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ABSTRACT

Compressive sampling (CS), orCompressed Sensing, has generated
a tremendous amount of excitement in the signal processing com-
munity. Compressive sampling, which involves non-traditional sam-
ples in the form of randomized projections, can capture most of the
salient information in a signal with a relatively small number of sam-
ples, often far fewer samples than required using traditional sam-
pling schemes. Adaptive sampling (AS), also calledActive Learn-
ing, uses information gleaned from previous observations (e.g., feed-
back) to focus the sampling process. Theoretical and experimen-
tal results have shown that adaptive sampling can dramatically out-
perform conventional (non-adaptive) sampling schemes. This paper
compares the theoretical performance of compressive and adaptive
sampling in noisy conditions, and it is shown that for certain classes
of piecewise constant signals and high SNR regimes both CS and
AS are near-optimal. This result is remarkable since it is the first ev-
idence that shows that compressive sampling, which is non-adaptive,
cannot be significantly outperformed by any other method (including
adaptive sampling procedures), even in presence of noise.

1. INTRODUCTION

Compressive sampling (CS), also calledCompressed Sensing, has
generated a tremendous amount of excitement in the signal process-
ing community. CS involves taking non-traditional samples in the
form of randomized projections, such as random binary, Gaussian,
or Fourier projection vectors. Specifically, the samples of a signal
vectorf ∈ Rn are inner products of the form

yj = φT (j)f , j = 1, . . . , k,

where{φ(j)} are random vectors (e.g., normalizedn-vectors com-
prised of i.i.d. binary or Gaussian random variables). Recent theo-
retical results indicate that extremely accurate signal reconstructions
are possible from a relatively small number of noiseless random pro-
jections [1, 2]. We extended these results to show that many signals
can be very accurately recovered from random projections contami-
nated with noise [3], in many cases much more accurately than pos-
sible using conventional sampling methods. More recently, similar
results were confirmed using alternative analysis techniques [4]. De-
spite these encouraging results, there seems to be a significant gap
between the performance bounds for the noiseless and noisy sce-
narios. This yields pessimistic bounds in regimes where the SNR is
high. Also, it is not known whether or not CS, which is non-adaptive,
performs optimally in noisy situations.

Adaptive sampling, also known asActive Learning, involves se-
quential sampling schemes that use information gleaned from previ-
ous observations to guide the sampling process. Several empirical
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and theoretical studies have shown that adaptively selecting samples
in order to learn a target function can outperform conventional sam-
pling schemes, for example see [5, 6]. In particular, it was shown that
adaptive sampling can recover certain classes of one-dimensional
piecewise constant functions in noise with an error that decays ex-
ponentially fast in the number of samples taken [7]. This is signif-
icantly faster than conventional (uniform) sampling schemes whose
errors converge at a much slower polynomial rate, with or without
noise present. Similarly encouraging results have been obtained for
the recovery of multidimensional piecewise constant functions [8, 9],
in which case AS achieves the optimal minimax-rate among all pos-
sible sampling schemes [9].

The optimality of adaptive sampling for recovering piecewise
constant functions from noisy samples suggests an intriguing ques-
tion. Can non-adaptive CS perform comparatively as well as adap-
tive sampling in such situations? This paper provides an affirmative
answer to this question. This result is remarkable since it is the first
theoretical evidence that shows that compressive sampling, which
is non-adaptive, cannot be significantly outperformed by any other
method (including every possible adaptive sampling procedure), at
least in high SNR regimes. Our results hold only for certain classes
of piecewise constant functions, but this is a quite rich family of sig-
nals that has many interesting potential applications, particularly in
image processing. These results provide some understanding about
the gap between existing error bounds for CS in the noiseless [1, 2]
and noisy scenarios [3, 4]. Our results may also serve as a start-
ing point for investigations of the optimality of CS in more general
signal spaces.

