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ABSTRACT desired distortion leveD, how much energy¥ does the sensor net-

. . — . work consume in extracting and delivering relevant information up
The essential taskn nearly all applications of sensor networks is (4 distortionD at a (usually) distant destination.

to extract relevant information about the sensed data and deliver it It is generally recognized that given sufficient prior knowledge

to a desired destination. Theverall goalin the design of sensor 5,4, the sensed data (e.g., statistical/topological characterization of
networks is to execute this task with least consumption of networkio sensor network data homogeneity of the sensor network data
resources. In this regard, the relevant metrics of interest are 1) thgc ) there exist distributed processing and communication schemes
latency (bandwidth) involved in network data acquisition; and 2) thpat have a very favorable E-D tradeoff in the sense fhat, 0
energy-distortion (E-D) tradeoff: given some desired distortio_n levelis,, — oo while E grows at most sub-linearly with the number of

D, how much energyy does the sensor network consume in ex-pogeg(y) in the network (see, e.g., [1, 2, 3, 4]). However, it is not
tracting anq dellverlng re]evant |r1format|on up to d|§tort|Drat & known whether such schemasvaysexist when little or no prior
(usually) distant destination. It is generally recognized that givenq\ledge about the sensed data is available (see, e.g., Section 2).
sufficient prior knowledge about the sensed data, there exist distrib- |, this paper, we propose a distributed matched-source channel
uted processing and communication schemes that have a very fgsmmunication scheme, based in part on recent results in wireless
vorable E-D tradeoff in the sense that™\, 0 asn — oo while £ communications [1, 2, 5] and compressive sampling theory [6, 7, 8],
grows at most sub-linearly with the number of nodegin the net- 5 js universal in the sense that it provides us with a consistent
work. However, it is not known whether such schemes exist WheR.gimation scheme such that grows sub-linearly with, without

little or no prior knowledge about the sensed data is available. 1Raqyiring any prior knowledge about the sensed data. Moreover, this
this paper, we present a distributed matched-source channel COMMpeme naturally integrates the operations of processing and com-
nication scheme _tha_t natt_lrally integrates the operations of ProceSsyynications, thereby reducing the amount of processing and com-
ing and communications in a sensor network and is universal in thg, nications required inside the network and provides us with a sys-
sense that it provides us with a consistent estimation scheme sugliy that often acts less like networks and more like coherent ensem-
that &2 grows sub-linearly with even when little prior knowledge pjeg of sensors, thereby reducing the overhead of network-centric
about the sensed data is assumed. This universality, however, COM&g tions such as routing etc. The added flexibility and universality
at the price of increased latency (bandwidth) and a less favorable B the proposed scheme, however, comes at the price of increased la
D tradeoff and we quantify this price by comparing our scheme tqen ey (handwidth) and a less favorable E-D tradeoff and we quantify
the case when sufficient prior information about the sensed data |§g price by comparing our scheme to the case when sufficient prior

available. information about the sensed data is available.

1. INTRODUCTION 1.1. Problem Formulation

Sensor networking is an emerging technology that promises an um this section, we .formally define the problem considered in t.he
precedented ability to monitor and manipulate the physical world vidaper. In the following sections, we sha_II elabor_ate on t_he technical
a spatially distributed network of small and inexpensive wireless serfetails of t_he proposed scheme. To begin, CO”S'deT awireless sensor
sor nodes that have the ability to self-organize into a well-connectegoert‘n’]"ork withn nodes where each node takes a noisy sample of the

network. Theessential taskn nearly all applications of sensor net-
works is to extract relevant information about the sensed data and =) +wj, j=1,...,n 1)
deliver it to a desired destination. The&erall goalin the design of ) ) ) ) .
sensor networks is to execute this task with least consumption of ne@dw; is assumed to be zero mean, independent and identically dis-

work resources. Consequently, a major challenge in sensor networkibuted (i.i.d) Gaussian measurement noise (in space and time) with

