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In recent years, tremendous progress has been made in high-dimensional infer-

ence problems by exploiting intrinsic low-dimensional structure. Sparsity is per-

haps the simplest model for low-dimensional structure. It is based on the assump-

tion that the object of interest can be represented as a linear combination of a

small number of elementary functions, which are assumed to belong to a larger

collection, or dictionary, of possible functions. Sparse recovery is the problem of

determining which components are needed in the representation based on mea-

surements of the object. Most theory and methods for sparse recovery are based

on an assumption of non-adaptive measurements. This chapter investigates the

advantages of sequential measurement schemes that adaptively focus sensing

using information gathered throughout the measurement process. In particular,

it is shown that adaptive sensing can be significantly more powerful when the

measurements are contaminated with additive noise.

1.1 Introduction

High-dimensional inference problems cannot be accurately solved without enor-

mous amounts of data or prior assumptions about the nature of the object to

be inferred. Great progress has been made in recent years by exploiting intrinsic

low-dimensional structure in high-dimensional objects. Sparsity is perhaps the

simplest model for taking advantage of reduced dimensionality. It is based on the

assumption that the object of interest can be represented as a linear combina-

tion of a small number of elementary functions. The specific functions needed in

the representation are assumed to belong to a larger collection or dictionary of

functions, but are otherwise unknown. The sparse recovery problem is to deter-

mine which functions are needed in the representation based on measurements

of the object. This general problem can usually be cast as a problem of identify-

ing a vector x ∈ Rn from measurements. The vector is assumed to have k ≪ n

non-zero elements, however the locations of the non-zero elements are unknown.

Most of the existing theory and methods for the sparse recovery problem

are based on non-adaptive measurements. In this chapter we investigate the

advantages of sequential sampling schemes that adapt to x using information

gathered throughout the sampling process. The distinction between adaptive
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2 Chapter 1. Adaptive Sensing for Sparse Recovery

and non-adaptive measurement can be made more precise, as follows. Infor-

mation is obtained from samples or measurements of the form y1(x), y2(x) . . . ,

where yt are functionals from a space Y representing all possible measurement

forms and yt(x) are the values the functionals take for x. We distinguish between

two types of information:

Non-Adaptive Information: y1, y2, · · · ∈ Y are chosen non-adaptively

(deterministically or randomly) and independently of x.

Adaptive Information: y1, y2, · · · ∈ Y are selected sequentially, and the choice

of yt+1 may depend on the previously gathered information, y1(x), . . . , yt(x).

In this chapter we will see that adaptive information can be significantly

more powerful when the measurements are contaminated with additive noise. In

particular, we will discuss a variety of adaptive measurement procedures that

gradually focus on the subspace, or sparse support set, where x lives, allowing

for increasingly precise measurements to be obtained. We explore adaptive

schemes in the context of two common scenarios, which are described in some

detail below.

1.1.1 Denoising

The classic denoising problem deals with the following. Suppose we observe x in

noise according to the non-adaptive measurement model

y = x+ e, (1.1)

where e ∈ Rn represents a vector of additive Gaussian white noise; i.e., ej
i.i.d.∼

N (0, 1), j = 1, . . . , n, where i.i.d. stands for independent and identically dis-

tributed and N (0, 1) denotes the standard Gaussian distribution. It is sufficient

to consider unit variance noises in this model, since other values can be accounted

for by an appropriate scaling of the entries of x.

Let x be deterministic and sparse, but otherwise unknown. The goal of the

denoising problem we consider here is to determine the locations of the non-

zero elements in x from the measurement y. Because the noises are assumed

to be i.i.d., the usual strategy is to simply threshold the components of y at

a certain level τ , and declare those that exceed the threshold as detections.

This is challenging for the following simple reason. Consider the probability

Pr(maxj ej > τ) for some τ > 0. Using a simple bound on the Gaussian tail and

the union bound, we have

Pr(max
j
ej > τ) ≤ n

2
exp

(
−τ

2

2

)
= exp

(
−τ

2

2
+ log n− log 2

)
. (1.2)
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This shows that if τ >
√
2 log n, then the probability of false detections can be

controlled. In fact, in the high-dimensional limit [1]

Pr

(
lim
n→∞

maxj=1,...,n ej√
2 logn

= 1

)
= 1 (1.3)

and therefore, for large n, we see that false detections cannot be avoided with τ <√
2 log n. These basic facts imply that this classic denoising problem cannot be

reliably solved unless the non-zero components of x exceed
√
2 logn in magnitude.

This dependence on the problem size n can be viewed as a statistical “curse of

dimensionality.”

The classic model is based on non-adaptive measurements. Suppose instead

that the measurements could be performed sequentially as follows. Assume that

each measurement yj results from integration over time or averaging of repeated

independent observations. The classic non-adaptive model allocates an equal por-

tion of the full measurement budget to each component of x. In the sequential

adaptive model, the budget can be distributed in a more flexible and adaptive

manner. For example, a sequential sensing method could first measure all of

the components using a third of the total budget, corresponding to observations

of each component plus an additive noise distributed as N (0, 3). The measure-

ments are very noisy, but may be sufficiently informative to reliably rule out

the presence of non-zero components at a large fraction of the locations. After

ruling out many locations, the remaining two thirds of the measurement bud-

get can be directed at the locations still in question. Now, because there are

fewer locations to consider, the variance associated with the subsequent mea-

surements can be even smaller than in the classic model. An illustrative example

of this process is depicted in Figure 1.1. We will see in later sections that such

sequential measurement models can effectively mitigate the curse of dimension-

ality in high-dimensional sparse inference problems. This permits the recovery of

signals having nonzero components whose magnitudes grow much more slowly

than
√
2 log n.

1.1.2 Inverse Problems

The classic inverse problem deals with the following observation model. Suppose

we observe x in noise according to the non-adaptive measurement model

y = Ax+ e, (1.4)

where A ∈ Rm×n is a known measurement matrix, e ∈ Rn again represents a

vector of independent Gaussian white noise realizations, and x is assumed to be

deterministic and sparse, but otherwise unknown. We will usually assume that

the columns of A have unit norm. This normalization is used so that the SNR

is not a function of m, the number of rows. Note that in the denoising problem

we have A = In×n, the identity operator, which also has unit norm columns.
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Signal Components

Measured Values

Rejected Components

(a)

(b)

(c)

(d)

Figure 1.1 Qualitative illustration of a sequential sensing process. A total of 3
observation steps are utilized, and the measurement budget is allocated uniformly
over the steps. The original signal is depicted in panel (a). In the first observation
step, shown in panel (b), all components are observed and a simple test identifies two
subsets—one corresponding to locations to be measured next, and another set of
locations to subsequently ignore. In the second observation step (panel (c)), each
observation has twice the precision as the measurements in the previous step, since
the same portion of the measurement budget is being used to measure half as many
locations. Another refinement step leads to the final set of observations depicted in
panel (d). Note that a single-step observation process would yield measurements with
variance 1, while the adaptive procedure results in measurements with lower variance
at the locations of interest.

The goal of the inverse problem is to recover x from y. A natural approach to

this problem is to find a solution to the constrained optimization

min
x

∥y −Ax∥22 , subject to ∥x∥0 ≤ k , (1.5)

where, as stated in Chapter 1, ∥x∥0 is the ℓ0 (pseudo-)norm which counts the

number of non-zero components in x. It is common to refer to an ℓ0 constraint as

a sparsity constraint. Note that in the special case where A = In×n the solution

of the optimization (1.5) corresponds to hard-thresholding of y at the level of

the magnitude of the minimum of the k largest (in magnitude) components of
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y. Therefore the ℓ0-constrained optimization (1.5) coincides with the denoising

problem described above.

For the general inverse problem, A is not proportional to the identity matrix

and it may even be non-invertible. Nevertheless, the optimization above can still

have a unique solution due to the sparsity constraint. Unfortunately, in this case

the optimization (1.5) is combinatorial in nature, generally requiring a brute-

force search over all
(
n
k

)
sparsity patterns. A common alternative is to instead

solve a convex relaxation of the form

min
x

∥y −Ax∥22 , subject to ∥x∥1 ≤ τ , (1.6)

for some τ > 0. This ℓ1-constrained optimization is relatively easy to solve using

convex optimization techniques. It is well known that the solutions of the opti-

mization (1.6) are sparse, and the smaller τ , the sparser the solution.

If the columns of A are not too correlated with one another and τ is chosen

appropriately, then the solution to this optimization is close to the solution of the

ℓ0-constrained optimization. In fact in the absence of noise, perfect recovery of

the sparse vector x is possible. For example, compressed sensing methods often

employ an A comprised of realizations of i.i.d. symmetric random variables. If m

(the number of rows) is just slightly larger than k, then every subset of k columns

from such an A will be close to orthogonal [2, 3, 4]. This condition suffices to

guarantee that any sparse signal with k or fewer non-zero components can be

recovered from {y,A} – see, for example, [5].

When noise is present in the measurements, reliably determining the locations

of the non-zero components in x requires that these components are significantly

large relative to the noise level. For example, if the columns ofA are scaled to have

unit norm, recent work [6] suggests that the optimization in (1.6) will succeed

(with high probability) only if the magnitudes of the non-zero components exceed

a fixed constant times
√
log n. In this chapter we will see that this fundamental

limitation can again be overcome by sequentially designing the rows of A so that

they tend to focus on the relevant components as information is gathered.