2. COMPRESSIVE AND ADAPTIVE SAMPLING

We focus our attention on classes of piecewise constant functions
in one or more dimensions. For illustration, consider the piecewise
constant image depicted in Fig. 1 below. This image belongs to the
so-called “boundary fragment” class [10], also called the “horizon”
image class [11]. It consists of two constant regions (valued+1
and−1 for our purposes) separated by a one-dimensional curve with
functionalform y = g(x); i.e., the vertical coordinate of the bound-
ary,y, is determined by a smooth function,g, of the horizontal coor-
dinate,x.

Our primary concern is how well one can recover the original
image in Fig. 1(a) from noisy samples, such as the noisy pixel sam-
ples depicted in Fig. 1(b). We assume that the boundary function
g is Lipschitz smooth;i.e., |g(x1) − g(x2)| ≤ β|x1 − x2|, with
a Lipschitz constantβ > 0. In this case it is known that standard
wavelet denoising methods can reconstruct the image fromk uni-
formly spaced and noisy pixel samples with a mean square error of
O(k−1/2), and that no estimation procedure based on these samples
can perform significantly better (k−1/2 is the minimax rate) [10].
However, if one allows the possibility of taking pixel samples in
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Fig. 1. Example of an 1024× 1024 pixel image from the boundary
fragment class (image (a)) [10]; and a 32 × 32 noisy pixel samples
with σ = 0.15 (image (b)).

an adaptive fashion, sequentially monitoring the sample values and
carefully “focusing-in” on the boundary region which dominates the
overall error, then it is possible to achieve a rate ofO(k−1), which
is the best possible error rate among all adaptive and non-adaptive
sampling schemes and estimation procedures [8, 9]. In other words,
adaptive sampling can produce vastly superior image reconstruc-
tions with far fewer samples than conventional uniform sampling
schemes, simply because most of the samples arewasteful; in con-
ventional schemes most samples are far away from the boundary.

The main result of this paper, stated formally in the theorem be-
low, shows that non-adaptive CS can have a performance that is sim-
ilar to the one of adaptive sampling. Before stating the theorem we
define the following piecewise constant function classes. First con-
sider a space of one-dimensionaln-point signalsf = (f1, . . . , fn),

F1 =
�
f : fi = −1{i≤θ} + 1{i>θ}, θ ∈ {0, . . . , n}

	
,

where1{·} denotes the indicator function. The vectors inF1 corre-
spond to step functions. For two-dimensional images, consider the
following class ofn× n arraysf

F2 =
�
f : fi,j = 21{j/n≤g(i/n)} − 1, g ∈ Lip(β)

	
where Lip(β) denotes the space of one-dimensional Lipschitz
(boundary) functions on[0, 1] (i.e., functions satisfying|g(x) −
g(y)| ≤ β|x − y|). Higher dimensional analogs ofF2 are con-
structed in an analogous fashion fromd − 1 dimensional Lipschitz
boundary functions (e.g., see [10]).

Theorem 1. Suppose thatf ∈ Fd for some integerd ≥ 1, and
assume that we takek ≤ nd samples of the form

yj = φT (j)f + wj , j = 1, . . . , k ,

where {φ(j)} are Rademacher random vectors (n-vectors com-
prised of i.i.d. random variables taking values±1/

√
n with equal

probability), and{wj} are i.i.d. Gaussian random variables with
zero mean and varianceσ2, and independent of{φ(j)}. A function
estimatebfk can be derived from{yj , φ(j)} satisfying the following
mean square error bounds.

E
h
n−d‖f − bfk‖

2
i
≤
�

4n [α(n, σ2)]k , d = 1

C(n, β, σ2) k−1/(d−1) , d > 1
,

where0 < α(n, σ2) < 1 (see Section 4 for precise value), and
0 < C(n, β, σ2) ≤ 6(β + 1)(1 + nσ2) log n , for n ≥ 4.

