
RECYCLED LINEAR CLASSIFIERS FOR MULTICLASS CLASSIFICATION

Akshay Soni, Jarvis Haupt

Department of Electrical and Computer Engineering
University of Minnesota, Twin Cities

Minneapolis, MN 55414
{sonix022, jdhaupt}@umn.edu

Fatih Porikli

Australian National University
Canberra, ACT, Australia

fatihporikli@ieee.org

ABSTRACT

Many machine learning applications employ a multiclass clas-
sification stage that uses multiple binary linear classifiers as build-
ing blocks. Among these, commonly used strategies such as one-
vs-one classification can require learning a large number of hyper-
planes, even when the number of classes to be discriminated among
is modest. Further, when the data being classified is inherently high-
dimensional, the storage and computational complexity associated
with the application of multiple linear classifiers can ignite critical
resource management issues. This work describes a novel multiclass
classification method based on efficient use of a single “recycled”
linear classifier (or ReLiC), which addresses these storage and im-
plementation complexity issues. The proposed approach amounts
to constraining the entire collection of hyperplanes to be circularly-
shifted versions of each other, enabling classification procedures that
may be implemented with efficient operations, such as circular con-
volution (which can be efficiently computed using transform domain
techniques), and simple sampling/thresholding operations. We show
that the optimization task associated with our proposed approach can
be formulated as a quadratic program, and we introduce an efficient
distributed procedure for its solution based on an alternating direc-
tion method of multipliers. Simulation results demonstrate that the
performance of the proposed approach is comparable with the more
complex, traditional multiclass linear classification strategies, sug-
gesting the proposed approach is a viable alternative in large-scale
data classification tasks.

1. INTRODUCTION

We consider the problem of multiclass classification in a high-
dimensional Euclidean space within a supervised learning frame-
work. Given a training data set of the form (xi, `i), where xi ∈ Rn
is the ith example and `i ∈ {1, . . . ,K} is the ith class label, su-
pervised multiclass classification aims to assign a class label to new
examples. Multiple approaches have been proposed to address this
problem, some of which are naturally suited to multiclass classifi-
cation (e.g., k-Nearest Neighbor [1], Naive Bayes classifiers [2]),
and others that correspond to extensions of binary classification
strategies (e.g., decision trees [3], neural networks [4], and Support
Vector Machines (SVMs) [5]).

A commonly used approach along these lines is to reduce the
overall multiclass classification task to K binary problems, where
each problem discriminates a given class from the other K − 1
classes. This one-versus-all (OvA) approach [6] requires a total of

A.S. and J. H. acknowledge support from DARPA/ONR Award No.
N66001-11-1-4090.

K binary classifiers, where the k-th classifier is trained with posi-
tive examples belonging to class k and negative examples belonging
to the other K − 1 classes. Another widely used approach is the
one-versus-one (OvO) strategy [7], which aims to learn binary clas-
sifiers to discriminate between each pair of classes, requiring a total
of K(K − 1)/2 ∼ K2 unique classifiers. The quadratic depen-
dence on the number of classes implies that learning and testing in
this case can be very slow, especially when the number of classes is
large and/or the data are high-dimensional.

Hierarchical Classifiers (HC) are also commonly used for multi-
class classification tasks. Binary Hierarchical Classifiers [8], for ex-
ample, learn and employ a total ofK−1 binary classifiers, which are
arranged in a binary tree with K leaf nodes, each corresponding to
one class. Classification in these settings is performed in a top-down
fashion: classification of a new pattern is achieved by traversing a
path from the root node to a leaf node, where the path is determined
by the outcome of the binary classifier at each node. Hierarchical
SVM [9] uses a similar approach where clustering is performed via
arranging classes into an undirected graph with edge weights repre-
senting the Kullback-Leibler distances between the classes, and em-
ploys a max-cut algorithm to split the classes into two sub-clusters
that are most distant from each other. In either case, when the un-
derlying tree is balanced (or nearly so), the classification task can be
accomplished by implementing O(logK) binary tests.

Error correcting output coding (ECOC) incorporates the idea of
codebooks of length N for each class according to a binary ma-
trix [10], where each row corresponds to a certain class and each
column is one of theN classifiers. When testing an unseen example,
the output codeword from the N classifiers is compared to the given
K codewords, and the one with the minimum hamming distance is
considered the class label for that example. ECOC can be seen as a
generalization of the OvO, OvA, and HC strategies. While the initial
paper [10] discussed approaches using as many as N ∼ 2K classi-
fiers, variations of this approach have also been proposed which use
many fewer (N ∼ logK) classifiers, see [11, 12]).

