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Abstract—This paper considers the task of recovering the
support of a sparse, high-dimensional vector from a small number
of measurements. The procedure proposed here, which we call
the Sign-Sketch procedure, is shown to be a robust recovery
method in settings where the measurements are corrupted by
various forms of uncertainty, including additive Gaussian noise
and (possibly unbounded) outliers, and even subsequent quan-
tization of the measurements to a single bit. The Sign-Sketch
procedure employs sparse random measurement matrices, and
utilizes a computationally efficient support recovery procedure
that is a variation of a technique from the sketching literature.
We show here that O(max {k log(n− k), k log k}) non-adaptive
linear measurements suffice to recover the support of any unknown
n-dimensional vector having no more than k nonzero entries, and
that our proposed procedure requires at most O(n logn) total
operations for both acquisition and inference.

Index Terms—Support recovery, sparsity pattern recovery,
model selection, feature selection, sparse recovery, robust inference,
sketching, compressive sensing.

I. INTRODUCTION

A. Motivation

This paper considers a fundamental problem in sparse es-
timation known as the support recovery problem. The goal
in support recovery (also called model selection or feature
selection) is to identify the set of locations corresponding to
nonzero components of a sparse high-dimensional vector from
a collection of linear measurements that may be corrupted by
some form of measurement uncertainty. This task arises in a
wide variety of application domains, including subset selection
in linear regression [1], multiple hypothesis testing [2], signal
denoising [3], and the emerging field of compressive sensing
(CS) [4], [5] (see also the tutorial articles [6]–[8] and the
references therein).

In so-called underdetermined settings—which are the pri-
mary focus in CS—the number of measurements obtained is
much less than the ambient dimension of the unknown vector,
which is assumed to be sparse. Formally, let x ∈ Rn denote
our signal of interest, and suppose that only k of its entries
are nonzero. Suppose that we are able to obtain a total of m
measurements (k ≤ m ≤ n) by nominally observing x through
the action of an m×n matrix A that we may design and specify.
Motivated by uncertainties present in practical systems, it is
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typically assumed that these linear measurements are corrupted
by some form of uncertainty, or “noise.” A common choice in
the literature is to model the uncertainty by zero-mean additive
white Gaussian noise, giving rise to an observation model of
the form y = Ax + w, where w ∼ N (0, σ2Im×m); several
existing works have examined support recovery procedures in
such settings [9]–[15].

However, other forms of non-Gaussian measurement uncer-
tainties may also be present in scenarios of practical interest.
For example, constraints on measurement precision (which
could be due to acquisition hardware limitations) may be mod-
eled as measurement quantization. Several existing works have
examined the general effects of quantization in CS [16]–[20],
some focusing exclusively on the case where the measurements
are highly quantized to a single bit [21]–[23]. Other non-
Gaussian measurement uncertainty models may include corrup-
tion by a moderate number of large-valued “outliers.” Robust
sparse recovery in the presence of outliers was examined in
[24]–[27].

The problem of support recovery from compressive measure-
ments corrupted by non-Gaussian uncertainties has received
little attention to date in the CS literature. Indeed, the majority
of the work examining CS under non-Gaussian corruption
models has focused primarily on estimation of the unknown
signal x, treating the non-Gaussian uncertainty as noise [16],
explicitly accounting for it with additional sampling or algo-
rithmic constraints [18]–[22], [24]–[27], or explicitly designing
it in order to yield optimal estimation error performance using
a particular recovery technique [17]. One exception is the work
in [23], which considered the problem of support recovery from
measurements corrupted by Gaussian noise and subsequently
quantized to a single bit.

Here, we address the problem of support recovery in CS
when the measurements are corrupted by possibly unbounded
outliers in addition to additive white Gaussian noise, and even
subsequently quantized, perhaps to a single bit. Our main
results here establish that a computationally efficient procedure,
which we call Sign-Sketch, is a provably robust approach for
support recovery in these settings. We begin with a formal
specification of the problem of interest.