1.1.3 A Bayesian Perspective

The denoising and inverse problems each have a simple Bayesian interpreta-

tion which is a convenient perspective for the development of more general

approaches. Recall the ℓ0-constrained optimization in (1.5). The Lagrangian for-

mulation of this optimization is

min
x

{
∥y −Ax∥22 + λ∥x∥0

}
, (1.7)

where λ > 0 is the Lagrange multiplier. The optimization can be viewed as a

Bayesian procedure, where the term ∥y −Ax∥22 is the negative Gaussian log-

likelihood of x, and λ∥x∥0 is the negative log of a prior distribution on the support

of x. That is, the mass allocated to x with k non-zero elements is uniformly
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distributed over the
(
n
k

)
possible sparsity patterns. Minimizing the sum of these

two quantities is equivalent to solving for the Maximum a Posteriori (MAP)

estimate.

The ℓ1-constrained optimization also has a Bayesian interpretation. The

Lagrangian form of that optimization is

min
x

{
∥y −Ax∥22 + λ∥x∥1

}
. (1.8)

In this case the prior is proportional to exp(−λ∥x∥1), which models components

of x independently with a heavy-tailed (double-exponential, or Laplace) distri-

bution. Both the ℓ0 and ℓ1 priors, in a sense, reflect a belief that the x we are

seeking is sparse (or approximately so) but otherwise unstructured in the sense

that all patterns of sparsity are equally probable a priori.

1.1.4 Structured Sparsity

The Bayesian perspective also provides a natural framework for more structured

models. By modifying the prior (and hence the penalizing term in the optimiza-

tion), it is possible to encourage solutions having more structured patterns of

sparsity. A very general information-theoretic approach to this sort of problem

was provided in [7], and we adopt that approach in the following examples. Priors

can be constructed by assigning a binary code to each possible x. The prior prob-

ability of any given x is proportional to exp(−λK(x)), where λ > 0 is a constant

and K(x) is the bit-length of the code assigned to x. If A is an m× n matrix

with entries drawn independently from a symmetric binary-valued distribution,

then the expected mean square error of the estimate

x̂ = argmin
x∈X

{
∥y −Ax∥22 + λK(x)

}
(1.9)

selected by optimizing over a set X of candidates (which, for example, could be

a discretized subset of the set of all vectors in Rn with ℓ2 norm bounded by some

specified value), satisfies

E∥x̂− x∗∥22/n ≤ Cmin
x∈X

{
∥x− x∗∥22/n+ cK(x)/m

}
. (1.10)

Here, x∗ is the vector that generated y and C, c > 0 are constants depending on

the choice of λ. The notation E denotes expectation, which here is taken with

respect to the distribution on A and the additive noise in the observation model

(1.4). The ∥x∥0 prior/penalty is recovered as a special case in which log n bits

are allocated to encode the location and value of each non-zero element of x (so

that K(x) is proportional to ∥x∥0 log n). Then the error satisfies the bound

E∥x̂− x∗∥22/n ≤ C ′∥x∗∥0 log n/m , (1.11)

for some constant C ′ > 0.

The Bayesian perspective also allows for more structured models. To illustrate,

consider a simple sparse binary signal x∗ (i.e., all non-zero components take the
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value 1). If we make no assumptions on the sparsity pattern, then the location of

each non-zero component can be encoded using log n bits, resulting in a bound

of the same form as (1.11). Suppose instead that the sparsity pattern of x can

be represented by a binary tree whose vertices correspond to the elements of x.

This is a common model for the typical sparsity patterns of wavelet coefficients,

for example see [8]. The tree-structured restriction means that a node can be

non-zero if and only if its “parent” node is also non-zero. Thus, each possible

sparsity pattern corresponds to a particular branch of the full binary tree. There

exist simple prefix codes for binary trees, and the codelength for a tree with k

vertices is at most 2k + 1 (see, for example, [9]). In other words, we require just

over 2 bits per component, rather than logn. Applying the general error bound

(1.10) we obtain

E∥x̂− x∗∥22/n ≤ C ′′∥x∗∥0/m , (1.12)

for some constant C ′′ > 0 which, modulo constants, is a factor of log n bet-

ter than the bound under the unstructured assumption. Thus, we see that the

Bayesian perspective provides a formalism for handling a wider variety of model-

ing assumptions and deriving performance bounds. Several authors have explored

various other approaches to exploiting structure in the patterns of sparsity—see

[10, 11, 12, 13], as well as [14] and the exposition in Chapter 4.

Another possibility offered by the Bayesian perspective is to customize the

sensing matrix in order to exploit more informative prior information (other

than simple unstructured sparsity) that may be known about x. This has been

formulated as a Bayesian experimental design problem [15, 16]. Roughly speak-

ing, the idea is to identify a good prior distribution for x and then optimize the

choice of the sensing matrix A in order to maximize the expected information

of the measurement. In the next section we discuss how this idea can be taken

a step further, to sequential Bayesian experimental designs that automatically

adapt the sensing to the underlying signal in an online fashion.

1.2 Bayesian Adaptive Sensing

The Bayesian perspective provides a natural framework for sequential adaptive

sensing, wherein information gleaned from previous measurements is used to

automatically adjust and focus the sensing. In principle the idea is very sim-

ple. Let Q1 denote a probability measure over all m× n matrices having unit

Frobenius norm in expectation. This normalization generalizes the column nor-

malization discussed earlier. It still implies that the SNR is independent of m,

but it also allows for the possibility of distributing the measurement budget

more flexibly throughout the columns. This will be crucial for adaptive sensing

procedures. For example, in many applications the sensing matrices have entries

drawn i.i.d. from a symmetric distribution (see Chapter 5 for a detailed discus-

sion of random matrices). Adaptive sensing procedures, including those discussed
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in later sections of this chapter, are often also constructed from entries drawn

from symmetric, but not identical, distributions. By adaptively adjusting the

variance of the distributions used to generate the entries, these sensing matrices

can place more or less emphasis on certain components of the signal.

Now consider how we might exploit adaptivity in sparse recovery. Suppose

that we begin with a prior probability distribution p(x) for x. Initially collect a

set of measurements y ∈ Rm according to the sensing model y = Ax+ w with

A ∼ Q1, where Q1 is a prior probability distribution on m× n sensing matrices.

For example, Q1 could correspond to drawing the entries of A independently

from a common symmetric distribution. A posterior distribution for x can be

calculated by combining these data with a prior probability model for x, using

Bayes’ rule. Let p(x|y) denote this posterior distribution. It then becomes natu-

ral to ask, which sensing actions will provide the most new information about x?

In other words, we are interested in designing Q2 so that the next measurement

using a sensing matrix A ∼ Q2 maximizes our gain in information about x. For

example, if certain locations are less likely (or even completely ruled-out) given

the observed data y, then Q2 should be designed to place little (or zero) prob-

ability mass on the corresponding columns of the sensing matrix. Our goal will

be to develop strategies that utilize information from previous measurements

to effectively “focus” the sensing energy of subsequent measurements into sub-

spaces corresponding to the true signal of interest (and away from locations of

less interest). An example depicting the notion of focused sensing is shown in

Figure 1.2.

More generally, the goal of the next sensing action should be to reduce the

uncertainty about x as much as possible. There is a large literature dealing with

this problem, usually under the topic of “sequential experiments.” The classical

Bayesian perspective is nicely summarized in the work of DeGroot [17]. He credits

Lindley [18] with first proposing the use of Shannon entropy as a measure of

uncertainty to be optimized in the sequential design of experiments. Using the

notion of Shannon entropy, the “information-gain” of an experiment can be

quantified by the change that the new data produces in the entropy associated

with the unknown parameter(s). The optimal design of a number of sequential

experiments can be defined recursively and viewed as a dynamic programming

problem. Unfortunately, the optimization is intractable in all but the most simple

situations. The usual approach, instead, operates in a greedy fashion, maximizing

the information-gain at each step in a sequence of experiments. This can be

suboptimal, but often is computationally feasible and effective.

An adaptive sensing procedure of this sort can be devised as follows. Let p(x)

denote the probability distribution of x after the (t)-th measurement step. Imag-

ine that in the (t+ 1)-th step we measure y = Ax+ e, where A ∼ Q and Q is a

distribution we can design as we like. Let p(x|y) denote the posterior distribu-

tion according to Bayes’ rule. The “information” provided by this measurement

is quantified by the Kullback-Leibler (KL) divergence of p(x) from p(x|y) which
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(a)

Signal Components
Sensing Vector Components

(b)

Figure 1.2 Traditional vs. focused sensing. Panel (a) depicts a sensing vector that may
be used in a traditional non-adaptive measurement approach. The components of the
sensing vector have uniform amplitudes, implying that an equal amount of “sensing
energy” is being allocated to all locations regardless of the signal being measured.
Panel (b) depicts a focused sensing vector where most of the sensing energy is focused
on a small subset of the components corresponding to the relevant entries of the
signal.

is given by

EX

[
log

p(x|y)
p(x)

]
, (1.13)

where the expectation is with respect to the distribution of a random variable

X ∼ p(x|y). Notice that this expression is a function of y, which is undetermined

until the measurement is made. Thus, it is natural to consider the expectation

of the KL divergence with respect to the distribution of y, which depends on the

prior p(x), the distribution of the noise, and most importantly, on the choice ofQ.

Let p(y) denote the distribution of the random measurement obtained using the

observation matrix A ∼ Q. The expected information gain from a measurement

based on A is defined to be

EYQEX

[
log

p(x|y)
p(x)

]
, (1.14)

where the outer expectation is with respect to the distribution of a random

variable YQ ∼ p(y). This suggests choosing a distribution for the sensing matrix

for the next measurement to maximize the expected information gain, that is

Qt+1 = argmax
Q

EYQEX

[
log

p(x|y)
p(x)

]
, (1.15)

where the optimization is over a space of possible distributions on m× n matri-

ces.