Overall for K classes, conventional OvA approaches require
training of K unique binary classifiers, the OvO approach requires
K(K − 1)/2 binary classifiers, and binary tree classification re-
quires learning K − 1 binary classifiers. Similarly, ECOC-based
schemes require, generally, learning some N classifiers where N
may (in some instances) be large relative to K. For typical large-
scale data classification tasks where number of classes K may also
be large, these traditional approaches require learning, storing, and
applying a large number of linear classifiers. In such settings, even
the testing complexity can be prohibitive, requiring computation of
multiple inner products between high-dimensional vectors.



1.1. Our Contribution

In this work we propose a multiclass classification method based on
efficient use of a single “Recycled” Linear Classifier (or ReLiC),
which addresses the storage and implementation complexity issues
associated with multiclass classification strategies that employ mul-
tiple binary linear classifiers. Our approach amounts to constraining
the collection of hyperplanes to be circularly-shifted versions of each
other, which facilitates classification procedures that may be imple-
mented with efficient operations – circular convolution and simple
sampling/thresholding operations.

The convolutional nature of our proposed approach is reminis-
cent of time-delay neural networks [13] and other convolutional neu-
ral networks [14], which employ convolutional weights in (multi-
layer, or deep belief) neural network architectures. Convolutional
neural networks rely on the existence of (temporally or spatially)
local features that are discriminative for the classification task, and
employ shift-invariant feature extracting filters at each layer. In a
general sense the storage and implementation complexity benefits
associated with our proposed approach could also be enjoyed by re-
lated techniques based, for example, on single-layer convolutional
neural networks. That said, there are a few key distinctions between
convolutional networks and our proposed ReLiC approach. First,
convolutional neural networks generally utilize spatially local filters;
in contrast, the weight structure associated with our learned hyper-
plane classifiers are generally global. Further, neural networks can
be prone to overfitting, and the limited spatial extent of the learned
filters in convolutional neural networks serves as a form of regu-
larization for the network training task. Our proposed approach, in
contrast, is based on a support vector machine philosophy, in which
margin and slack constraints serve as regularizers to prevent overfit-
ting. For a detailed overview of the other linear classification and
multiclass approaches, we refer reader to [15].

1.2. Outline

The remainder of this paper is organized as follows. In Section 2
we describe our Recycled Linear Classifier (ReLiC) approach, and
explain how the resulting optimization problem can be interpreted
within an SVM framework. We also discuss a modest extension us-
ing slack variables to allow for some errors in the classifier training
phase. We describe a computationally-efficient distributed training
approach (d-ReLiC) in Section 3. We provide some empirical exper-
imental results in Section 4, demonstrating (for one standard dataset)
that our proposed approach sacrifices little accuracy relative to exist-
ing multi class SVM approaches. A few conclusions and extensions
are discussed in Section 5.

2. RECYCLED LINEAR CLASSIFIERS (RELIC)

In this section we introduce the ReLiC approach, the key idea of
which is to learn hyperplanes that are circularly shifted versions of
each other. The implication of this design is that multiple individual
classifiers can be applied to a new data point essentially in paral-
lel, and in an efficient manner, using fast Fourier transform methods.
In contrast, traditional multiclass classification strategies based on
linear SVMs require computing projections of the test data to be
classified onto multiple individual (and generally, structurally unre-
lated) hyperplanes, which can be significantly more costly in terms
of storage and computational complexity.

This difference is highlighted in Table 1. The table depicts a
comparison of the storage and implementation complexities of the

Table 1: Storage and testing time requirements for different multi-
class schemes and ReLiC in terms of the ambient data dimension n
and number of classes K.

Storage Complexity Testing Complexity
OvA O(nK) O(nK)
OvO O(nK2) O(nK2)
HC O(nK) O(nK)

ReLiC (OvA) O(n) O (n · min{K, logn})
ReLiC (OvO) O(n) O

(
n · min{K2, logn}

)
ReLiC (HC) O(n) O (n · min{K, logn})

OvO, OvA and HC classification approaches described above, and
for the proposed ReLiC approach, for data of dimension n. The
storage complexity of our proposed approach is uniformly more fa-
vorable than the analogous traditional approaches. Further, the im-
plementation complexity of our approach may be significantly less
(and is never worse) than that of the traditional approaches, though
this improvement depends inherently on the number of classes being
discriminated among.