B. Problem Specification

Let x ∈ Rn denote our object of interest, which we will
assume to be fixed but unknown. The support of x, denoted



S = S(x), is defined to be the set of locations where x is
nonzero: S := {i ∈ {1, 2, . . . , n} : xi ̸= 0}. We will say that
x is k-sparse when |S| = k. We acquire m measurements of
x, nominally of the form Ax, where A is an m×n matrix that
we may design. We examine two scenarios, corresponding to
different forms of measurement uncertainty:

1) Corruption by Gaussian Noise and Outliers
Measurements are of the form

y = Ax+ w + o, (1)

where w ∼ N (0, σ2Im) and o ∈ Rm is a sparse vector
of outliers whose nonzero entries take unspecified (and
possibly large or unbounded) values.

2) Highly Quantized Noisy Measurements
Measurements are of the form

y = sgn(Ax+ w + o), (2)

where w and o are as above, and sgn(·) denotes the
entry-wise application of the scalar sign function which,
for z ∈ R, is given by

sgn(z) :=


−1, z < 0
0, z = 0

+1, z > 0
.

Our goal in each case will be to obtain an estimate Ŝ =
Ŝ(y,A) (which is a function of the measurements y and the
measurement matrix A) that is an accurate estimate of the true
unknown signal support S.

C. Our Contributions

The main contributions of this paper come in the form
of conditions under which accurate support recovery can be
achieved in each of the two aforementioned scenarios. Our
analysis is constructive, pertaining specifically to cases where
measurements are obtained using a certain class of structured
random matrices. We perform support estimation using a sim-
ple procedure that we call Sign-Sketch, which traces its origins
to hashing techniques employed in the sketching literature,
where similar constructions have been utilized to obtain ap-
proximations of sparse signals from uncorrupted measurements
[28]. The Sign-Sketch procedure inherits some of the virtues
of existing sketch-based approximation techniques, including
low sample complexity and low computational complexity.
In particular, our main results establish that the support of
a k-sparse vector x ∈ Rn can be exactly recovered using
the Sign-Sketch procedure (i.e., Ŝ(y,A) = S(x)) with high
probability using only O(max {k log(n− k), k log k}) mea-
surements1 under each of the two measurement uncertainty
models described above, and the total number of operations
required by the procedure for both measurement and inference
is at most O(n logn).

1Here and throughout we will employ the standard asymptotic
notation: we say f(x) = O(g(x)) when ∃c0 > 0 and x0 such
that ∀x ≥ x0, f(x) ≤ c0g(x). We say f(x) = Ω(g(x)) when
∃c1 > 0 and x1 such that ∀x ≥ x1, f(x) ≥ c1g(x). Finally, we
write f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

The results established here also address a previously open
question posed in [23]. That work considered the problem
of support recovery from measurements corrupted by additive
Gaussian noise and quantized to a single bit and proposed
a procedure based on non-adaptive measurements requiring
O(Dk logn) measurements for exact recovery, where D :=
maxi,j∈S |xi|/|xj | is the dynamic range of the signal. The
dependence on dynamic range was eliminated via an adaptive
measurement procedure, prompting a question as to whether
there exists a non-adaptive measurement procedure that can
achieve the information-theoretically optimal sample complex-
ity for support recovery from 1-bit measurements. The Sign-
Sketch procedure proposed here provides an affirmative answer
to that question.

D. Outline

The remainder of the paper is organized as follows. A brief
review of the Count-Sketch technique for sparse estimation
[29], which will be pertinent to our approach here, appears in
Section II. We describe the Sign-Sketch procedure and state our
main results in Section III. Section IV provides a discussion
of our contributions in the broader context of existing work
on support recovery and sparse inference. Finally, a discussion
of the results is provided along with some possible extensions
in Section V. Proofs of the main results are provided in the
Appendix.

II. REVIEW: SKETCHING FOR SPARSE ESTIMATION

The measurement matrices that we will employ here are
structured random matrices, similar to those utilized by the
Count-Sketch procedure proposed in [29]. The distributions
that generate these matrices are parameterized by values
R, T ∈ N and α > 0, which may be specified, and (implicitly)
by the ambient dimension n. Formally, we will denote by
A(R, T, n, α) a particular distribution over matrices having
RT rows and n columns (to be described below), and we
will assume that measurement matrices are drawn from this
distribution.