One useful interpretation of this selection criterion follows by observing that

maximizing the expected information gain is equivalent to minimizing the con-

ditional entropy of the posterior distribution [18]. Indeed, simplifying the above
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expression we obtain

Qt+1 = argmax
Q

EYQEX

[
log

p(x|y)
p(x)

]
= argmin

Q
−EYQEX log p(x|y) + EYQEX log p(x)

= argmin
Q

H(X|YQ)−H(X)

= argmin
Q

H(X|YQ), (1.16)

where H(X) denotes the Shannon entropy and H(X|YQ) the entropy of X con-

ditional on YQ. Another intuitive interpretation of the information gain criterion

follows from the fact that

EYQEX

[
log

p(x|y)
p(x)

]
= EX,YQ

[
log

p(x, y)

p(x)p(y)

]
(1.17)

where the right-hand side is just the mutual information between the random

variables X and YQ. Thus, the information gain criterion equivalently suggests

that the next measurements should be constructed in a way that maximizes the

mutual information between X and YQ.

Now, given this selection of Qt+1, we may draw A ∼ Qt+1, collect the next

measurement y = Ax+ e, and use Bayes’ rule to obtain the new posterior. The

rationale is that at each step we are choosing a sensing matrix that maximizes

the expected information gain, or equivalently minimizes the expected entropy

of the new posterior distribution. Ideally, this adaptive and sequential approach

to sensing will tend to focus on x so that sensing energy is allocated to the cor-

rect subspace, increasing the SNR of the measurements relative to non-adaptive

sensing. The performance could be evaluated, for example, by comparing the

result of several adaptive steps to that obtained using a single non-adaptively

chosen A.

The approach outlined above suffers from a few inherent limitations. First,

while maximizing the expected information gain is a sensible criterion for focus-

ing, the exposition makes no guarantees about the performance of such methods.

That is, one cannot immediately conclude that this procedure will lead to an

improvement in performance. Second, and perhaps more importantly in prac-

tice, selecting the sensing matrix that maximizes the expected information gain

can be computationally prohibitive. In the next few sections, we discuss sev-

eral efforts where approximations or clever choices of the prior are employed to

alleviate the computational burden of these procedures.

1.2.1 Bayesian Inference Using a Simple Generative Model

To illustrate the principles behind the implementation of Bayesian sequential

experimental design, we begin with a discussion of the approach proposed in [19].

Their work employed a simple signal model in which the signal vector x ∈ Rn

was assumed to consist of only a single nonzero entry. Despite the potential
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model misspecification, this simplification enables the derivation of closed-form

expressions for model parameter update rules. It also leads to a simple and

intuitive methodology for the shaping of projection vectors in the sequential

sampling process.

1.2.1.1 Single Component Generative Model
We begin by constructing a generative model for this class of signals. This model

will allow us to define the problem parameters of interest, and to perform infer-

ence on them. First, we define L to be a random variable whose range is the set of

indices of the signal, j = {1, 2, . . . , n}. The entries of the probability mass func-

tion of L, denoted by qj = Pr(L = j), encapsulate our belief regarding which

index corresponds to the true location of the single nonzero component. The

amplitude of the single nonzero signal component is a function of its location

L, and is denoted by α. Further, conditional on the outcome L = j, we model

the amplitude of the nonzero component as a Gaussian random variable with

location-dependent mean and variance, µj and νj , respectively. That is, the dis-

tribution of α given L = j is given by

p(α|L = j) ∼ N (µj , νj). (1.18)

Thus, our prior on the signal x is given by p(α,L), and is described by the

hyperparameters {qj , µj , νj}nj=1.

We will perform inference on the hyperparameters, updating our knowledge of

them using scalar observations collected according to the standard observation

model,

yt = Atx+ et, (1.19)

where At is a 1× n vector and the noises {et} are assumed to be i.i.d.N (0, σ2) for

some known σ > 0. We initialize the hyperparameters of the prior to qj(0) = 1/n,

µj(0) = 0, and νj(0) = σ2
0 for some specified σ0, for all j = 1, 2, . . . , n. Now, at

time step t ≥ 1, the posterior distribution for the unknown parameters at a

particular location j can be written as

p(α,L = j|yt, At) = p(α|yt, At, L = j) · qj(t− 1). (1.20)

Employing Bayes’ rule, we can rewrite the first term on the right-hand side to

obtain

p(α|yt, At, L = j) ∝ p(yt|At, α, L = j) · p(α|L = j), (1.21)

and thus the posterior distribution for the unknown parameters satisfies

p(α,L = j|yt, At) ∝ p(yt|At, α, L = j) · p(α|L = j) · qj(t− 1). (1.22)

The proportionality notation has been used to suppress the explicit specification

of the normalizing factor. Notice that, by construction, the likelihood function

p(yt|At, α, L = j) is conjugate to the prior p(α|L = j), since each is Gaussian.
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Substituting in the corresponding density functions, and following some straight-

forward algebraic manipulation, we obtain the following update rules for the

hyperparameters:

µj(t) =
At,jνj(t− 1)yt + µj(t− 1)σ2

A2
t,jνj(t− 1) + σ2

, (1.23)

νj(t) =
νj(t− 1)σ2

A2
t,jνj(t− 1) + σ2

, (1.24)

qj(t) ∝
qj(t− 1)√

A2
t,jνj(t− 1) + σ2

exp

(
−1

2

(yt −At,jµj(t− 1))2

A2
t,jνj(t− 1) + σ2

)
. (1.25)

1.2.1.2 Measurement Adaptation
Now, as mentioned above, our goal here is twofold. On one hand, we want to

estimate the parameters corresponding to the location and amplitude of the

unknown signal component. On the other hand, we want to devise a strategy

for focusing subsequent measurements onto the features of interest to boost the

performance of our inference methods. This can be accomplished by employing

the information gain criterion, that is, selecting our next measurement to be

the most informative measurement that can be made given our current state of

knowledge of the unknown quantities. This knowledge is encapsulated by our

current estimates of the problem parameters.

We adopt the criterion in (1.16), as follows. Suppose that the next measure-

ment vector At+1 is drawn from some distribution Q over 1× n vectors. Let

YQ denote the random measurement obtained using this choice of At+1. Our

goal is to select Q to minimize the conditional entropy of a random variable X

distributed according to our generative model with parameters that reflect infor-

mation obtained up to time t, given YQ. In other words, the information gain

criterion suggests that we choose the distribution from which the next sensing

vector will be drawn according to (1.16).

To facilitate the optimization, we will consider a simple construction for the

space from which Q is to be chosen. Namely, we will assume that the next

projection vector is given by the element-wise product between a random sign

vector ξ ∈ {−1, 1}n and a non-negative weight vector ψ ∈ Rn, so that At+1,j =

ξjψj . Further, we assume that the entries of the sign vector are equally likely

and independent. In other words, we will assume that the overall observation

process is as depicted in Figure 1.3, and our goal will be to determine the weight

vector ψ.

Recall that the optimization (1.16) is equivalent to maximizing the mutual

information between X and YQ. Thus, the optimization (1.16) is equivalent to

Qt+1 = argmax
Q

H(YQ)−H(YQ|X).

This is the formulation we will use here, but rather than solving this optimization

directly we will instead employ a bound optimization approach. Namely, we
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consider maximizing a lower bound of this objective function, which we obtain

as follows.

First, we establish a lower bound on the first term in the objective using the

fact that the conditional differential entropy is a lower bound for the differential

entropy [20]. Conditioned on L = j and the corresponding sign vector entry ξj ,

the distribution of YQ is N
(
ψjξjµj(t), ψ

2
j ξ

2
j νj(t) + σ2

)
, which is equivalent to

N
(
ψjξjµj(t), ψ

2
j νj(t) + σ2

)
since ξ2j = 1. It thus follows that

H(YQ) ≥ H(YQ|L, ξ) =
1

2

n∑
j=1

qj(t) log
(
2πe(ψ2

j νj(t) + σ2)
)
. (1.26)

Second, note conditioned on X = x (or, equivalently, the realizations L = j and

Xj = xj), YQ is distributed according to a two-component Gaussian mixture,

where each component has variance σ2. Applying the definition of differential

entropy directly to this distribution, it is straightforward to establish the bound

H(YQ|X) ≤ log(2) +
1

2
log (2πeσ2). (1.27)

Now, note that of the bounds (1.26) and (1.27), only (1.26) exhibits any depen-

dence on the choice of Q, and this dependence is only through the projection

weights, ψj . Thus, our criteria for selecting the projection weights simplifies to

ψ = arg max
z∈Rn:∥z∥2=1

n∑
j=1

qj(t) log
(
z2j νj(t) + σ2

)
.

This constrained optimization can be solved by a simple application of Lagrange

multipliers, but it is perhaps more illustrative to consider one further simplifica-

tion that is appropriate in low-noise settings. In particular, let us assume that

σ2 ≈ 0, then the optimization becomes

ψ = arg max
z∈Rn:∥z∥2=1

n∑
j=1

qj(t) log
(
z2j
)
. (1.28)

It is easy to show that the objective in this formulation is maximized by selecting

zj =
√
qj(t).

The focusing criterion obtained here is generally consistent with our intuition

for this problem. It suggests that the amount of “sensing energy” that should

be allocated to a given location j be proportional to our current belief that the

nonzero signal component is indeed at location j. Initially, when we assume that

the location of the nonzero component is uniformly distributed among the set

of indices, this criterion instructs us to allocate our sensing energy uniformly, as

is the case in traditional “non-adaptive” CS methods. On the other hand, as we

become more confident in our belief that we have identified a set of promising

locations at which the the nonzero component could be present, the criterion

suggests that we focus our energy on those locations to reduce the measurement

uncertainty (ie, to obtain the highest SNR measurements possible).
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Weight per index
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Figure 1.3 Block diagram of the adaptive focusing procedure. Previous observations
are utilized to “shape” the weights associated with each location of the random
vectors which will be used in the sensing process.

