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ABSTRACT

Breakthrough results in compressive sensing (CS) have shown that
high dimensional signals (vectors) can often be accurately recov-
ered from a relatively small number of non-adaptive linear projec-
tion observations, provided that they possess a sparse representation
in some basis. Subsequent efforts have established that the recon-
struction performance of CS can be improved by employing addi-
tional prior signal knowledge, such as dependency in the location of
the non-zero signal coefficients (structured sparsity) or by collecting
measurements sequentially and adaptively, in order to focus mea-
surements into the proper subspace where the unknown signal re-
sides. In this paper, we examine a powerful hybrid of adaptivity and
structure. We identify a particular form of structured sparsity that is
amenable to adaptive sensing, and using concepts from sparse hier-
archical dictionary learning we demonstrate that sparsifying dictio-
naries exhibiting the appropriate form of structured sparsity can be
learned from a collection of training data. The combination of these
techniques (structured dictionary learning and adaptive sensing) re-
sults in an effective and efficient adaptive compressive acquisition
approach which we refer to as LASeR (Learning Adaptive Sensing
Representations.)

Index Terms— Compressive sensing, adaptive sensing, struc-
tured sparsity, principal component analysis

1. INTRODUCTION

Motivated in large part by the surge of research activity in com-
pressive sensing [1–3], the identification of efficient sensing and re-
construction procedures for high dimensional inference problems re-
mains an extremely active research area. The basic problem can be
explained as follows. Let x ∈ Rn represent some unknown signal,
and suppose that x can be accurately represented using only a small
number of atoms di ∈ Rn from some dictionary D, so that

x =
∑
i∈S

aidi + ε, (1)

where |S| is small (relative to the ambient dimension n), the ai are
the coefficients corresponding to the relative weight of the contribu-
tion of each of the di that contribute to the approximation, and the
vector ε represents a (nominally small) modeling error. The dictio-
nary D may, for example, consist of all of the columns of an or-
thonormal matrix (eg., a discrete wavelet or Fourier transform ma-
trix), though other representations may be possible (eg., D may be
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a frame). In any case, when |S| is small relative to the ambient di-
mension n, we say that the signal x is sparse, or that it possesses a
sparse representation in the dictionary D.

Initial results in compressive sensing (CS) established sparse
vectors can often be recovered from m� n measurements, each in
the form of a randomized linear combination of the entries of x. The
weights associated with each linear combination may, for example,
be selected as i.i.d. realizations of zero-mean random variables such
as Gaussian or symmetric Bernoulli, and these random measure-
ments can be modeled as inner products between the signal vector
and a sequence of randomly generated “test” vectors. Suppose, for
the sake of illustration, that D is an orthonormal matrix. Then,
the main result of CS is that signals that possess a sparse repre-
sentation with no more than s nonzero coefficients in this (known)
dictionary D can, with high probability, be exactly recovered from
m ≤ Cs logn so-called randomized projection measurements,
where C ≥ 0 is a constant independent of s and n (see, eg., [2, 3]).
The salient point is that the number of measurements required for
exact reconstruction is on the order of the sparsity s, not the am-
bient dimension n, and when s � n the savings in the number of
measurements required for recovery can be quite significant.

A number of subsequent efforts in CS have examined settings
where, in addition to being sparse, the representation of x in terms of
the dictionary D possesses some additional structure (see, for exam-
ple, the tutorial article [4] and the references therein). The nonzero
coefficients may, for example, occur in clusters, or it may be the
case that the presence of a particular coefficient in the representa-
tion guarantees the presence of other coefficients, according to some
a priori known dependency structure. This latter case of coefficient
dependency occurs, for example, in the wavelet coefficients of piece-
wise smooth signals and many natural images, where the nonzero
coefficients cluster across levels of a rooted connected tree. In any
case, taking advantage of this so-called structured sparsity has been
shown to result in further reductions in the number of measurements
required for recovery of s-sparse n-dimensional vectors from ran-
domized projections. For example, it was shown in [5, 6] that in
these cases m ≤ C′k randomized measurements suffice for exact
recovery, where C′ ≥ 0 is another constant. The savings in this case
amount to a reduction in the scaling behavior by a factor of logn,
which can itself be a significant savings when n is large.