Matrices A ∼ A(R, T, n, α) are composed of the vertical
concatenation of T individual random matrices, denoted At

for t = 1, . . . , T , each having R rows and n columns.
Each At is a sparse matrix containing exactly n nonzero
values—one per column—where the location of the nonzero
component in each column is chosen uniformly at random
(with replacement) from the set {1, 2, . . . , R}, and the nonzero
component takes the value ±α with probability 1/2. For a
given realization, we let ht,1, . . . , ht,n ∈ {1, . . . , R} denote
which entry of the corresponding column of At is nonzero,
and we let st,1, . . . , st,n ∈ {−α,+α} be the corresponding
values, for t = 1, . . . , T . We note that when constructing each
At, all random quantities are assumed independent.

Suppose that measurements are obtained according to the
noise-free model y = Ax, where A ∼ A(R, T, n, 1). For
t = 1, . . . , T , let yt denote the subvector of y corresponding to
observations obtained via the submatrix At—that is, yt = Atx.
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The Count-Sketch procedure is implemented as follows. Form
the “estimates” x̃t ∈ Rn, where x̃t,i = st,i yt,ht,i , and then
form a signal estimate x̂ whose entries are given by x̂i =
median {x̃t,i}Tt=1. In other words, each entry of the signal es-
timate is obtained as the median of the corresponding entries of
the “estimates” x̃t, each of which is formed simply by indexing
and scaling the entries of the corresponding observations yt. As
shown in [29], one may choose R = O(k) and T = O(logn)
(for a total of O(k logn) measurements), and the estimate x̂
formed as above satisfies ∥x̂− x∥22 ≤ C∥x− xk∥22 with high
probability, where C > 0 is a specified constant and xk denotes
the best k-term approximation to x.

The rationale for forming the signal estimate using the
median (instead of the mean, for example) becomes clear
upon consideration of a given x̃t. For the sake of illustration,
consider the case where x is k-sparse. For a given location
i ∈ S, notice that x̃t,i will be exactly equal to xi whenever
ht,i is distinct from ht,j , for all j ∈ S \ i. To determine the
probability of this event, consider a particular t and condition
on the realization of the submatrix of At formed by the
columns indexed by elements of the set S \ i (denoted here
by At,S\i). For any such realization of At,S\i, there are at
most R − (k − 1) allowable choices for the location of the
nonzero entry of At,i out of a total of R which will ensure
x̃t,i = xi, and these choices are equally likely since the
locations of the nonzeros are drawn uniformly at random.
Further, all realizations of At,S\i are also equally likely by
construction, and so we have for a given i, that

Pr(x̃t,i = xi) ≥
R− (k − 1)

R
,

implying, for example, that Pr(x̃t,i = xi) ≥ 2/3 whenever
R ≥ 3k. A similar analysis establishes that, given this choice
of R, each entry of x̃t indexed by an element in the set
Sc = {1, 2, . . . , n}\S is equal to zero with probability at least
2/3. The final result follows from applying the union bound
to ensure that every entry of x̂ is equal to the corresponding
entry of x, leading to the a requirement that T = Ω(logn).

III. THE SIGN-SKETCH PROCEDURE

The approach we propose here is a variation of the Count-
Sketch procedure. Instead of estimating the unknown signal
entries using the median of the x̃t,i, our procedure leverages
the observation that for the two uncertainty models described
above, the majority of the {x̃t,i}Tt=1 may have the same sign as
xi for indices i ∈ S, and their signs will otherwise be equally
likely for i ∈ Sc. Our procedure, which we call Sign-Sketch,
entails first forming the estimate

x̂ =
1

T

T∑
t=1

sgn(x̃t), (3)

where the x̃ are as above, and then obtaining a support estimate
from it, according to

Ŝ = {i ∈ {1, 2, . . . , n} : |x̂i| > τ} , (4)

for a specified threshold τ . The main results below describe
the performance of this approach for support recovery for the
two uncertainty models we consider.

A. Main Results

Our first result ensures that accurate support recovery is
possible in the case where observations are corrupted by
Gaussian noise and outliers. The proof is provided in the
appendix.

Theorem 1: Suppose that measurements of x are obtained
according to the model

y = Ax+ w + o,

where A ∼ A(R, T, n, α) for some specified R, T ∈ N and
α > 0, w ∼ N (0, σ2Im), and o ∈ Rm is a vector of outliers
whose entries take some unspecified (and possibly large) value
independently with probability q, and 0 otherwise.