Our learning formulation for ReLiC amounts to a constrained
form of multiclass SVM based on binary classifiers. We briefly re-
view some essential aspects of these approaches, in order to put our
proposed formulation in context.

2.1. Multiclass Classification Using Multiple Hyperplanes

The training tasks associated with each of the traditional multiclass
classification approaches based on multiple linear binary classifiers
described above can be interpreted in terms of a unified framework.
Suppose we partition the training data according to its label, so that
the data belonging to class j comprise a set Xj for j = 1, ...,K.
Suppose the overall strategy uses some N individual binary tests,
then the aim of the training task amounts to identifying some N
hyperplanes, denoted h1, . . . ,hN , and associated scalar biases, de-
noted b1, . . . , bN , chosen so that the classification error using this
collection of binary classifiers is small (or zero) over the training
data set.

Depending on the strategy employed, only a subset of the N
binary tests may take part in determining the label for a particular
class. For example, determining whether a test vector belongs to
class j using a OvO strategy depends only on the outcomes of the
tests comparing j with each of the other classes, while tests compar-
ing any other pair of classes (say p and q with p, q 6= j) are not used
when determining membership in class j. Likewise, classification
strategies based on hierarchical trees employ only a subset of the bi-
nary tests, corresponding to the path through the tree identified by
the outcomes of the previous tests. Formally, we prescribe to each
class j a unique vector y(j) ∈ {−1, 0, 1}N . If for x ∈ Xj we
denote zi = hT

i x + bi, and let z = [z1, ..., zN ]T, then enforcing
that x belong to class j amounts to ensuring that diag(y(j))z ≥ 0,
where y(j) = [y

(j)
1 , ..., y

(j)
N ]T is a pre-determined label vector as-

sociated with the j-th class, and the operator ≥ applies component-
wise. Here, setting y(j)i = 0, i = 1, ..., N enforces that the ith
hyperplane hi does not take part in assessing whether x belongs to
class j – this amounts to a kind of “don’t care” condition for that
test.

In our formulation (presented in the next sub-section) we will
find it advantageous to work with a slightly modified condition. For
each class j we can define a non-zero row selection matrix Q(j) that
corresponds to a row sub matrix of the identity matrix, and whose
nonzero rows select the nonzero elements of the class label vector
y(j). With this, we can express the condition for membership in
class j as Q(j)diag(y(j))z ≥ 1. Note that choice of 1 is arbitrary,



since we can always scale the elements of the learned hyperplanes
and scalar offsets to scale the magnitude of z. Linear inequalities of
this form (or relaxed versions, when training errors are allowed), one
per data point, arise as constraints in the overall training problem.

2.2. “Recycling” Linear Classifiers

The essential idea behind ReLiC is that each hyperplane hi should
be constrained to be a circularly shifted version of some base hyper-
plane h. In this case we can express z more compactly as z =
SHx + b, where S ∈ RN×n is a fixed selection matrix corre-
sponding to a row submatrix of the identity matrix having N rows,
H ∈ Rn×n is a circulant matrix whose first row is h, and b =
[b1, ..., bN ]T is a vector of scalars. The operation of multiplying of a
circulant matrix with a vector is equivalent to circular convolution of
the first row of the circulant matrix with the vector; in light of this,
we may express the condition that x belong to class j as

Q(j)diag(y(j))z = Q(j)diag(y(j))(SHx+ b),

= Q(j)diag(y(j))(S(h~ x) + b) ≥ 1,

where ~ denotes the circular convolution operator and Q(j) is as
defined in last subsection.

An important property of circulant matrices, which will be key
ingredient of our formulation, is that any circulant matrix H can be
written as

H =

n∑
i=1

hiP
i−1, (1)

where hi, i = 1, ..., n are scalars and P ∈ Rn×n is the cyclic
permutation matrix given as

P =

[
0T
n−1 1

In−1 0n−1

]
, (2)

where In−1 denotes the (n− 1)× (n− 1) identity matrix and 0n−1

is an (n− 1)× 1 vector of zeros. Note that P0 = In. For shorthand
we write H = circ(h), where h = [h1 h2 . . . hn]

T is the vector of
parameters associated with the representation (1).