Several techniques for implementing some form of feedback in
the compressive measurement process have also been examined re-
cently in the CS literature. These so-called sequential adaptive mea-
surement procedures attempt to glean some information about the
unknown signal from initial compressive measurements, which is
then used to shape subsequent test vectors in order to focus more
directly on the subspace in which the signal resides. Adaptive CS



procedures have been shown to provide an improved resilience (rela-
tive to traditional CS) in the presence of additive measurement noise
(see, for example, [7–9], as well as the summary article [10] and the
references therein).

In this paper, we examine a powerful hybrid of the notions of
structured sparsity and adaptivity. Our approach, which we refer
to as Learning Adaptive Sensing Representations, or LASeR, en-
tails the identification of dictionaries in which each element in a
given collection of training data exhibits a special form of structured
sparsity that is amenable to a particular adaptive compressive mea-
surement strategy. This approach is described and evaluated in the
remainder of this paper, which is organized as follows. Our dictio-
nary identification procedure which comprises an extension of tech-
niques recently proposed in the literature on dictionary learning, is
described in Section 2, along with our proposed adaptive sensing
procedure. The performance of the LASeR procedure is evaluated
in Section 3, and conclusions and directions for future work are dis-
cussed in Section 4.

2. LEARNING ADAPTIVE SENSING REPRESENTATIONS

2.1. Structured Dictionary Learning

Consider a matrix X = [x1, . . . , xp] ∈ Rn×p, whose p columns of
ambient dimension n each represent a training vector from a collec-
tion of training data. Dictionary learning describes a general matrix
factorization problem, the goal of which is to to identify matrices
D ∈ Rn×q and A ∈ Rq×p such that X ≈ DA. Such factoriza-
tions are generally non-unique, so it is common to impose additional
constraints on the coefficient matrix A — for example, requiring its
columns ai ∈ Rq , i = 1, 2, . . . , p, be sparse [11, 12]. Such condi-
tions result in learned representations having the property that each
column of the training data matrix may be expressed as a sparse
linear combination of dictionary atoms denoted by columns of the
matrix D. Overall, this type of factorization may be accomplished
by obtaining a (local) solution to an optimization of the form

{D,A} = arg min
D∈Rn×q,{ai}∈Rq

p∑
i=1

‖xi −Dai‖22 + λ‖ai‖1, (2)

where λ is a (non-negative) regularization parameter.
Techniques for enforcing that each column of A additionally

exhibit some form of pre-defined dependency structure have re-
cently been examined in the literature [13]. Suppose that the set
{1, 2, . . . , q} can be put into one-to-one association with q nodes
in a known rooted binary tree T . We say that a coefficient vector
ai ∈ Rq exhibits tree sparsity if the set of nonzero coefficients of
ai exist on a rooted connected subtree of T . Efficient software
packages have been developed (eg., [14]) for solving the dictionary
learning problem while enforcing tree sparsity on the columns of
the learned coefficient matrix. In this case, the factorization can be
obtained by solving an optimization of the form

{D,A} = arg min
D∈Rn×q,{ai}∈Rq

p∑
i=1

‖xi −Dai‖22 + λΩ(ai). (3)

The (convex) regularization term is given by

Ω(ai) =
∑
g∈G

ωg‖(ai)g‖, (4)

where G is the set of p groups, each comprised of a node with all
of its descendants in the tree T , the notation (ai)g refers to the sub-

vector of ai restricted to the indices in the set g ∈ G, the ωg are
non-negative weights, and the norm can be either the `2 or `∞ norm.