Let the number of nonzero entries of x be k, and let xmin

denote the minimum amplitude of the nonzero components of
x (i.e., xmin = mini∈S |xi|). Define the quantity

p̃ :=
(k − 1)

R
+

1

2
exp

(
−α2x2

min

2σ2

)
+ q.

If the following are true:

• p̃ < 1/2,

• τ is chosen so that 0 < τ < 1− 2p̃,

• T satisfies

T ≥ max

{
2

(τ − (1− 2p̃))2
log

(
4k(n− k)λ

)
,

2

τ2
log

(
4(n− k)λ+1

)}
for any λ > 0,

then the estimate Ŝ formed according to (4) satisfies
Pr

(
Ŝ ̸= S

)
≤ (n− k)−λ.

A few salient points are immediately evident upon exam-
ination of this result. First, the requirement that p̃ be less
than 1/2 implies that the following are strictly necessary
conditions: i) the number of rows in each matrix At must
satisfy R > 2(k − 1); ii) the minimum signal amplitude
xmin must be Ω(σ/α); and iii) the probability of outliers
must satisfy q < 1/2. Second, the region of parameter values
for which the procedure succeeds at recovering the support
allows significant flexibility to adjust certain parameters to
offset the effects of others. For example, provided that the
parameters remain within the allowable ranges (so that p̃
remains less than 1/2), doubling R, and thus the total number
of measurements, offsets the effect of a doubling of the outlier
probability q, consistent with intuition. Also, increasing R can
permit recovery of signals with weaker features (i.e., smaller
values of xmin), and so on. Finally, note that for a given q and
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xmin such that

1

2
exp

(
−α2x2

min

2σ2

)
+ q ≤ ϱ < 1/2,

the procedure will succeed provided R > (k − 1)/(1/2 −
ϱ), implying the total number of measurements RT =
O (max {k log(n− k), k log k}).

Our second result, stated below as a corollary, demonstrates
the effectiveness of the proposed procedure in the case where
measurements are corrupted by Gaussian noise and outliers and
then quantized to a single bit.

Corollary 1: The results of Theorem 1 hold also in the case
where measurements are quantized to a single bit; i.e., the
observations are given by y = sgn(Ax+ w + o).

Note that the Sign-Sketch procedure, in a sense, derives its
robustness properties from the fact that it utilizes only the sign
of each measurement. Thus, the results of Theorem 1 also
hold in the case where the measurements are comprised of
sign information only, a result that follows almost immediately
from the proof of Theorem 1. In fact, the same results are
valid in the case where y is quantized—perhaps randomly or
nonuniformly—to any number of levels, provided only that
the quantization retains the sign information of the underlying
observations.

B. Computational Complexity Analysis

We briefly comment on the computational complexity of
the Sign-Sketch procedure. First, for each t, the matrix At

has only n nonzero entries, which implies that the corre-
sponding observations can be formed using O(n) operations.
Accounting for each of the T observation steps, we con-
clude that the acquisition process can be performed using
O(max {n log(n− k), n log k}) operations.

Likewise, each “estimate” x̃t can be formed using O(n)
operations (each entry must be multiplied by its unique signed
amplitude value st,i), and there are a total of T such estimates.
Finally, the thresholding step requires O(n) operations, one per
component. Thus, the overall computational complexity of the
recovery procedure is also O(max {n log(n− k), n log k}).
Taken together, and considering the worst-case for the maxi-
mum (which occurs when k = Θ(n)), we have that the overall
computational complexity of the proposed procedure is at most
O(n logn) operations for both acquisition and recovery.

IV. CONNECTIONS WITH EXISTING WORK

In addition to the connection with existing work in support
recovery mentioned above [9]–[15], [23], the results estab-
lished here also compliment a growing body of work in sparse
recovery using sparse measurement matrices. A comprehensive
overview of recent work in this field is provided in [30]; here
we provide a brief (and necessarily incomplete) list of a few
related works.

As discussed above, our approach traces its origins to
the sketching literature, where similar approaches have been
utilized to estimate sparse or nearly sparse vectors in noise-
free settings. The Count-Sketch procedure was proposed in

[29]; a related effort obtained estimation error bounds for
a similar procedure using structured random measurement
matrices similar to those employed here, but whose entries are
either 0 or 1 [31]. Sparse recovery in noise-free settings using
structured random binary matrices was also examined in [32],
and an extension of that work to the recovery of approximately
sparse vectors was proposed in [33].