Note that in the one-dimensional setting, the error bound de-
cays exponentially fast with the number of samples, far faster than
thek−1 rate one usually encounters in parametric estimation (which
typically considers only non-adaptive sampling). As far as the opti-
mality of the error decay rates is concerned, first consider the one-
dimensional case. We know from [7] that the exponential decay
of the expected error in the number of samplesk is the best one
can hope for. This claim comes from results in information theory:
estimation ofθ, the step location, can be viewed as a communica-
tion problem where we want transmitθ through an additive white
Gaussian noise channel. Due to the noise in the channel the probabil-
ity of error can only decay exponentially with the number of channel
transmission (equivalent to the number of samples or random projec-
tions). However, it may be possible to improve the value ofα gov-
erning the exponential decay in our bound, even in the non-adaptive
scenario. For the multi-dimensional setting the bound of the theorem
is dramatically different than the bounds obtained using estimation-
theoretic techniques, like in [3], where the mean squared error is
bounded by a constant (independent ofk andn) timesk−1/d log n.
The new bound is equal to a constant timesk−1/(d−1) log n for small
values ofσ2 (i.e.,σ2 ∼ 1/n). The above theorem, together with the
results in [7, 8], indicates that in the high SNR regime the perfor-
mance of CS is comparable with the performance of the best adaptive
sampling technique. Moreover, it is known that thek−1/(d−1) decay
rate is the minimax optimal rate [8, 9], implying that no other adap-
tive or non-adaptive sampling scheme and estimation procedure can
significantly improve on AS or CS under these conditions. Further-
more, in the next section we describe a relatively simple Bayesian
procedure for constructingbfk from the noisy compressive samples.

3. SIGNAL RECONSTRUCTION ALGORITHM

First we consider the reconstruction problem for the one-
dimensional classF1. Each elementf ∈ F1 is parameterized by
θ ∈ {0, . . . , n}, that isf ≡ f(θ). The basic reconstruction algo-
rithm used is the maximum likelihood estimator ofθ. For analysis
purposes it is convenient to formulate the algorithm in a Bayesian
way: Letp(j) ≡ {p0(j), . . . , pn(j)} parameterize the posterior af-
ter j measurements, that is

Pr(θ = l|y1, . . . , yj , φ(1), . . . φ(j)) ≡ pl(j).

We start with a uniform prior onθ, that is,pl(0) = 1/(n + 1) for
all l ∈ {0, . . . , n}. Whenever we get a new measurement we update
the posterior using Bayes rule. This amounts simply to multiplica-
tion by the likelihood of the measurement (because{wi}j

i=1 are all
independent) followed by a normalization, therefore

pl(j + 1) =

pl(j) exp
�
− 1

2σ2
u

�
yj+1 − φT (j + 1)f(l)

��2

Pn
m=0 pm(j) exp

�
− 1

2σ2
u

�
yj+1 − φT (j + 1)f(m)

��2 ,

whereσ2
u = 2σ2 for reasons stated in the next section. We consider

the maximuma posteriori(MAP) estimator

bθk ≡ arg max
l

pl(k).

Note that the outcome of the estimator does not depend onσ2
u as

long asσ2
u > 0. Finally our estimate off is simplybfk ≡ f(bθk).

For the multidimensional classesFd, d > 1, it suffices to note
that the multidimensional signals of interest can be interpreted as a



collection of one-dimensional step function signals from the class
F1. For example, in the two-dimensional case, such as that depicted
in Fig. 1, each column of the image matrix is a one-dimensional sig-
nal inF1. Thus, we can apply the one-dimensional CS and recon-
struction process on image columns separately (although this proce-
dure might not be entirely adequate if the total number of samples
is very small,i.e., k � n). Details of the method are provided
in the proof below. Conversion of the multi-dimensional problem
into a series of one-dimensional problems is a standard technique in
the analysis of signal models in this class [10, 11]. Note that the
samples are still completely non-adaptive, however this CS scheme
differs slightly from other CS proposals in multiple dimensions in
which the random projections are taken over the entire array [1, 2, 3],
rather than column by column.

4. PROOF OF THEOREM 1

To begin, we consider the one-dimensional classF1. The proof of
Theorem 1 employs an analysis technique similar in spirit to one
used in the study of adaptive sampling inF1 [7]. First define

Mθ(j) =
1− pθ(j)

pθ(j)
, andNθ(j + 1) =

Mθ(j + 1)

Mθ(j)
.

