆2),
and thus

Pr

(
s∑

i=1

Ti < s(1− 2∆2 −∆)

)
≤ 4∆.

The result follows from the fact that 2∆2 +∆ < 3∆.

Lemma 4. For 0 < p < 1 and q > 0, we have (1 − p)q ≥
1− qp/(1− p).

Proof: We have log (1− p)q = q log (1− p) =
−q log (1 + p/(1− p)) ≥ −qp/(1− p), where the last bound
follows from the fact that log (1 + t) ≤ t for t ≥ 0. Thus,
(1 − p)q ≥ exp (−qp/(1− p)) ≥ 1 − qp/(1 − p), the last
bound following from the fact et ≥ 1 + t for all t ∈ R.

B. Sketch of Proof of Theorem 1

To establish the main results of the paper, we will first show
that the final set of observations of the CDS procedure is (with
high probability) equivalent in distribution to a set of obser-
vations of the form (1), but with different parameters (smaller
effective dimension neff and effective noise power σ2

eff ), and
for which some fraction of the original signal components may
be absent. To that end, let S(j) = S∩I(j) and Z(j) = Sc∩I(j),
for j = 1, . . . , k, denote the (sub)sets of indices of S and its
complement, respectively, that remain to be measured in step j.
Note that at each step of the procedure, the “back-projection”
estimate x̂(j) =

(
A(j)

)T
A(j)x+

(
A(j)

)T
w(j) can be decom-

posed into x̂S(j) =
(
A

(j)

S(j)

)T

A
(j)

S(j)xS(j) +
(
A

(j)

S(j)

)T

w(j) and

x̂Z(j) =
(
A

(j)

Z(j)

)T

A
(j)

S(j)xS(j) +
(
A

(j)

Z(j)

)T

w(j), and that these
subvectors are precisely of the form specified in the conditions
of Lemmas 2 and 3.
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Let z(j) = |Z(j)| and s(j) = |S(j)|, and in particular note
that s(1) = s and z(1) = z = n − s. Choose the parameters
of the CDS algorithm as specified in Section III. Iteratively
applying Lemma 2 we have that for any fixed ε ∈ (0, 1/2),
the bounds (1/2− ε)

j−1
z ≤ z(j) ≤ (1/2 + ε)

j−1
z hold

simultaneously for all j = 1, 2, . . . , k with probability at
least 1−2(k−1) exp

(
−2zε2 (1/2− ε)

k−2
)

, which is no less
than 1−O (exp (−c0n/ log

c1 n)), for some constants c0 > 0
and c1 > 0, for n sufficiently large2. As a result, with the
same probability, the total number of locations in the set I(j)

satisfies |I(j)| ≤ s(1)+z(1)
(
1
2 + ε

)j−1, for all j = 1, 2, . . . , k.
Thus, we can lower bound τ (j) = R(j)/|I(j)| at each step by

τ (j) ≥



αn((1−2α)/(1−α))j−1

s+z((1+2ε)/2)j−1 , j = 1, . . . , k − 1

αn
s+z((1+2ε)/2)j−1 , j = k





.

Now, note that when n is sufficiently large3, we have s ≤
z (1/2 + ε)

j−1 holding for all j = 1, . . . , k. Letting ε =
(1−3α)/(2−2α), we can simplify the bounds on τ (j) to obtain
that τ (j) ≥ α/2 for j = 1, . . . , k− 1, and τ (k) ≥ α log (n)/2.
The salient point to note here is the value of τ (k), and in
particular, its dependence on the signal dimension n. This
essentially follows from the fact that the set of indices to
measure decreases by a fixed factor with each distillation
step, and so after O(log log n) steps the number of indices
to measure is smaller than in the initial step by a factor
of about log n. Thus, for the same allocation of resources
(R(1) = R(k)), the SNR of the final set of observations is
larger than that of the first set by a factor of log n.

Now, the final set of observations is y(k) = A(k)x(k)+w(k),
where x(k) ∈ Rneff (for some neff < n) is supported on the
set S(k) = S ∩ I(k), A(k) is an m(k) × neff matrix, and the
w̃i are i.i.d. N (0, σ2). We can divide throughout by τ (k) to
obtain the equivalent statement ỹ = Ãx̃ + w̃, where now the
entries of Ã are i.i.d. N (0, 1/m) and the w̃i are i.i.d. N (0, σ̃2),
where σ̃2 ≤ 2σ2/(α log n). To bound the overall squared
error we consider the variance associated with estimating the
components of x̃ using the Dantzig selector (cf. Lemma 1),
as well as the (squared) bias arising from the fact that some
signal components may not be present in the final support set
S(k). In particular, a bound for the overall error is given by

‖x̂− x‖2`2 = ‖x̂− x̃+ x̃− x‖2`2
≤ 2‖x̂− x̃‖2`2 + 2‖x̃− x‖2`2 .

We can bound the first term by applying the result of Lemma 1
to obtain that (for ρ1 sufficiently large) ‖x̂− x̃‖2`2 = O(sσ2)
holds with probability 1−O(n−C0), for some C0 > 0. Now,
let δ = (|S| − |S(k)|)/s denote the fraction of true signal
components that are rejected by the CDS procedure. Then we
have ‖x̃− x‖2`2 = O(sσ2δµ2), and so overall, we have ‖x̂−
x‖2`2 = O(sσ2+sσ2δµ2), with probability 1−O(n−C0). The
method for bounding the second term in the error bound varies

2In particular, we require n ≥ c′0(log log logn)(logn)
c′1/(1 −

nc′2/ log logn−1), where c′0, c′1, and c′2 are positive functions of ε and β.
3In particular, we require n ≥ (1 + logn)log logn/(log logn−β).

depending on the signal amplitude µ; we consider three cases
below.

1) µ ≥ (8D
√
3/α)

√
logn/ log log n: Conditioned on the

event that the stated lower-bounds for τ (j) are valid, we can
iteratively apply Lemma 3, taking τmin = α/2. For ρ0 =
96D2/ log b (where b is the parameter from the expression
for k), let m(j) = ρ0s log n/ logb logn. Then we obtain that
for all n sufficiently large, δ = 0 with probability at least
1 − O(n−C′

0/ log logn), for some constant C ′
0 > 0. Since this

term governs the rate, we have overall that ‖x̂−x‖2`2 = O(sσ2)

holds with probability 1−O(n−C′
0/ log logn) as claimed.

2) (16
√
2/(α log b))

√
log log log n ≤ µ <

(8D
√
3/α)

√
log n/ log log n: For this range of signal

amplitude we will need to control δ explicitly. Conditioned
on the event that the lower-bounds for τ (j) hold, we
iteratively apply Lemma 3 where for ρ0 = 96D2/ log b,
we let m(j) = ρ0s logn/ logb logn. Now, we invoke
Lemma 4 to obtain that for n sufficiently large,
δ = 1 − (1 − 3∆)k−1 = O(e−C′

1µ
2

) with probability
at least 1−O(e−C′

1µ
2

) for some C ′
1 > 0. It follows that δµ2

is O(1), and so overall ‖x̂− x‖2`2 = O(sσ2) with probability
1−O(e−C′

1µ
2

).
3) µ < (16

√
2/(α log b))

√
log log log n: Invoking the triv-

ial bound δ ≤ 1, it follows from above that for n sufficiently
large, the error satisfies ‖x̂ − x‖2`2 = O(sσ2 log log log n),
with probability 1 − O(n−C′

2) for some constant C ′
2 > 0, as

claimed.
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