. 5 . . y
ing applications is the development of efficient distributed method¥arianceo,. We can consider this data as a vectoe R™ such

for processing and communication of information from within the thatz = * T wherez™ € R" is the nojseless data vector and
network to a given destination. In this regard, the relevant metric&’ ~ A (0,05 1,). We further assume thatj| < B,j = 1,...,n,
of interest are 1) the latency (bandwidth) involved in network date®" SOme known constarit > 0, which is determined by the sensing

acquisition; and 2) the energy-distortion (E-D) tradeoff: given somd@nge of the sensors. _
Given z, the goal of the sensor network is to compute a re-
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of network-to-destination channel uses, and expected squared err82: The sensor at locatiof multiplies its measurement; with

D=E [% |z - m*||2] , while at the same time consuming minimal (@Wiz to obtainy; = v/E, ¢;;. Moreover[E [|y;|*] <

amount of energy. EAZ0) < Baif j e 8,(7) N Sy(o)s B [l = 22 i

e gizsvrir:]pgiggi?ngi%irst:o facilitate our analysis, we shall make ﬁl;: ﬁyﬁg( )° N S,(p); andE [Jy;2] = 0if j ¢ Su(y). Thus,
J

a:*
: : . . . . < Eoyy :
Al: Each sensor is equipped with a single isotropic antenna. ] = g V7 € Sple)

A2: Letd;, 5 = 1,...,n, be the distance between the sensor at>> All the Sensors coherently transmit ‘h‘?" c_orrespon@}g\gn

locationj and the destination. The destination is assumed to be Cigh an'alog fashion over t_hg network-to-destination AWGN channel,

away from the sensor network so thiat~ - - - ~ d,, ~ d and there- effectively transforming it into an AWGN MAC channel, and the
~eerd, X

fore, the path losses of all sensors are identical. received signal at the destination is glveﬁ by
A3: The sensors communicate with the destination over a narrow-

band Additive White Gaussian Noise (AWGN) wireless channel of o~ e~

bandwidthi¥’ Hz at some carrier frequendy, wheref. > W, and "= Zly] tz = VEk (2_; ‘pm) t 2 )
each channel use is characterized by (real) transmission over a pe- = _ =

riod of ' = 1/2W seconds. = VE,(v+w) + z (3)

A4: z* lies in anm-dimensional subspace &", wherem < n.
That is, let¥ £ {y;}!_, be an orthonormal basis &" and de- wherez ~ N(0,02) is the channel additive white Gaussian noise
note by¢; = T z* the coefficients of:* in this new basis. Then, andw ~ N (0,0%,). O
xz* =" 0;v; (perhaps after re-labeling the indicgs % In essence, the combination®f-S3 corresponds to obtaining at

While A1-A3 are quite self-explanatory and in line with the real- the destination a noisy projection of the data veetanto . Thus,
world scenariosA4 requires a few words of explanation. Indeed, in at the end 0f53, the destination can estimateast = r//E, and
most real-world scenarios, we do not expettto be sparse in any the resulting distortion is given by
basis ofR™. However, it is well known that data collected at nearby
nodes in a dense sensor network is expected to be highly correlated . 2 2 o2
[9] and thus, shall admit aearly sparse representation in a com- D, = E “” - ] = 0w T E, @
pressing basis. The fact that many real-life signals are compressible
is evidenced by the success of familiar compression standards suglhere the first term in the above expression is due to the measure-
as JPEG, MPEG and MP3. Therefore, it is quite reasonable to asaent noise (unaffected b¥f,) and the second term is due to the
sumez™ to becompressiblén some basis aR™. However, to moti-  communication noise that decays B&,. Moreover, since a to-
vate the proposed scheme we shall restrict ourselves in this papertal of n,, nodes transmitted during this distributed projection, each
signals that are completely sparse in some basisg n non-zero  with energy< % the total energy consumed in obtainingt the
coefficients in some transform domain) and shall make the transitiogestination is gi\7en by
from sparse to compressible signals in a future contribution.