A number of recent works have examined sparse recovery
using measurement matrices formed as the adjacency matrices
of certain expander graphs. The performance of convex opti-
mizations for sparse estimation in this setting were examined in
[34]. Greedy and other ad-hoc procedures for signal estimation
in such settings were examined in [35]–[38].

The information-theoretic limits of support recovery using
any random measurement matrices with i.i.d. entries was
examined in [13]. There it was shown that sparsifying the mea-
surement matrix can only increase the number of measurements
needed for support recovery. Interestingly, while the results
obtained here are not directly comparable with the results in
[13] (since our approach utilizes structured random matrices,
whose entries are not all statistically independent), the sample
complexity of our approach in the case where measurements
are corrupted only by Gaussian noise matches the information-
theoretically optimal sample complexity in two of the settings
examined there. Namely, upon renormalizing, the results in
[13] show that in a regime where xmin = Θ(1), the number of
measurements necessary for support recovery by any procedure
whatsoever (including perhaps combinatorial optimizations)
is Ω(k log(n − k)) when k = o(n) and Ω(n logn) when
k = Θ(n). This matches the sufficient conditions identified
for the Sign-Sketch procedure in both cases.

V. DISCUSSION

Note that although the Sign-Sketch procedure was specified
under the assumption that the nonzero entries of x were real-
valued, the approach outlined here could also be extended
to recover sparse x ∈ Cn. One way to do this would
be to replace the estimate x̂ in (3) with the two estimates
x̂re =

∑T
t=1 sgn(Re(x̃t)) and x̂im =

∑T
t=1 sgn(Im(x̃t))

corresponding to counting the signs of the real and imaginary
parts of x̃t, respectively. The support estimate could then be
formed by

Ŝ =
{
i ∈ {1, 2, . . . , n} : max

{
|x̂re

i |, |x̂im
i |

}
> τ

}
,

for an appropriately chosen τ . The results would qualitatively
be the same as those obtained here—the main difference would
come in an increase in some of the constants to account for
additional union bounding. It follows that the Sign-Sketch
procedure may also be used to recover the support of any
vector x having sparse representation (with possibly complex
coefficients) in some orthonormal basis.

We also mention that there is nothing inherently unique
about the particular noise models examined here. Generally
speaking, this approach could be easily generalized to other
noise specifications, including heavy-tailed additive noise (in
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which case the sufficient conditions on xmin would change
according to the particular noise distribution), as well as other
non-additive noise models, and even to the “missing data” case
where some fraction of the observations are randomly deleted.
Expanding on this last point, we note that the net effect of
missing data will manifest itself in a manner analogous to that
of the outliers noise model considered here. Thus, drawing
upon the intuition provided by the results here we conclude
that a sufficient condition for accurate support recovery in
the missing data scenario is that the probability of a given
measurement being deleted does not exceed 1/2. And, as
above, the “erasure” probability may also be traded-off against
the other problem parameters provided they all lie within the
allowable ranges.

Finally, it is worth commenting that while our approach
utilizes a particular form of structured random matrix, the
density of nonzero entries in the sensing matrices A con-
structed as described above is 1/R. This suggests that a
(slightly modified) procedure using matrices A whose entries
are generated independently according to

Ai,j
iid∼


+α w.p. 1

2R

0 w.p. 1− 1
R

−α w.p. 1
2R

may exhibit similar performance for the support recovery task.
If this were the case, then the information-theoretic optimality
of such an approach could be obtained by direct comparison
with the results in [13]. A formal treatment of this idea will
be left for future work.

APPENDIX

A. Proof of Theorem 1

Recall that our observations of x are of the form y = Ax+
w + o, where A ∼ A(R, T, n, α) for some specified R, T ∈
N and α > 0, w ∼ N (0, σ2Im), and o ∈ Rm is a vector
of outliers whose entries take some unspecified (and possibly
large) value independently with probability q, and 0 otherwise.
The support estimate (4) is formed by thresholding the entries
of (3). Assume that x has no more than k nonzero entries and
that the minimum amplitude of the nonzero entries of x is
denoted by xmin.