The procedure outlined here can be extended, in a straightforward way, to set-

tings where the unknown vector x has multiple nonzero entries. The basic idea

is to identify the nonzero entries of the signal one-at-a-time, using a sequence of

iterations of the proposed procedure. For each iteration, the procedure is exe-

cuted as described above until one entry of the posterior distribution for the

location parameter exceeds a specified threshold τ ∈ (0, 1). That is, the current

iteration of the sequential sensing procedure terminates when the posterior like-

lihood of a true nonzero component at any of the locations becomes large, which

corresponds to the event that qj(t) > τ for any j ∈ {1, 2, . . . , n}, for a specified

τ that we choose to be close to 1. At that point, we conclude that a nonzero sig-

nal component is present at the corresponding location. The sequential sensing

procedure is then restarted and the parameters {qj , µj , νj}nj=1 are reinitialized,

except that the initial values of {qj}nj=1 are set to zero at locations identified

as signal components in previous iterations of the procedure, and uniformly dis-

tributed over the remaining locations. The resulting multi-step procedure is akin

to an “onion peeling” process.

1.2.2 Bayesian Inference Using Multi-Component Models

The simple single-component model for the unknown signal x described above is

but one of many possible generative models that might be employed in a Bayesian

treatment of the sparse inference problem. Another, perhaps more natural, option

is to employ a more sophisticated model that explicitly allows for the signal to

have multiple nonzero components.
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1.2.2.1 Multi-component Generative Model
As discussed above, a widely used sparsity promoting prior is the Laplace dis-

tribution,

p(x|λ) =
(
λ

2

)n

· exp

−λ
n∑

j=1

|xj |

 . (1.29)

From an analytical perspective in Bayesian inference, however, this particular

choice of prior on x can lead to difficulties. In particular, under a Gaussian

noise assumption, the resulting likelihood function for the observations (which

is conditionally Gaussian given x and the projection vectors) is not conjugate to

the Laplace prior, and so closed-form update rules cannot be easily obtained.

Instead, here we discuss the method that was examined in [21], which utilizes

a hierarchical prior on the signal x, similar to a construction proposed in the

context of sparse Bayesian learning in [22]. As before, we begin by constructing

a generative model for the signal x. To each xj , j = 1, 2, . . . , n, we associate a

parameter ρj > 0. The joint distribution of the entries of x, conditioned on the

parameter vector ρ = (ρ1, ρ2, . . . , ρn), is given in the form of a product distribu-

tion,

p(x|ρ) =
n∏

j=1

p(xj |ρj), (1.30)

and we let p(xj |ρj) ∼ N (0, ρ−1
j ). Thus, we may interpret the ρj as precision or

“inverse variance” parameters. In addition, we impose a prior on the entries of

ρ, as follows. For global parameters α, β > 0, we set

p(ρ|α, β) =
n∏

j=1

p(ρj |α, β), (1.31)

where p(ρj |α, β) ∼ Gamma(α, β) is distributed according to a Gamma distribu-

tion with parameters α and β. That is,

p(ρj |α, β) =
ρα−1
j βα exp(−βρj)

Γ(α)
, (1.32)

where

Γ(α) =

∫ ∞

0

zα−1 exp(−z)dz (1.33)

is the Gamma function. We model the noise as zero-mean Gaussian with

unknown variance, and impose a Gamma prior on the distribution of the noise

precision. This results in a hierarchical prior similar to that utilized for the signal

vector. Formally, we model our observations using the standard matrix-vector

formulation,

y = Ax+ e, (1.34)
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where y ∈ Rm and A ∈ Rm×n, and we let p(e|ρ0) ∼ N (0, ρ0Im×m), and

p(ρ0|γ, δ) ∼ Gamma(γ, δ). A graphical summary of the generative signal and

observation models is depicted in Figure 1.4.

Now, the hierarchical model was chosen primarily to facilitate analysis, since

the Gaussian prior on the signal components is conjugate to the Gaussian (con-

ditional) likelihood of the observations. Generally speaking, a Gaussian prior

itself will not promote sparsity; however, incorporating the effect of the Gamma

hyperprior lends some additional insight into the situation here. By marginal-

izing over the parameters ρ, we can obtain an expression for the overall prior

distribution of the signal components in terms of the parameters α and β,

p(x|α, β) =
n∏

j=1

∫ ∞

0

p(xj |ρj) · p(ρj |α, β)dρj . (1.35)

The integral(s) can be evaluated directly, giving

p(xj |α, β) =
∫ ∞

0

p(xj |ρj) · p(ρj |α, β)dρj

=
βαΓ(α+ 1/2)

(2π)1/2Γ(α)

(
β +

x2j
2

)−(α+1/2)

. (1.36)

In other words, the net effect of the prescribed hierarchical prior on the signal

coefficients is that of imposing a Student’s t prior distribution on each signal

component. The upshot is that, for certain choices of the parameters α and β,

the product distribution can be strongly-peaked about zero, similar (in spirit)

to the Laplace distribution—see [22] for further discussion.

Given the hyperparameters ρ and ρ0, as well as the observation vector y and

corresponding measurement matrix A, the posterior for x is conditionally a mul-

tivariate Gaussian distribution with mean µ and covariance matrix Σ. Letting

R = diag(ρ), and assuming that the matrix
(
ρ0A

TA+R
)
is full-rank, we have

Σ =
(
ρ0A

TA+R
)−1

, (1.37)

and

µ = ρ0ΣA
T y. (1.38)

The goal of the inference procedure, then, is to estimate the hyperparameters ρ

and ρ0 from the observed data y. From Bayes’ rule, we have that

p(ρ, ρ0|y) ∝ p(y|ρ, ρ0)p(ρ)p(ρ0). (1.39)

Now, following the derivation in [22], we consider improper priors obtained by

setting the parameters α, β, γ, and δ all to zero, and rather than seeking a fully-

specified posterior for the hyperparameters we instead obtain point estimates

via a maximum likelihood procedure. In particular, the maximum likelihood
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Figure 1.4 Graphical model associated with the multi-component Bayesian CS model.

estimates of ρ and ρ0 are obtained by maximizing

p(y|ρ, ρ0) = (2π)−m/2

∣∣∣∣ 1ρ0 Im×m +AR−1AT

∣∣∣∣−1/2

exp

{
−1

2
yT
(

1

ρ0
Im×m +AR−1AT

)−1

y

}
. (1.40)

This yields the the following update rules:

ρnewj =
1− ρjΣj,j

µ2
j

, (1.41)

ρnew0 =
m−

∑n
j=1 (1− ρjΣj,j)

∥y −Aµ∥22
. (1.42)

Overall, the inference procedure alternates between solving for ρ0 and ρ as func-

tions of µ and Σ using (1.41) and (1.42), and solving for µ and Σ as functions

of ρ0 and ρ using (1.37) and (1.38).

1.2.2.2 Measurement Adaptation
As in the previous section, we may devise a sequential sensing procedure by first

formulating a criterion under which the next projection vector can be chosen

to be the most informative. Let us denote the distribution of x given the first t

measurements by p(x). Suppose that the (t+ 1)-th measurement is obtained by

projecting onto a vector At+1 ∼ Q, and let p(x|y) denote the posterior. Now, the

criterion for selecting the distribution Qt+1 from which the next measurement

vector should be drawn is given by (1.16). As in the previous example, we will

simplify the criterion by first restricting the space of distributions over which the

objective is to be optimized. In this case, we will consider a space of degenerate

distributions. We assume that each Q corresponds to a distribution that takes a

deterministic value Q ∈ Rn with probability one, where ∥Q∥2 = 1. The goal of

the optimization, then, is to determine the “direction” vector Q.
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Recall that by construction, given the hyperparameters ρ0 and ρ the signal x

is multivariate Gaussian with mean and variance µ and Σ as given in (1.38) and

(1.37), respectively. The hierarchical prior(s) imposed on the hyperparameters

ρ0 and ρ make it difficult to evaluate H(X|YQ) directly. Instead, we simplify the

problem further by assuming that x is unconditionally Gaussian (ie, ρ0 and ρ are

deterministic and known). In this case the objective function of the information

gain criterion can be evaluated directly, and the criterion for selecting the next

measurement vector becomes

At+1 = arg min
Q∈Rn,∥Q∥2=1

−1

2
log
(
1 + ρ0QΣQT

)
, (1.43)

where Σ and ρ0 reflect the knowledge of the parameters up to time t. From this

it is immediately obvious that At+1 should be in the direction of the eigenvector

corresponding to the largest eigenvalue of the covariance matrix Σ.

As with the simple single-component signal model case described in the pre-

vious section, the focusing rule obtained here also lends itself to some intuitive

explanations. Recall that at a given step of the sequential sensing procedure, Σ

encapsulates our knowledge of both our level of uncertainty about which entries

of the unknown signal are relevant as well as our current level of uncertainty

about the actual component value. In particular, note that under the zero-mean

Gaussian prior assumption on the signal amplitudes large values of the diagonal

entries of R can be understood to imply the existence of a true nonzero signal

component at the corresponding location. Thus, the focusing criterion described

above suggests that we focus our sensing energy onto locations at which we are

both fairly certain that a signal component is present (as quantified by large

entries of the diagonal matrix R), and fairly uncertain about its actual value

because of the measurement noise (as quantified by the ρ0A
TA term in (1.37)).

Further, the relative contribution of each is determined by the level of the addi-

tive noise or, more precisely, our current estimate of it.