£ s (200, ~ 5, ©)

1.2. Distributed Projections of Sensor Network Data

In this section, we develop the basic communication structure of our
proposed scheme. At the heart of our approach is an efficient (diﬁhe
tributed) method of estimating projections of the noiseless sensql,
network data onto any normalized vectoiifi by using only a fixed
amount of energy (independent of. However, before describing
this procedure in detail, we shall define the notion 8parsity Map
Definition 1 (The Sparsity Map)et ¢ € R™ andS, : R" —
P({1,...,n}), whereP(X) means power set ak. We call S,

From (4), it is clear that one way of reducing the distortion of
projection coefficient is to increaser,. If, however, there are
me constraints on the maximum allowablg then the destination
can repeat the above procedure owéndependent channel uses to
obtain {0, }7_, and then calculat® as? = %22:1 U. For a
fixed E,, this procedure would give us the following latendy) @nd
E-D, relations

the sparsity map of if S,(¢) = {j € {1,...,n} : ¢; # 0} and o2
|Sp(q)| is a counting measure &),(q). O D, = o4 + —2 (6)
2 n pE,

Now, let € R", where||¢||” = 1, andv = Y7, ¢,z B~ (0B, @
be the projection oft™ onto p. Using the notion of sparsity map, P o
let us denotgS, ()| = ny. Sincellp|” = 1, we havelp;|* ~ L=p )
l]|?/ny = 1/ny Vi € Sy(p). Then, given anyE, > 0 andz as
in (1), the destination can compute an estin(a?t)aofzv inE ~ FE, 2. MAIN RESULTS
amount of energy, such that[|o — v|*] = o2 + %= , by making
the sensor network sequentially perform the following steps: In this section, using the scheme of distributed projections as a basic
S1: The destination transmits; to the sensor at locatiojy where  building block, we shall derive results for latendy)(and E-D trade-
j =1,...,n. Given the nature of the problem, we can assume thé&ff first under the assumption that the destination has perfect knowl-
downlink (from the destination to the sensor network) to be erroedge of the subspace in whiefi lies and then under the assumption
free. Thus, each sensor receiygsin an error free mannér that the destination has little or no knowledge of the subspace in

which z* lives.

INote that thep;’s can also be made available to the sensors using other

methods and feedback from the destination to the sensorsiisally neces- 2Because ofA2, we can ignore the effect of path loss on the received
sary. See the discussion in Section 3 for more details signal as it would just be a constant uniform attenuatiodgpendent of)




2.1. Signal Reconstruction: Known Subspace Proof: Put(kE,) = m in Theorem 1 and the result follows. ¢

o ” o ) An importantimplication of Theorem 1 is that all-dimensional
'—eEn‘I’ = {¢:i};_, be an orthonormal basis 8" such thatz* = grhonormal bases that span the subspace in wHidies are equiv-
i~ 0i ¢ (perhaps after re-labeling the indicgswhere each co-  gient in terms of the latencyj and E-D tradeoff and thus, for the
eff|C|ent0 |s computed as a projection (inner-product) of the form purposes of reconstruction of, using any one of these bases is as

0i = = >j—1%izj. Then, under the assumption that the 4464 as using any other basis. Generally speaking, however, even
dest|nat|on has perfect knowledge of the subspace in wiiidres,  f the destination knows the basis &f* in which z* is sparse, it is
we have the following latencyl() and E-D relations. highly unlikely that it will know ahead of time which: of the basis

o ) elements give the sparse representatiomn“oénd this is where the
Theorem 1. If the destination knows as well as which elements iversalityof the following scheme comes into play.
1, € U give the sparse representationsdf then (a) There exists an
estimation scheme such thaw?2 > 0, E, > 0, andk (= pm) > . .
m, wherep € N 2.2. Signal Reconstruction: Unknown Subspace