Noticing that
Pn

l=0 pl(j) = 1 we have

Pr(θ̂(k) 6= θ) ≤ Pr

�
pθ(k) <

1

2

�
= Pr(Mθ(k) > 1)

≤ E[Mθ(k)],

where the last inequality follows from Markov inequality. The de-
finition of Mθ(j) is chosen to get more leverage out of Markov’s
inequality (akin to Chernoff bounding techniques). Now we proceed
by conditioning

E[Mθ(k)] = E[Mθ(k − 1)Nθ(k)]

= E [Mθ(k − 1)E[Nθ(k)|p(k − 1)]]

...

= Mθ(0)E
�
E[Nθ(1)|p(0)]× · · ·

· · · × E[Nθ(k)|p(k − 1)]
�

≤ Mθ(0)

�
max

j∈{0,...,k−1}
max
p(j)

E[Nθ(j + 1)|p(j)]

�k

.

The remainder of the proof entails upper boundingE[Nθ(j +
1)|p(j)]. Plugging in the definitions we get

E[Nθ(j + 1)|p(j)]

=
1

1− pθ(j)

X
m6=θ

pm(j)E

24e
− 1

2σ2
u
(yj+1−φT (j+1)f(m))2

e
− 1

2σ2
u
(yj+1−φT (j+1)f(θ))2

35 .

To evaluate the above summation we consider two separate cases: (i)
m < θ; (ii) m > θ. After some tedious but straightforward algebra
we conclude that

E

24e
− 1

2σ2
u
(yj+1−φT (j+1)f(m))2

e
− 1

2σ2
u
(yj+1−φT (j+1)f(θ))2

35 =

E

"
exp

�
− 2

� 1

σ2
u

− σ2

σ4
u

�� X
t: m<t≤θ, or

θ<t≤m

φt(j + 1)
�2
�#

.

The above expression is minimized whenσ2
u = 2σ2, justifying our

choice forσ2
u. Although it is not easy to compute the above expecta-

tions for general values ofm andθ, it is relatively easy to conclude
that those are largest when|m− θ| = 1 or |m− θ| = 2, therefore

E

24e
− 1

2σ2
u
(yj+1−φT (j+1)f(m))2

e
− 1

2σ2
u
(yj+1−φT (j+1)f(θ))2

35
≤ max

�
e
− 1

2nσ2 ,
1

2
+

1

2
e
− 2

nσ2

�
≡ α(n, σ2).

ConsequentlyE[Nθ(j + 1)|p(j)] ≤ α(n, σ2) and therefore

Pr(θ̂(k) 6= θ) ≤ n [α(n, σ2)]k.

A bound on the expected error then follows trivially, by considering
a worst case scenario whenbθ 6= θ,

E
h
n−1‖f̂k − f‖2

i
≤ 4n [α(n, σ2)]k.

If instead of compressive samples we used carefully chosen
adaptive point samples (using ideas similar to the ones in [7])
then we would get bounds with the same structure, but instead of
α(n, σ2) the exponent would be1/2 + (1/2) exp(−1/(2σ2)), in-
dependent ofn.

For the multidimensional classesFd, d > 1, again note that
the multidimensional signals of interest can be interpreted as a col-
lection of one-dimensional step function signals from the classF1.
Furthermore, we know from standard approximation theory that any
Lipschitz function can be reasonably approximated by a piecewise
constant function. These two observations along with the results
for the one-dimensional case suffice to prove the general results for
d > 1.

Let us first consider the two-dimensional case. LethL be the
best piecewise constant fit tog on L equal-width intervals. Then
|g − hL| ≤ βL−1 by the Lipschitz assumption. We can estimate
the levels ofhL using the one-dimensional CS method described
previously, considering projections over image columns. We will
considerL columns of the image, therefore usingk/L samples per
column. Putting all these fact together yields the bound

E
h
n−2‖f − bfk‖

2
i
≤ β

1

L
+ 4n[α(n, σ2)]k/L. (1)

To minimize this bound we simply have to choose

L = k log(α(n, σ2))/ log(β/(−4nk log(α(n, σ2))))