1.2.3 Quantifying Performance

The adaptive procedures discussed in the previous sections can indeed provide

realizable performance improvements relative to non-adaptive CS methods. It

has been shown, via simulation, that these adaptive sensing procedures can out-

perform traditional CS in noisy settings. For example, adaptive methods can pro-

vide a reduction in mean-square reconstruction error, relative to non-adaptive

CS, in situations where each utilizes the same total number of observations.

Similarly, it has been shown that in some settings adaptive methods can achieve

the same error performance as non-adaptive methods using a smaller number of

measurements. We refer the reader to [19, 21], as well as [23, 24] for extensive

empirical results and more detailed performance comparisons of these proce-

dures.
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A complete analysis of these adaptive sensing procedures would ideally also

include an analytical performance evaluation. Unfortunately, it appears to be

very difficult to devise quantitative error bounds, like those known for non-

adaptive sensing, for Bayesian sequential methods. Because each sensing matrix

depends on the data collected in the previous steps, the overall process is riddled

with complicated dependencies that prevent the use of the usual approaches to

obtain error bounds based, for example, on concentration of measure and other

tools.

In the next section, we present a recently-developed alternative to Bayesian

sequential design called distilled sensing (DS). In essence, the DS framework

encapsulates the spirit of sequential Bayesian methods, but uses a much sim-

pler strategy for exploiting the information obtained from one sensing step to

the next. The result is a powerful, computationally efficient procedure that is

also amenable to analysis, allowing us to quantify the dramatic performance

improvements that can be achieved through adaptivity.

1.3 Quasi-Bayesian Adaptive Sensing

In the previous section, the Bayesian approach to adaptive sensing was discussed,

and several examples were reviewed to show how this approach might be imple-

mented in practice. The salient aspect of these techniques, in essence, was the use

of information from prior measurements to guide the acquisition of subsequent

measurements in an effort to obtain samples that are most informative. This

results in sensing actions that focus sensing resources toward locations that are

more likely to contain signal components, and away from locations that likely

do not. While this notion is intuitively pleasing, its implementation introduces

statistical dependencies that make an analytical treatment of the performance

of such methods quite difficult.

In this section we discuss a recently-developed adaptive sensing procedure

called distilled sensing (DS) [25] which is motivated by Bayesian adaptive sens-

ing techniques, but also has the added benefit of being amenable to theoretical

performance analysis. The DS procedure is quite simple, consisting of a num-

ber of iterations, each of which is comprised of an observation stage followed

by a refinement stage. In each observation stage, measurements are obtained at

a set of locations which could potentially correspond to nonzero components.

In the corresponding refinement stage, the set of locations at which observa-

tions were collected in the measurement stage is partitioned into two disjoint

sets—one corresponding to locations at which additional measurements are to

be obtained in the next iteration, and a second corresponding to locations to sub-

sequently ignore. This type of adaptive procedure was the basis for the example

in Figure 1.1. The refinement strategy utilized in DS is a sort of “poor-man’s

Bayesian” methodology intended to approximate the focusing behavior achieved

by methods that employ the information gain criterion. The upshot here is that
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this simple refinement is still quite effective at focusing sensing resources toward

locations of interest. In this section we examine the performance guarantees that

can be attained using the DS procedure.

For the purposes of comparison, we begin with a brief discussion of the perfor-

mance limits for non-adaptive sampling procedures, expanding on the discussion

of the denoising problem in Section 1.1.1. We then present and discuss the DS

procedure in some detail, and we provide theoretical guarantees on its perfor-

mance which quantify the gains that can be achieved via adaptivity. In the last

subsection we discuss extensions of DS to underdetermined compressed sensing

observation models, and we provide some preliminary results on that front.

1.3.1 Denoising using Non-Adaptive Measurements

Consider the general problem of recovering a sparse vector x ∈ Rn from its sam-

ples. Let us assume that the observations of x are described by the simple model

y = x+ e, (1.44)

where e ∈ Rn represents a vector of additive perturbations, or “noise.” The signal

x is assumed to be sparse, and for the purposes of analysis in this section we

will assume that all the non-zero components of x take the same value µ > 0.

Even with this restriction on the form of x, we will see that non-adaptive sensing

methods cannot reliably recover signals unless the amplitude µ is considerably

larger than the noise level. Recall that the support of x, denoted by S = S(x) =
supp(x), is defined to be the set of all indices at which the vector x has a

nonzero component. The sparsity level ∥x∥0 is simply the cardinality of this set,

∥x∥0 = |S|. To quantify the effect of the additive noise, we will suppose that the

entries of e are i.i.d. N (0, 1). Our goal will be to perform support recovery (also

called model selection), or to obtain an accurate estimate of the support set of

x, using the noisy data y. We denote our support estimate by Ŝ = Ŝ(y).
Any estimation procedure based on noisy data is, of course, subject to error.

To assess the quality of a given support estimate Ŝ, we define two metrics to

quantify the two different types of errors that can occur in this setting. The

first type of error corresponds to the case where we declare that nonzero signal

components are present at some locations where they are not, and we refer to

such mistakes as false discoveries. We quantify the number of these errors using

the false discovery proportion (FDP), defined here as

FDP(Ŝ) :=
|Ŝ\S|
|Ŝ|

, (1.45)

where the notation Ŝ\S denotes the set difference. In words, the FDP of Ŝ
is the ratio of the number of components falsely declared as non-zero to the

total number of components declared non-zero. The second type of error occurs

when we decide that a particular location does not contain a true nonzero signal

component when it actually does. We refer to these errors as non-discoveries,
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and we quantify them using the non-discovery proportion (NDP), defined as

NDP(Ŝ) :=
|S\Ŝ|
|S|

. (1.46)

In words, the NDP of Ŝ is the ratio of the number of non-zero components missed

to the number of actual non-zero components. For our purposes, we will consider

a testing procedure to be effective if its errors in these two metrics are suitably

small.

In contrast to the Bayesian treatments discussed above, here we will assume

that x is fixed, but it is otherwise unknown. Recall that by assumption the

nonzero components of x are assumed to be nonnegative. In this case it is natural

to focus on a specific type of estimator for S, which is obtained by applying a

simple, coordinate-wise, one-sided thresholding test to the outcome of each of

the observations. In particular, the support estimate we will consider here is

Ŝ = Ŝ(y, τ) = {j : yj > τ}, (1.47)

where τ > 0 is a specified threshold.

To quantify the error performance of this estimator, we examine the behavior

of the resulting FDP and NDP for a sequence of estimation problems indexed

by the dimension parameter n. Namely, for each value of n, we consider the

estimation procedure applied to a signal x ∈ Rn having k = k(n) nonzero entries

of amplitude µ = µ(n), observed according to (1.44). Analyzing the procedure

for increasing values of n is a common approach to quantify performance in high-

dimensional settings, as a function of the corresponding problem parameters. To

that end we consider letting n tend to infinity to identify a critical value of the

signal amplitude µ below which the estimation procedure fails, and above which

it succeeds. The result is stated here as a theorem [26, 25].

Theorem 1.1. Assume x has n1−β non-zero components of amplitude µ =√
2r log n for some β ∈ (0, 1) and r > 0. If r > β, there exists a coordinate-wise

thresholding procedure with corresponding threshold value τ(n) that yields an

estimator Ŝ for which

FDP(Ŝ) P→ 0 , NDP(Ŝ) P→ 0 , (1.48)

as n→ ∞, where
P→ denotes convergence in probability. Moreover, if r < β, then

there does not exist a coordinate-wise thresholding procedure that can guarantee

that both the FDP and NDP tend to 0 as n→ ∞.

This result can be easily extended to settings where the nonzero entries of x

are both positive and negative, and may also have unequal amplitudes. In those

cases, an analogous support estimation procedure can be devised which applies

the threshold test to the magnitudes of the observations. Thus, Theorem 1.1 can

be understood as a formalization of the general statement made in Section. 1.1.1
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regarding the denoising problem. There it was argued, based on simple Gaussian

tail bounds, that the condition µ ≈
√
2 log n was required in order to reliably

identify the locations of the relevant signal components from noisy entry-wise

measurements. The above result was obtained using a more sophisticated anal-

ysis, though the behavior with respect to the problem dimension n is the same.

In addition, and perhaps more interestingly, Theorem 1.1 also establishes a con-

verse result—that reliable recovery from non-adaptive measurements is impos-

sible unless µ increases in proportion to
√
logn as n gets large. This result gives

us a baseline with which to compare the performance of adaptive sensing, which

is discussed in the following section.

1.3.2 Distilled Sensing

We begin our discussion of the distilled sensing procedure by introducing a slight

generalization of the sampling model (1.44). This will facilitate explanation of the

procedure and allow for direct comparison with non-adaptive methods. Suppose

that we are able to collect measurements of the components of x in a sequence

of T observation steps, according to the model

yt,j = xj + ρ
−1/2
t,j et,j , j = 1, 2, . . . , n, t = 1, 2, . . . , T, (1.49)

where et,j are i.i.d. N (0, 1) noises, t indexes the observation step, and the ρt,j
are non-negative “precision” parameters that can be chosen to modify the noise

variance associated with a given observation. In other words, the variance of

additive noise associated with observation yt,j is ρ−1
t,j , so larger values of ρt,j

correspond to more precise observations. Here, we adopt the convention that

setting ρt,j = 0 for some pair (t, j) means that component j is not observed at

step t.