Let us now assume that the destination has little or no knowledge of

- m (02 + mU?) ©9) the subspace in which* lives. As mentioned in Section 2.1, this
v kE, includes the scenario where the destination knows the ba$ of
E ~ (kE,) (10) in which :c*_ is sparse but does not know Which_ of theelements
L = k (11) of that basis to use. In that case, the destination employs state-of-

the-art compression techniques based on random projections of the
data to efficiently summarize the information:n resulting in the

and; (b) if ® is any other orthonormal basis &" such thatz* = following latency () and E-D relations

> mi ¢¢ and the destination knowb as well as which elements

¢i € @ give the sparse representatlonﬁfthen again the results of  Theorem 2. If the subspace dk™ in whichz* lies is not known to

(a) hold. Moreover, (c) 152, < the destination then there exists a const@nt> 0 and an estimation
scheme such that E, > 0, andk € N such thatimlogn) < k <

k:E

m [(mo? (nlogn)
b n (k‘Eo) (12) mlogn
<o () (15)
Sketch of Proof: (c) follows trivially from (a). For (a), the desti- k
nation computesn distributed projections of onto {«;};", over E ~ (kE,) (16)
m independent channel uses. The destination can also repeat this L = k (17)

procedure times, as described in Section 1.2, for each ofithka-

sis elements. Thus, at the endkot= pm projections (and channel  Moreover, (b) In the case of little or no measurement noised e =
uses), the destination has accesmtprolectlon coefflClent$0 } 0, similar results hold with slightly different constafi .

2
such thaft ['6 — 0il ] Sketch of Proof The destination generatédengthn random vec-
estimater™ asz = >, 0,1 and the resultlng distortion is given tors {¢, "_, such that the componenis;, j = 1,...,n, of ¢;
by arei.i.d random variables (independentg) wh|ch take the values
+1//n with equal probability. ThusE [¢;;] = 0 andE [¢};] =
1, 1 ~ 5 1/n. The destination now computésdistributed (random) projec-
E [g Hx - } ) ZE ['01' = 0il } (13) tions of z onto{gbl} , overk independent channel uses. Thus, at
) =t ) the end ofk prOJectlons the destination has access tokthmisy
m <02 4 o ) _m <02 n mUz) (14)  random projections{@; }5_, : m: = ¢Fz* + ¢ w + Zi, where
Y pE, n\""Y kE, Z ~ N (0,02/E,)) of noisy data that lies in am-dimensional
subspace. And since the destination has access to the original ran-
Moreover,E ~ (k E,) andL = k follow trivially from Section 1.2 dom vectors{¢; }}_,, it is easy to see from the theory developed by
and the fact that we are computing a totakggrojections. Haupt and Nowak in [8] that* can be easily reconstructed from
For (b), let® = {¢;}"_, be any other orthonormal basiskf  {1;}%_, such that the resulting distortion behaves like
(known to the destination) such that = >~ | n:¢: (perhaps after

!
I

re-IgbeIing the indiceg), where eacilg coefficieny;, is computed gs D - E F Hf - Hz] (18)
an inner product of the form; = ¢; =™ = >77_, ¢i;zj. Then, if n

the destination wants to reconstructby projectinge onto{¢; };~ , mlogn

using the above procedure, it is easy to see that the above results < G < k ) ) (19)
would still hold. o

When there is significant measurement noise, it is obvious fromwhereC: > 0 is a constant. Rather than reworking the proof of this
(9) that the distortion scaling is limited by the measurement noisstatment, we refer the reader to [8] for further details. Similarly, (b)
terminDie. (2 )aw < D. Inthat case, a stronger result can be follows from Corollary 2 in [8]. MoreoverE ~ (k E,) andL = k

obtained as stated in the following Corollary. follow trivially from Section 1.2 and the fact that we are computing
a total ofk projections. O
Corollary 1. If 62 > 0 ando? ~ o2, then(9) in Theorem 1 As a motivation for Theorem 2, consider the following simple