2.2. Structured Sparsity and Adaptive Sensing

Suppose that we wish to efficiently sense and acquire a signal x ∈
Rn. If we know a priori that x possesses a sparse representation (1)
in some dictionary D having orthonormal columns, and that the co-
efficients ai exhibit tree sparsity (as described above), then we may
acquire x using an efficient sequential adaptive sensing procedure, as
follows. Without loss of generality, let the index 1 correspond to the
root of the tree. Begin by initializing a stack (or queue) with the in-
dex 1, and collect a measurement by projecting x onto the dictionary
element d1; that is, obtain the measurement

y1 = dT1 x =
∑
i∈S

aid
T
1 di + dT1 ε (5)

= a1 + dT1 ε. (6)

Notice that the last equality follows from the fact that we assumed
D to have orthonormal columns, so that the sum reduces to the sin-
gle coefficient ai. Now, perform a significance test on the measured
value y1 (eg., compare its amplitude to a threshold τ ). If the mea-
surement is deemed significant, then add the locations of its imme-
diate descendants to the stack (or queue). If the measurement is not
deemed significant, then proceed by processing the stack (or queue)
to obtain the index of the next coefficient to observe (ie., the index
of the next vector di to project x onto). Notice that using a stack
in the aforementioned process results in a depth-first traversal of the
tree, while using a queue results in breadth-first traversal. Similar
tree-based sequential sensing procedures have been proposed in the
context of rapid MRI imaging using non-Fourier encoding [15] and
more recently in the context of adaptive compressive imaging via
so-called Direct Wavelet Sensing [16].

For LASeR, our goal is to learn tree-sparse approximations of
each element in a collection of training data, and then to apply the
aforementioned adaptive (compressive) sensing procedure to effi-
ciently obtain signals that are similar to the training data. Here, we
learn the sparsifying representation for the training data by solving
an optimization of the form presented in (3), with the additional con-
straint that the learned dictionary have orthonormal columns (ie, we
solve (3) subject to DTD = I). A local solution to this optimiza-
tion can be obtained by alternating minimization over the dictionary
D, and the coefficient matrix A = [a1, a2, . . . aq]. Here, we used
the SPAMS software [17] to solve the optimization over A (keep-
ing D fixed), while the optimization over D keeping A fixed has the
following closed-form expression

D = XAT [AXTXAT ]−1/2. (7)

The next section describes empirical results for LASeR.

3. EXPERIMENTAL RESULTS

We performed separate experiments on two databases. The first is
comprised of 72 man-made and 91 natural images from the Psycho-
logical Image Collection at Stirling [18] (some example images are
shown in the top row of Fig.1). Each image in the original database
is of size 256× 256, but here, we rescaled each to 128× 128 to re-
duce computational demands on the dictionary learning procedure.
The training data were then each reshaped to a 16384× 1 vector and
stacked together to form the training matrix X ∈ R16384×163. The



Fig. 1: Sample images from the PICS database (top row), and reconstructions obtained from different compressive sensing approaches
(bottom row) for the first image in the top row. From left to right, the reconstructions depicted in the second row correspond to estimates
obtained from 40 measurements of the first image in the top row, using LASeR (with thresholds τ = 0, 0.4, 0.8, and 2), PCA, direct wavelet
sensing (τ = 0), and CS/LASSO. In each case, the measurements were subject to additive noise with σ = 0.3.

second database we used was comprised of a total of 4500 synthet-
ically generated training vectors of length 1023, where each vec-
tor possessed a tree-sparse representation with 150 nonzeros (the
support of each corresponding to a rooted connected subtree of a
tree of degree two) in a randomly generated orthonormal basis. We
learn balanced binary tree-structured orthonormal dictionaries with 7
levels (comprising 127 orthogonal dictionary elements) for the data
from the PICS database and 10 levels (comprising 1023 orthogonal
dictionary elements) for the database of synthetically generated data.

For evaluation, the LASeR sensing procedure was applied to ac-
quire a signal from each database. We evaluated the performance of
the procedure for various values of τ (the threshold for determining
significance of a measured coefficient) in a noise free setting as well
as when measurements are corrupted by zero-mean additive white
Gaussian measurement noise. In either case, the reconstruction from
the LASeR procedure is obtained as the weighted sum of the atoms
of the dictionary used to obtain the projections, where the weights
are taken to be the actual observation values obtained by project-
ing onto the corresponding atom. When assessing the performance
of the procedure in noisy settings, we averaged over a total of 500
trials corresponding to different realizations of the random noise.