∼ k log(α−1(n, σ2))/ log(nk),

and thereforeE
h
n−2‖f − bfk‖2

i
≤ C(n, β, σ2)k−1, where

C(n, β, σ2) can be computed using the value ofL given above
into the bound (1). The analysis and reasoning in the higher di-
mensional cases is analogous, and one can easily verify that tak-
ing k samples leads to a bound on the reconstruction error of
C(n, σ2, β)k−1/(d−1), where

C(n, σ2, β) = β
log(4nk1/(d−1))

− log α(n, σ2)
+ 1

≤ 6(β + 1)(1 + nσ2) log n . �



(a) Conventional pixel sampling (b) Adaptive pixel sampling
k=1024, MSE=0.1471 k=1024, MSE = 0.0336

(c) Compressive sampling (d) Compressive sampling
k=1024, MSE = 0.0359 k=256, MSE = 0.1431

Fig. 2. Reconstructions of image in Fig. 1(a) based on k noisy sam-
ples with σ = 0.15.

5. EXPERIMENTS

To illustrate the theory and method developed in this paper, we con-
sider the problem of reconstructing the1024× 1024 boundary frag-
ment imagef depicted in Fig. 1(a) from a limited number of noisy
samples. We compare conventional (non-adaptive) pixel sampling,
adaptive pixel sampling, and compressive sampling, with a Gaussian
noise of standard deviationσ = 0.15 added to the samples in each
case (equivalent to the noise level depicted in Fig. 1(b)). In the ex-
perimental results depicted in Fig. 2(a–c) we compare the methods
usingk = 1024 samples in each case. For the conventional pixel
sampling case we subsample the original image on a32 × 32 pixel
lattice and add noise, resulting in the data depicted in Fig. 1(b). To
reconstruct the image from the noisy pixel samples, we simply com-
pute the maximum likelihood estimate in each column, using the fact
that it is know that the noiseless column is one of32 possible step
functions. The resulting reconstruction is shown in Fig. 2(a). In the
adaptive sampling case,128 uniformly spaced columns are selected
and8 adaptive pixel samples are taken in each column based on the
method in [7]. The resulting reconstruction is shown in Fig. 2(b).
Similarly, the compressive sampling is carried out by selecting128
columns and taking8 random projection samples in each column.
The resulting reconstruction is shown in Fig. 2(c). As expected from
our theory, compressive sampling and adaptive pixel sampling per-
form similarly, and both significantly outperform conventional pixel
sampling. In Fig. 2(d) we present the results of compressed sens-
ing using even fewer samples, namely onlyk = 256 random pro-
jections, split among32 uniformly spaced columns and8 random
projections per column. The result is quite impressive since we get
about the same performance as conventional pixel sampling, but with
four times fewer samples.

The results depicted in Fig. 2 are representative of the perfor-

mance comparison of the three methods at different sampling ratesk
and similar noise levels. Notice that the noise level in the simulation
is relatively high, much larger than one might expect based on the
upper bounds given by our theoretical analysis. This shows that our
bounds (for CS in particular) are somewhat loose, and that even bet-
ter performance than they predict can be expected in practice. The
reason for this is may be that our error bounds derive from bounds
on the probability of deciding on the wrong changepoint in each col-
umn, not the expected squared error directly. In practice mistakes in
the decision process often identify changepoints in the near vicinity
of the true changepoint, leading to relatively small square errors.

6. CONCLUSIONS

The theory and method in this paper demonstrate that for certain
classes of piecewise constant signals, compressive sampling is as ef-
fective as adaptive sampling, provided the SNR is sufficiently high.
This is a significant step forward in our understanding of compres-
sive sampling, since previous results only demonstrated the optimal-
ity of compressive sampling in noiseless conditions. The method
of reconstruction employed in our work differs markedly from the
usual reconstruction strategies employed in compressive sampling
(based onl1 minimization techniques). We do not know whether or
not those strategies, in particular the methods that handle noisy sam-
ples proposed in [3, 4], provide the same near-optimal convergence
rates as the Bayesian reconstruction proposed here. Our future work
is aimed at extending the theory and methods developed in this paper
to more general classes of signals.
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