This multi-step observation model has natural practical realizations. For exam-

ple, suppose that observations are obtained by measuring at each location one

or more times and averaging the measurements. Then
∑

t,j ρt,j expresses a con-

straint on the total number of measurements that can be made. This mea-

surement budget can be distributed uniformly over the locations (as in non-

adaptive sensing), or non-uniformly and adaptively. Alternatively, suppose that

each observation is based on a sensing mechanism that integrates over time to

reduce noise. The quantity
∑

t,j ρt,j , in this case, corresponds to a constraint on

the total observation time. In any case, the model encapsulates an inherent flex-

ibility in the sampling process, in which sensing resources may be preferentially

allocated to locations of interest. Note that, by dividing through by ρt,j > 0,

we arrive at an equivalent observation model, ỹt,j = ρ
1/2
t,j xj + et,j , which fits the

general linear observation model utilized in the previous sections. Our analysis

would proceed similarly in either case; we choose to proceed here using the model

as stated in (1.49) because of its natural interpretation.
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To fix the parameters of the problem, and to facilitate comparison with non-

adaptive methods, we will impose a constraint on the overall measurement bud-

get. In particular, we assume that
∑T

t=1

∑n
j=1 ρt,j ≤ B(n). In the case T = 1

and ρ1,j = 1 for j = 1, 2, . . . , n, which corresponds to the choice B(n) = n, the

model (1.49) reduces to the canonical non-adaptive observation model (1.44).

For our purposes here we will adopt the same measurement budget constraint,

B(n) = n.

With this framework in place, we now turn to the description of the DS proce-

dure. To begin, we initialize by selecting the number of observation steps T that

are to be performed. The total measurement budget B(n) is then divided among

the T steps so that a portion Bt is allocated to the t-th step, for t = 1, 2, . . . , T ,

and
∑T

t=1Bt ≤ B(n). The set of indices to be measured in the first step is ini-

tialized to be the set of all indices, I1 = {1, 2, . . . , n}. Now, the portion of the

measurement budget B1 designated for the first step is allocated uniformly over

the indices to be measured, resulting in the precision allocation ρ1,j = B1/|I1| for
j ∈ I1. Noisy observations are collected, with the given precision, for each entry

j ∈ I1. The set of observations to be measured in the next step, I2, is obtained
by applying a simple threshold test to each of the observed values. Specifically,

we identify the locations to be measured in the next step as those corresponding

to observations that are strictly greater than zero, giving I2 = {j ∈ I1 : yj > 0}.
This procedure is repeated for each of the T measurement steps, where (as stated

above) the convention ρt,j = 0 implies that the signal component at location j

is not observed in measurement step t. The output of the procedure consists of

the final set of locations measured, IT , and the observations collected at those

locations yT,j , j ∈ IT . The entire process is summarized as Algorithm 1.1.

A few aspects of the DS procedure are worth further explanation. First, we

comment on the apparent simplicity of the refinement step, which identifies the

set of locations to be measured in the subsequent observation step. This simple

criterion encapsulates the notion that, given that the nonzero signal components

are assumed to have positive amplitude, we expect that their corresponding noisy

observation should be nonnegative as well. Interpreting this from a Bayesian

perspective, the hard-thresholding selection operation encapsulates the idea that

the probability of yt,j > 0 given xj = µ and ρt,j > 0 is approximately equal to

one. In reality, using a standard bound on the tail of the Gaussian distribution,

we have that

Pr(yt,j > 0|ρt,j > 0, xj = µ) ≥ 1− exp

(
−ρt,jµ

2

2

)
, (1.50)

suggesting that the quality of this approximation may be very good, depending

on the particular values of the signal amplitude µ and the precision parameter

for the given observation, ρt,j .

Second, as in the simple testing problem described in Section 1.3.1, the DS

procedure can also be extended in a straightforward way to account for signals

with both positive and negative entries. One possible approach would be to
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Algorithm 1.1 (Distilled sensing).

Input:

Number of observation steps T

Resource allocation sequence {Bt}Tt=1 satisfying
∑T

t=1Bt ≤ B(n)

Initialize:

Initial index set I1 = {1, 2, . . . , n}

Distillation:

For t = 1 to T

Allocate resources: ρt,j =

{
Bt/|It| j ∈ It

0 j /∈ It

}
Observe: yt,j = xj + ρ

−1/2
t,j et,j , j ∈ It

Refine: It+1 = {j ∈ It : yt,j > 0}
End for

Output:

Final index set IT
Distilled observations yT = {yT,j : j ∈ IT }

further divide the measurement budget allocation for each step Bt in half, and

then perform the whole DS procedure twice. For the first pass, the procedure

is performed as stated in Algorithm 1.1 with the goal of identifying positive

signal components. For the second pass, replacing the refinement criterion by

It+1 = {i ∈ It : yt,j < 0} would enable the procedure to identify the locations

corresponding to negative signal components.

1.3.2.1 Analysis of Distilled Sensing
The simple adaptive behavior of DS, relative to a fully-Bayesian treatment of

the problem, renders the procedure amenable to analysis. As in Section 1.3.1,

our objects of interest here will be sparse vectors x ∈ Rn having n1−β nonzero

entries, where β ∈ (0, 1) is a fixed (and typically unknown) parameter. Recall

that our goal is to obtain an estimate Ŝ of the signal support S, for which the

errors as quantified by the False Discovery Proportion (1.45) and Non-Discovery

Proportion (1.46) are simultaneously controlled. The following theorem shows

that the DS procedure results in significant improvements over the comparable

non-adaptive testing procedure using the same measurement budget [25]. This

is achieved by carefully calibrating the problem parameters, i.e., the number of

observation steps T and the measurement budget allocation {Bt}Tt=1.
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Theorem 1.2. Assume x has n1−β non-zero components, where β ∈ (0, 1) is

fixed, and that each nonzero entry has amplitude exceeding µ(n). Sample x using

the distilled sensing procedure withr T = T (n) = max{⌈log2 log n⌉, 0}+ 2 measurement steps,r measurement budget allocation {Bt}Tt=1 satisfying
∑T

t=1Bt ≤ n, and for which

– Bt+1/Bt ≥ δ > 1/2, and

– B1 = c1n and BT = cT n for some c1, cT ∈ (0, 1)

If µ(n) → ∞ as a function of n, then the support set estimator constructed using

the output of the DS algorithm

ŜDS := {j ∈ IT : yT,j >
√
2/cT } (1.51)

satisfies

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0, (1.52)

as n→ ∞.

This result can be compared directly to the result of Theorem 1.1, where it was

shown that the errors associated with the estimator obtained from non-adaptive

observations would converge to zero in probability only in the case µ >
√
2β log n.

In contrast, the result of Theorem 1.2 states that the same performance metrics

can be met for an estimator obtained from adaptive samples, under the much

weaker constraint µ(n) → ∞. This includes signals whose nonzero components

have amplitude on the order of µ ∼
√
log log n, or µ ∼

√
log log log · · · log n, in

fact, the result holds if µ(n) is any arbitrarily slowly growing function of n. If we

interpret the ratio between the squared amplitude of the nonzero signal compo-

nents and the noise variance as the SNR, the result in Theorem 1.2 establishes

that adaptivity can provide an improvement in effective SNR of up to a factor

of log n over comparable non-adaptive methods. This improvement can be very

significant in high-dimensional testing problems where n can be in the hundreds

or thousands, or more.

Interpreted another way, the result of Theorem 1.2 suggests that adaptivity can

dramatically mitigate the “curse of dimensionality,” in the sense that the error

performance for DS exhibits much less dependence on the ambient signal dimen-

sion than does the error performance for non-adaptive procedures. This effect is

demonstrated in finite-sample regimes by the simulation results in Figure 1.5.

Each panel of the figure depicts a scatter plot of the FDP and NDP values result-

ing from 1000 trials of both the adaptive DS procedure, and the non-adaptive

procedure whose performance was quantified in Theorem 1.1. Each trial used a

different (randomly-selected) threshold value to form the support estimate. Pan-

els (a)-(d) correspond to four different values of n: n = 210, 213, 216, and 219,

respectively. In all cases, the signals being estimated have 128 nonzero entries

of amplitude µ, and the SNR is fixed by the selection µ2 = 8. For each value

of n, the measurement budget allocation parameters Bt were chosen so that
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Figure 1.5 The curse of dimensionality and the virtue of adaptivity. Each panel
depicts a scatter plot of FDP and NDP values resulting for non-adaptive sensing (•)
and the adaptive DS procedure (∗). Not only does DS outperform the non-adaptive
method, it exhibits much less dependence on the ambient dimension.

Bt+1 = 0.75Bt for t = 1, . . . , T − 2, B1 = BT , and
∑T

t=1Bt = n. Comparing the

results across panels, we see that the error performance of the non-adaptive pro-

cedure degrades significantly as a function of the ambient dimension, while the

error performance of DS is largely unchanged across 9 orders of magnitude. This

demonstrates the effectiveness of DS for acquiring high-precision observations

primarily at the signal locations of interest.

The analysis of the DS procedure relies inherently upon two key ideas pertain-

ing to the action of the refinement step(s) at each iteration. First, for any iteration

of the procedure, observations collected at locations where no signal component

is present will be independent samples of a zero-mean Gaussian noise process.

Despite the fact that the variance of the measured noise will depend on the allo-

cation of sensing resources, the symmetry of the Gaussian distribution ensures

that the value obtained for each such observation will be (independently) posi-

tive with probability 1/2. This notion can be made formal by a straightforward

application of Hoeffding’s inequality.
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Lemma 1.1. Let {yj}mj=1
iid∼ N (0, σ2). For any 0 < ϵ < 1/2, the number of yj

exceeding zero satisfies(
1

2
− ϵ

)
m ≤

∣∣∣∣{j ∈ {1, 2, . . . ,m} : yj > 0

}∣∣∣∣ ≤ (1

2
+ ϵ

)
m, (1.53)

with probability at least 1− 2 exp (−2mϵ2).

In other words, each refinement step will eliminate about half of the (remain-

ing) locations at which no signal component is present with high probability.