Reconstruction performance is quantified by the reconstruction
signal to noise ratio (SNR), given by

SNR = 10 log10

(
‖x‖22
‖x̂− x‖22

)
. (8)

To provide a performance comparison for LASeR, we also evalu-
ate the reconstruction performance of the direct wavelet sensing al-
gorithm described in [16], as well as principal component analysis
(PCA) based reconstruction. For PCA, the reconstruction is obtained
by taking projections of the test signal onto the principal components
(obtained from the mean-centered training data) along with one addi-
tional projection onto mean of the training data, and then performing
a least squares fit to get the final reconstruction. We also compare
with “traditional” compressed sensing, where measurements are ob-
tained by projecting onto random vectors (in this case, vectors whose
entries are i.i.d. zero-mean Gaussian distributed) and reconstruction
is obtained via the LASSO by enforcing sparsity in the learned dic-
tionary (the regularization parameter was chosen clairvoyantly to
give best performance). In order to make a fair comparison among
all of the different measurement strategies, we normalize so that each
measurement is obtained by projecting onto a vectors of unit norm.

Plots of reconstruction SNR values vs. number of measurements
for two test signals are shown in Fig. 2. The results in the top row
(for a test signal from PICS databse) show that a range of choices

of threshold value τ results in good reconstruction SNR from only
40−65 measurements using LASeR. Similar behavior is observed in
the noisy case, where a good reconstruction SNR can be obtained by
around 65 measurements with any threshold value. Actual estimates
obtained via the various procedures for this test image are shown
in the second row of Fig.1. We can see that LASeR gives a very
good reconstruction with only few measurements for some (larger)
choices of the threshold, whereas the other approaches perform com-
parably poorly. The results in the bottom row of Fig. 2 (correspond-
ing to estimates of a test signal from the synthetic database) demon-
strate further the performance gain of LASeR over the other schemes
compared.

4. CONCLUSIONS

In this paper, we presented a novel sensing and reconstruction pro-
cedure called LASeR, which uses dictionaries learned from training
data, in conjunction with adaptive sensing, to perform compressive
sensing. Simulations demonstrate that the proposed procedure can
provide significant improvements over traditional compressive sens-
ing (based on random projection measurements), as well as other
established methods such as PCA. The proposed procedure was also
shown to be robust to additive noise. Future work in this direction
will entail obtaining a complete characterization of the performance
of the LASeR procedure for different dictionaries, and for different
learned tree structures (we restricted attention here to binary trees,
though higher degrees can also be obtained via the same procedure).
We also note that in a related effort, we have recently obtained pre-
cise performance guarantees (for support recovery and estimation
error) to quantify the performance of the top-down adaptive com-
pressive sensing procedures (as employed in LASeR, and in the pro-
cedure proposed in [16]) in the presence of measurement noise [19].
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Fig. 2: SNR vs. Number of measurements plots (best viewed in color) with different noise levels and for different schemes (LASeR, PCA,
direct wavelet sensing, and CS/LASSO). The top row corresponds to reconstruction SNR achieved when acquiring a test image from the PICS
database (column 1: σ = 0, column 2: σ = 0.3, column 3: σ = 0.8). Here, � is PCA, black ◦ is LASSO, sky blue . and magenta ◦ are
for direct wavelet sensing with τ = 0 and τ = 0.5 respectively. Colored solid lines (left to right) are for LASeR with τ = 0, 0.3, 0.5, and
2. The bottom row corresponds to reconstruction SNR achieved when acquiring a test image from the synthetically generated data (column
1: σ = 0, column 2: σ = 3, column 3: σ = 5). Here, � is PCA, ◦ is CS/LASSO. Colored solid lines (left to right) are for LASeR with
τ = 0, 1, 2, 3, 5 and 8 respectively.
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