reduces toD ~ () and it is possible to achieve this distortion example. Suppose* is a spatially non-sparse vector of length
scaling by using? ~ m and L ~ m. (Sp(z*) = m) with only one non-zero coefficient of amplitudén



in some transform basi = {v;}!" , such that||m*||2 /n = 1.  integrates the operations of processing and communications, thereby
This is an example of the case where we know the basis in wifich reducing the amount of processing and communications required in-
is sparse but do not know which elements of the basis to use. Orgde the network and provides us with a system that often acts less
naive approach to this problem is to require each sensor to digitalliike networks and more like coherent ensembles of sensors, thereby
transmit its measurement to the destination, where the reconstructisaducing the overhead of network-centric functions such as routing
is then performed. Alternatively, all the sensors might collabora-etc. The universality of our proposed scheme, however, comes at th
tively process their measurements to reconstetidgn-network and  price of increased latency § and a less favorable E-D tradeoff by
then transmit the result to the destination. Both approaches, hova factor of about:/m, which is a direct consequence of not hav-
ever, while providing us with consistent estimates, would require aing sufficient prior knowledge about sensed data, forcing us to probe
leastE ~ nandL = n. the entiren-dimensional space instead of focusing our energy on the
Another approach to this problem could be random transformm-dimensional subspace in whiati lives.
point sampling where the destination computes a distributed projec- At the heart of our approach is an efficient (distributed) method
tion of the data onta); andi is selected uniformly at random from of estimating projections of the noiseless sensor network data onto
the set{1,...,n}. Ignoring the distortion due to the measurementany normalized vector iR"™ by using only a fixed amount of energy
noise, the squared reconstruction errdd isthe spike inT domain  (independent o). Depending upon the structure of the normalized
corresponds t@; and1 otherwise and the probability of not finding vector, this approach may require the destination to be able to ad-
the spike ink trials is (1 — L)’“, giving an average squared error dress each sensor individually. Pre-storage of individual eleménts o
)

" 1 the normalized vector in each sensor node is another option which

1\ k k .
of (1 — ) 1 + (k/n).0 = (1 R ) Lf nis large, we can ap- might not be always feasible because of node failures, changes in the
proximate this byD = (1—1)" ~ e /™. Therefore, for any  structure of sensed data etc. If, however, the sensor network esnploy
k < n, we haveD — 1 asn — oo while EandL ~ k, and for  the universal scheme based on random projections then the informa-
k = n, we haveD = ™" while £ andL ~ n (grow linearly with  tion can be efficiently generated by each sensor by using the seed of
n). However, Theorem 2 guarantees us a consistent estimator evgrhseudo-random generator and the addresses of the nodes in order
in this situation fn. = 1) by takingk = n® (0 < o < 1), resulting  to draw the elements of the random vectgs}-_,. Similarly, the

in D < (25") < (n~), while E andL ~ n* (grow sub-linearly  gestination can easily reconstruct the vectpts} given the seed

with n). values and the number of nodes in the network.
An important consequence of our proposed scheme is that it re-
2.3. Cost of Universality quires phase synchronization amengodes during each projection

L . o . . — something that might not always be feasible. An interesting exten-
It is important to reallze_ that the added flexibility and u_nlvers_allty of sion of our system involves applying this scheme to disjoint subsets
the scheme proposed in Theorem 2 comes at the price of increasggl, anq reconstructing™ from that. Our other future work includes
latency () and a less favorable E-D tradeoff. For example, an im-e,ensjons to compressible signals and studying the effect of imper-
mediate consequence of Theorem 2 is that using this scheme, th&. hode synchronization on the proposed scheme.
destination needs to expend at least- (mlogn) amount of en-
ergy and would incur a latency of at ledst~ (m logn) for barely
consistent estimator af*, whereas if one had knowledge of the sub-
space in whiche* lied then, assuming?2, ~ o2 (Corollary 1), one
would only requireEl ~ m and getD ~ ().
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