The second key idea is that the simple refinement step will not incorrectly

eliminate too many of the locations corresponding to nonzero signal components

from future consideration. A formal statement of this result, which is fundamen-

tally a statement about the tails of the Binomial distribution, is given in the

following lemma [25]. The proof is repeated here for completeness.

Lemma 1.2. Let {yj}mj=1
iid∼ N (µ, σ2) with σ > 0 and µ > 2σ. Let

δ =
σ

µ
√
2π
, (1.54)

and note that δ < 0.2, by assumption. Then,

(1− δ)m ≤
∣∣∣∣{j ∈ {1, 2, . . . ,m} : yj > 0

}∣∣∣∣ ≤ m, (1.55)

with probability at least

1− exp

(
− µm

4σ
√
2π

)
. (1.56)

Proof. Let q = Pr(yj > 0). Using a standard bound on the tail of the Gaussian

distribution, we have

1− q ≤ σ

µ
√
2π

exp

(
− µ2

2σ2

)
. (1.57)

Next, we employ the Binomial tail bound from [27]: for any 0 < b <

E[
∑m

j=1 1{yj>0}] = mq,

Pr

 m∑
j=1

1{yj>0} ≤ b

 ≤
(
m−mq

m− b

)m−b (mq
b

)b
. (1.58)
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Note that δ > 1− q (or equivalently, 1− δ < q), so we can apply the Binomial

tail bound to the sum
∑m

j=1 1{yj>0} with b = (1− δ)m to obtain

Pr

 m∑
j=1

1{yj>0} ≤ (1− δ)m

 ≤
(
1− q

δ

)δm(
q

1− δ

)(1−δ)m

(1.59)

≤ exp

(
−µ

2δm

2σ2

)(
1

1− δ

)(1−δ)m

. (1.60)

Now, to establish the stated result, it suffices to show that

exp

(
−µ

2δm

2σ2

)(
1

1− δ

)(1−δ)m

≤ exp

(
− µm

4σ
√
2π

)
. (1.61)

Taking logarithms and dividing through by δm, the condition to establish

becomes

− µ2

2σ2
+

(
1− δ

δ

)
log

(
1

1− δ

)
≤ − µ

4δσ
√
2π

= − µ2

4σ2
, (1.62)

where the last equality follows from the definition of δ. The bound holds provided

µ ≥ 2σ, since 0 < δ < 1 and(
1− δ

δ

)
log

(
1

1− δ

)
≤ 1 (1.63)

for δ ∈ (0, 1).

Overall, the analysis of the DS procedure entails the repeated application

of these two lemmas across iterations of the procedure. Note that the result

in Lemma 1.1 is independent of the noise power, while the parameter δ in

Lemma 1.2 is a function of both the signal amplitude and the observation noise

variance. The latter is a function of how the sensing resources are allocated to

each iteration and how many locations are being measured in that step. In other

words, statistical dependencies are present across iterations with this procedure,

as in the case of the Bayesian methods described above. However, unlike in the

Bayesian methods, here the dependencies can be tolerated in a straight-forward

manner by conditioning on the output of the previous iterations of the procedure.

Rather than presenting the full details of the proof here, we instead provide a

short sketch of the general idea. To clarify the exposition, we will find it useful

to fix some additional notation. First, we let St = |S ∩ It| be the number of

locations corresponding to nonzero signal components that are to be observed in

step t. Similarly, let Nt = |Sc ∩ It| = |It| − St denote the number of remaining

locations that are to be measured in the (t)-th iteration. Let σ1 =
√

|I1|/B1

denote the standard deviation of the observation noise in the first iteration, and

let δ1 be the corresponding quantity from Lemma 1.2 described in terms of the
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quantity σ1. Notice that since the quantity |I1| is fixed and known, the quantities

σ1 and δ1 are deterministic.

Employing Lemmas 1.1 and 1.2, we determine that the result of the refinement

step in the first iteration is that for any 0 < ϵ < 1/2, the bounds (1− δ1)S1 ≤
S2 ≤ S1 and (1/2− ϵ)N1 ≤ N2 ≤ (1/2 + ϵ)N1 hold simultaneously, except in an

event of probability no greater than

2 exp (−2N1ϵ
2) + exp

(
− µS1

4σ1
√
2π

)
. (1.64)

To evaluate the outcome of the second iteration, we condition on the event

that the bounds on S2 and N2 stated above hold. In this case, we can obtain

bounds on the quantity I2 = S2 +N2, which in turn imply an upper bound

on the variance of the observation noise in the second iteration. Let σ2 denote

such a bound, and δ2 its corresponding quantity from Lemma 1.2. Following

the second iteration step, we have that the bounds (1− δ1)(1− δ2)S1 ≤ S3 ≤ S1

and (1/2− ϵ)2N1 ≤ N3 ≤ (1/2 + ϵ)2N1 hold simultaneously, except in an event

of probability no greater than

2 exp (−2N1ϵ
2) + exp

(
− µS1

4σ1
√
2π

)
+ (1.65)

2 exp (−2(1− ϵ)N1ϵ
2) + exp

(
−µ(1− δ1)S1

4σ2
√
2π

)
. (1.66)

The analysis proceeds in this fashion, by iterated applications of Lemmas 1.1

and 1.2 conditioned on the outcome of all previous refinement steps. The end

result is a statement quantifying the probability that the bounds
∏T−1

t=1 (1−
δt)S1 ≤ ST ≤ S1 and (1/2− ϵ)T−1N1 ≤ Ns ≤ (1/2 + ϵ)T−1N1 hold simultane-

ously following the refinement step in the (T − 1)-st iteration, prior to the (T )-th

observation step. It follows that the final testing problem is equivalent in struc-

ture to a general testing problem of the form considered in Section 1.1.1, but with

a different effective observation noise variance. The final portion of the proof of

Theorem 1.2 entails a careful balancing between the design of the resource allo-

cation strategy, the number of observation steps T , and the specification of the

parameter ϵ. The goal is to ensure that as n→ ∞ the stated bounds on ST and

NT are valid with probability tending to one, the fraction of signal components

missed throughout the refinement process tends to zero, and the effective vari-

ance of the observation noise for the final set of observations is small enough to

enable the successful testing of signals with very weak features. The full details

can be found in [25].

1.3.3 Distillation in Compressed Sensing

While the results above demonstrate that adaptivity in sampling can provide a

tremendous improvement in effective measurement SNR in certain sparse recov-

ery problems, the benefits of adaptivity are somewhat less clear with respect



30 Chapter 1. Adaptive Sensing for Sparse Recovery

to the other problem parameters. In particular, the comparison outlined above

was made on the basis that each procedure was afforded the same measurement

budget, as quantified by a global quantity having a natural interpretation in the

context of a total sample budget or a total time constraint. Another basis for

comparison would be the total number of measurements collected with each pro-

cedure. In the non-adaptive method in Section 1.3.1, a total of n measurements

were collected (one per signal component). In contrast, the number of measure-

ments obtained via the DS procedure is necessarily larger, since each component

is directly measured at least once, and some components may be measured up

to a total of T times—once for each iteration of the procedure. Strictly speak-

ing, the total number of measurements collected during the DS procedure is a

random quantity which depends implicitly on the outcome of the refinements at

each step, which in turn are functions of the noisy measurements. However, our

high-level intuition regarding the behavior of the procedure allows us to make

some illustrative approximations. Recall that each refinement step eliminates (on

average) about half of the locations at which no signal component is present. Fur-

ther, under the sparsity level assumed in our analysis, the signals being observed

are vanishingly sparse—that is, the fraction of locations of x corresponding to

non-zero components tends to zero as n→ ∞. Thus, for large n, the number of

measurements collected in the t-th step of the DS procedure is approximately

given by n · 2−(t−1), which implies (upon summing over t) that the DS procedure

requires on the order of 2n total measurements.

By this analysis, the SNR benefits of adaptivity come at the expense of a

(modest) relative increase in the number of measurements collected. Motivated

by this comparison, it is natural to ask whether the distilled sensing approach

might also be extended to the so-called underdetermined observation settings,

such as those found in standard compressed sensing (CS) problems. In addi-

tion, and perhaps more importantly, can an analysis framework similar to that

employed for DS be used to obtain performance guarantees for adaptive CS pro-

cedures? We will address these questions here, beginning with a discussion of

how the DS procedure might be applied in CS settings.

At a high level, the primary implementation differences relative to the original

DS procedure result from the change in observation model. Recall that, for ρt,j >

0, the observation model (1.49) from the previous section could alternatively be

written as

yt,j = ρ
1/2
t,j xj + et,j , j = 1, 2, . . . , n, t = 1, 2, . . . , T, (1.67)

subject to a global constraint on
∑

t,j ρt,j . Under this alternative formulation,

the overall sampling process can be effectively described using the matrix-vector

formulation y = Ax+ e where A is a matrix whose entries are either zero (at

times and locations where no measurements were obtained) or equal to some

particular ρ
1/2
t,j . The first point we address relates to the specification of the

sampling or measurement budget. In this setting, we can interpret our budget of

measurement resources in terms of the matrix A, in a natural way. Recall that in
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our original formulation, the constraint was imposed on the quantity
∑

t,j ρt,j .

Under the matrix-vector formulation, this translates directly to a constraint on

the sum of the squared entries of A. Thus, we can generalize the measurement

budget constraint to the current setting by imposing a condition on the Frobenius

norm of A. To account for the possibly random nature of the sensing matrix (as

in traditional CS applications), we impose the constraint in expectation:

E
[
∥A∥2F

]
= E

∑
t,j

A2
t,j

 ≤ B(n). (1.68)

Note that, since the random matrices utilized in standard CS settings typically

are constructed to have unit-norm columns, they satisfy this constraint when

B(n) = n.