Our analysis proceeds by analyzing the entries of any
particular “estimate” x̃t. Recall from Section II that for any
i = 1, 2, . . . , n, we have x̃t,i = st,i yt,ht,i , where st,i and
ht,i are chosen independently, uniformly at random from the
sets {−α,+α} and {1, 2, . . . , R}, respectively. Under this
observation model, this implies that

x̃t,i = st,i
(
(Atx)ht,i + wht,i + oht,i

)
,

where (Atx)ht,i denotes the ht,i-th entry of the R× 1 vector
Atx. Our first step will be to determine conditions under which
the sign of x̃t,i matches that of xi for i ∈ S. We will obtain a
probabilistic statement of this result by iterated conditioning.

Fix any i ∈ S, and condition on the submatrix of At formed
by the columns indexed by elements of the set S \ i (denoted
At,S\i). In this event, following the reasoning in Section II,

we have that x̃t,i = α2xi + st,i
(
wht,i + oht,i

)
except for an

event of probability no greater (k− 1)/R. Now, conditionally
on this event, we have that x̃t,i = α2xi+st,i wht,i except for
an event of probability q, which follows from the assumption
on the distribution of the outliers. Finally, we may condition
on this last event to determine that sgn(x̃t,i) = sgn(xi)

except for an event of probability (1/2) exp
(
−α2xmin

2σ2

)
. This

follows from the use of a standard Gaussian tail bound and
the fact that the random quantity st,i wht,i is distributed as
N (0, α2σ2), which is easy to verify by computing its moment
generating function. Putting the results together, and using the
fact that each realization of At,S\i is equally likely, we have
that P (sgn(x̃t,i) ≠ sgn(xi)) ≤ p̃, where

p̃ :=
1

2
exp

(
−α2xmin

2σ2

)
+ q +

(k − 1)

R
.

This bound holds for each i ∈ S.
Next we consider the entries of x̃t,i for i /∈ S. In this case

it is easy to see that

P ( sgn(x̃t,i) = +1 ) = P ( sgn(x̃t,i) = −1 ) = 1/2.

This follows directly from the fact that the distribution
of x̃t,i = st,i

(
(Atx)ht,i + wht,i + oht,i

)
is symmetric

and has zero probability mass at zero. The last point is
a consequence of the presence of the Gaussian term in(
(Atx)ht,i + wht,i + oht,i

)
, implying that this quantity is

nonzero with probability 1.
Now, we turn our attention to the entries of x̂ =

1
T

∑T
t=1 sgn(x̃t). Note that for each i ∈ S, we have |E [x̂i] | ≥

1− 2p̃. Select a threshold τ that satisfies 0 < τ < 1− 2p̃. It
is clear by inspection that |x̂i| > τ whenever the condition
|x̂i − E [x̂i] | < |τ − (|E [x̂i] |)| holds. Using Hoeffding’s
inequality, we have

P (|x̂i − E [x̂i] | > |τ − (|E [x̂i] |)|)

≤ 2 exp

(
−T (τ − |E [x̂i] |)2

2

)
.

Applying a union bound, we have that |x̂i| > τ for all i ∈ S
except for an event of probability∑

i∈S

2 exp

(
−T (τ − |E [x̂i] |)2

2

)
,

which is no greater than

2k exp

(
−T (τ − (1− 2p̃))2

2

)
. (5)

For the entries of x̂ corresponding to locations where no signal
component is present, we can again apply Hoeffding’s inequal-
ity, followed by a union bound, to establish that |x̂i| < τ for
all indices i ∈ Sc, except in an event of probability

2(n− k) exp

(
−Tτ2

2

)
. (6)

Now, note that choosing T > 2 log
(
4(n− k)λ+1

)
/τ2 for

any λ > 0 ensures that (6) does not exceed (n − k)−λ/2.
Similarly, we have that (5) does not exceed (n − k)−λ/2
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whenever T ≥ 2 log
(
4k(n− k)λ

)
/(τ− (1−2p̃))2. It follows

that the proposed procedure results in correct support recovery
(ie, |x̂i| > τ for all i ∈ S, and |x̂i| < τ for all i ∈ Sc)
provided

T ≥ max

{
2

(τ − (1− 2p̃))2
log

(
4k(n− k)λ

)
,

2

τ2
log

(
4(n− k)λ+1

)}
,

as claimed.
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