The second point results from the fact that each observation step will now

comprise a number of noisy projection samples of x. This gives rise to another

set of algorithmic parameters to specify how many measurements are obtained

in each step, and these will inherently depend on the sparsity of the signal being

acquired. In general, we will denote bymt the number of rows in the measurement

matrix utilized in step t.

The final point to address in this setting pertains to the refinement step. In

the original DS formulation, because the measurement process obtained direct

samples of the signal components plus independent Gaussian noises, the sim-

ple one-sided threshold test was a natural choice. Here the problem is slightly

more complicated. Fundamentally the goal is the same—to process the current

observations in order to accurately determine promising locations to measure in

subsequent steps. However in the current setting, the decisions must be made

using (on average) much less than one measurement per location. In this con-

text, each refinement decision can itself be thought of as a coarse-grained model

selection task.

We will discuss one instance of this Compressive Distilled Sensing (CDS) pro-

cedure, corresponding to particular choices of the algorithm parameters and

refinement strategy. Namely, for each step, indexed by t = 1, 2, . . . , T , we will

obtain measurements using an mt × n sampling matrix At constructed as fol-

lows. For u = 1, 2, . . . ,mt and v ∈ It, the (u, v)-th entry of At is drawn inde-

pendently from the distribution N (0, τt/mt) where τt = Bt/|It|. The entries of

At are zero otherwise. Notice that this choice automatically guarantees that the

overall measurement budget constraint E
[
∥A∥2F

]
≤ B(n) is satisfied. The refine-

ment at each step is performed by coordinate-wise thresholding of the crude

estimate x̂t = AT
t yt. Specifically, the set It+1 of locations to subsequently con-

sider is obtained as the subset of It corresponding to locations at which x̂t is

positive. This approach is outlined in Algorithm 1.2.

The final support estimate is obtained by applying the Least Absolute Shrink-

age and Selection Operator (LASSO) to the distilled observations. Namely, for
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some λ > 0, we obtain the estimate

x̃ = arg min
z∈Rn

∥yT −AT z∥22 + λ∥z∥1, (1.69)

and from this, the support estimate ŜDS = {j ∈ IT : x̃j > 0} is constructed. The

following theorem describes the error performance of this support estimator

obtained using the CDS adaptive compressive sampling procedure. The result

follows from iterated application of Lemmas 1 and 2 in [28], which are analogous

to Lemmas 1.1 and 1.2 here, as well as the results in [29] which describe the

model selection performance of the LASSO.

Theorem 1.3. Let x ∈ Rn be a vector having at most k(n) = n1−β nonzero

entries for some fixed β ∈ (0, 1), and suppose that every nonzero entry of x has

the same value µ = µ(n) > 0. Sample x using the compressive distilled sensing

procedure described above withr T = T (n) = max{⌈log2 log n⌉, 0}+ 2 measurement steps,r measurement budget allocation {Bt}Tt=1 satisfying
∑T

t=1Bt ≤ n, and for which

– Bt+1/Bt ≥ δ > 1/2, and

– B1 = c1n and BT = cT n for some c1, cT ∈ (0, 1).

There exist constants c, c′, c′′ > 0 and λ = O(1) such that if µ ≥ c
√
log log log n

and the number of measurements collected satisfies mt = c′ · k · log log log n for

t = 1, . . . , T − 1 and mT = c′′ · k · log n, then the support estimate ŜDS obtained

as described above satisfies

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0, (1.70)

as n→ ∞.

A few comments are in order regarding results of Theorems 1.2 and Theo-

rem 1.3. First, while Theorem 1.2 guaranteed recovery provided only that µ(n)

be a growing function of n, the result in Theorem 1.3 is slightly more restric-

tive, requiring that µ(n) grow like
√
log log log n. Even so, this still represents a

dramatic improvement relative to the non-adaptive testing case in Section 1.3.1.

Second, we note that Theorem 1.3 actually requires that the signal components

have the same amplitudes (or, more precisely, that their amplitudes be within

a constant multiple of each other), whereas the result in Theorem 1.2 placed

no restrictions on the values of the signal amplitudes relative to each other. In

essence these two points arise from the choice of refinement procedure. Here,

the threshold tests are no longer statistically independent as they were in the

original DS formulation, and the methods employed to tolerate this dependence

give rise to these subtle differences.

The effectiveness of CDS can also be observed in finite sample regimes. Here,

we examine (by experiment) the performance of CDS relative to a non-adaptive

compressed sensing that utilizes a random measurement matrix with i.i.d. zero-
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Algorithm 1.2 (Compressive distilled sensing).

Input:

Number of observation steps T

Measurement allocation sequence {mt}Tt=1

Resource allocation sequence {Bt}Tt=1 satisfying
∑T

t=1Bt ≤ B(n)

Initialize:

Initial index set: I1 = {1, 2, . . . , n}

Distillation:

For t = 1 to T

Construct mt × n measurement matrix:

At(u, v) ∼ N
(
0, Bt

mt|It|

)
, u = 1, 2, . . . ,mt, v ∈ It

At(u, v) = 0, u = 1, 2, . . . ,mt, v ∈ Ic
t

Observe: yt = Atx+ et
Compute: x̂t = AT

t yt
Refine: It+1 = {i ∈ It : x̂t,i > 0}

End for

Output:

Index sets {It}Tt=1

Distilled observations {yt, At}Tt=1

mean Gaussian entries. For both cases, the support estimators we consider are

constructed as the positive components of the LASSO estimate that is obtained

using the corresponding adaptive or non-adaptive measurements. Our applica-

tion of the CDS recovery procedure differs slightly from the conditions of Theo-

rem 1.3, in that we apply the LASSO to all of the adaptively collected measure-

ments.

The results of the comparison are depicted in Figure 1.6. Each panel of the

figure shows a scatter plot of the FDP and NDP values resulting from 1000 trials

of both the CDS procedure and the non-adaptive sensing approach, each using a

different randomly selected LASSO regularization parameter. For each trial, the

unknown signals x ∈ Rn were constructed to have 128 nonzero entries of uniform

(positive) amplitude µ, and the SNR is fixed by the selection µ2 = 12. Panels

(a)-(d) correspond to n = 213, 214, 215, and 216 respectively, and the number

of measurements in all cases was m = 212. The measurement budget allocation

parameters for CDS, Bt, were chosen so that Bt+1 = 0.75Bt for j = 1, . . . , T − 2,

B1 = BT , and
∑T

t=1Bt = n, where n is the ambient signal dimension in each

case. Measurement allocation parameters mt were chosen so that ⌊m/3⌋ = 1365
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Figure 1.6 Adaptivity in compressed sensing. Each panel depicts a scatter plot of FDP
and NDP values resulting for non-adaptive CS (•) and the adaptive CDS procedure
(∗).

measurements were utilized for the last step of the procedure, and the remaining

⌊2m/3⌋measurements were equally allocated to the first T − 1 observation steps.

Simulations were performed using theGradient Projection for Sparse Reconstruc-

tion (GPSR) software [30].

Comparing the results across all panels of Figure 1.6, we see that CDS exhibits

much less dependence on the ambient dimension than does the non-adaptive pro-

cedure. In particular, note that the performance of the CDS procedure remains

relatively unchanged across four orders of magnitude of the ambient dimension,

while the performance of the non-adaptive procedure degrades markedly with

increasing dimension. As with the examples for DS above, we see that CDS is

an effective approach to mitigate the “curse of dimensionality” here as well.

In conclusion, we note that the result of Theorem 1.3 has successfully

addressed our initial question, at least in part. We have shown that in some

special settings, the CDS procedure can achieve similar performance to the

DS procedure but using many fewer total measurements. In particular, the

total number of measurements required to obtain the result in Theorem 1.3 is
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m = O(k · log log log n · log log n+ k log n) = O(k log n), while the result of The-

orem 1.2 required O(n) total measurements. The discussion in this section

demonstrates that it is possible to obtain the benefits of both adaptive sampling

and compressed sensing. This is a significant step toward a full understanding

of the benefits of adaptivity in CS.

1.4 Related Work and Suggestions for Further Reading

Adaptive sensing methods for high-dimensional inference problems are becom-

ing increasingly common in many modern applications of interest, primarily due

to the continuing tremendous growth of our acquisition, storage, and computa-

tional abilities. For instance, multiple testing and denoising procedures are an

integral component of many modern bioinformatics applications (see [31] and

the references therein), and sequential acquisition techniques similar in spirit

to those discussed here are becoming quite popular in this domain. In partic-

ular, two stage testing approaches in gene association and expression studies

were examined in [32, 33, 34]. Those works described procedures where a large

number of genes is initially tested to identify a promising subset, which is then

examined more closely in a second stage. Extensions to multi-stage approaches

were discussed in [35]. Two-stage sequential sampling techniques have also been

examined recently in the signal processing literature. In [36], two-stage target

detection procedures were examined, and a follow-on work examined a Bayesian

approach for incorporating prior information into such two-step detection pro-

cedures [37].

The problem of target detection and localization from sequential compressive

measurements was recently examined in [38]. That work examined a multi-step

binary bisection procedure to identify signal components from noisy projection

measurements, and provided bounds for its sample complexity. Similar adaptive

compressive sensing techniques based on binary bisection were examined in [39].

In [40], an adaptive compressive sampling method for acquiring wavelet-sparse

signals was proposed. Leveraging the inherent tree structure often present in the

wavelet decompositions of natural images, that work discussed a procedure where

the sensing action is guided by the presence (or absence) of significant features

at a given scale to determine which coefficients to acquire at finer scales.

Finally, we note that sequential experimental design continues to be popular

in other fields as well, such as in computer vision and machine learning. We refer

the reader to the survey article [41] as well as [42, 43] and the references therein

for further information on active vision and active learning.
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