As with traditional SVM formulations our goal is to design a
set of linear classifiers having maximum margins 2/‖hi‖2 for i =
1, . . . , N . Here, the margins for all the classifiers is same for our
case since the classifiers are just linearly shifted versions of each
other with same norm. With this observation, we may express our
overall learning task as follows. Suppose that we have a total of T
training data points (xi, `i) for i = 1, . . . , T . Then, our aim is to
solve

minimize
h, b

1

2
‖h‖22 (3)

s.t. Q(`i)diag(y(`i))(SHxi + b) ≥ 1, i = 1, ..., T,

H = circ(h),

where as described above, y(`i) denotes the (pre-determined) la-
bel vector associated with the i-th training data point where
`i ∈ {1, 2, . . . ,K}. We can further remove the cir-
culant constraint from (3) and substitute directly H =∑n
j=1 hjP

(j−1) by using the property (1) and rewrite the
constraints in a more compact form by making the substitu-
tion

∑n
j=1 hjQ

(`i)diag(y(`i))SPj−1xi + Q(`i)diag(y(`i))b =

Bih + Cib,, where Bi, i = 1, ..., T are matrices whose columns
are the vectors Q(`i)diag(y(`i))SPj−1xi, j = 1, ..., n and Ci =

Q(`i)diag(y(`i)). The resulting optimization problem in h and b
amounts to a quadratic program (QP) of the form

minimize
h,b

1

2
‖h‖22 (4)

s.t. Bih+Cib ≥ 1, i = 1, ..., T.

Note that since the objective function of (4) is strictly convex in h
and the constraints are affine, the optimization problem is convex
with unique global optimal solution h∗ and b∗. It is interesting to
note that problem (4) has a form that is reminiscent of the optimiza-
tion problem corresponding to linear SVM [16], which also may be
cast as a QP.

As in the case of relaxed margin SVM, ReLiC can also be mod-
ified to allow some errors at the training stage. The optimization
problem in this case becomes

minimize
h,b,ξi

1

2
‖h‖22 + η

T∑
i=1

‖ξi‖1 (5)

s.t. Bih+Cib ≥ 1− ξi and ξi ≥ 0, i = 1, ..., T,

where ξi = [ξi1, ...ξ
i
ki
] is a nonnegative vector of slack parame-

ters, and η ≥ 0 is a regularization parameter that trades off the
classifier margin with the error allowed during training. Once we
learn h and b by solving (4) (or its relaxed margin version (5)),
the class assignment of an unseen sample xtest is determined via
z = S(xtest ~ h) + b by performing circular convolution of xtest

with h and adding the bias vector b. The label decision is made
according to the sign of the maximum entry of z for OvA, or by
majority voting in the case of OvO.

A primary motivation of our approach is its applicability in
large-scale data settings. In these cases the training phase may also
be computationally demanding. In the next section we describe an
efficient distributed approach for problems of the form (5) based on
Alternating Direction Method of Multipliers (ADMM) [17].

3. DISTRIBUTED LEARNING FOR RELIC

We propose an ADMM based first order method to solve optimiza-
tions of the form (4) and (5), which facilitates an efficient distributed
implementation across multiple machines or processing centers. In
our approach, the training data is partitioned and distributed across
multiple machines, so that each machine needs to work with only
a small portion of training data and without any knowledge about
the data present on the other machines. Our approach is a multi-step
process. At each step, each machine performs its own local computa-
tions (described below) and sends a summary of its current estimate
to a central machine where they are combined to form a global esti-
mate for that step. The global estimates are then broadcast to each
machine, and each uses this global information to update their own
local estimates. In this way after few iterations the local and global
variables achieve consensus and we can use the global variables as
our final estimates. We refer to this distributed approach for learning
recycled linear classifiers as d-ReLiC.

Our d-ReLiC procedure is obtained as follows. First, we rep-
resent (5) as a square loss optimization problem of the form (6)
where η and c1 are hyperparameters, and si are the non-negative
slack vectors which converts the inequality constraints of (5) into
equality constraints. Note that it is possible to use a hinge-loss term
rather than square-loss, but the square-loss term leads to simple up-
date steps. Our approach is motivated by prior works employing
square-loss for least-squares based SVM [18, 19, 20].



minimize
ω, β, si≥0, ξi≥0

1

2
‖ω‖22 + η

T∑
i=1

‖ξi‖1 + c1

T∑
i=1

‖Biω +Ciβ − si − 1+ ξi‖22, s.t. ω = h,β = b, (6)

minimize
h, b, ωm, βm,

sim≥0, ξim≥0

1

2
‖h‖22 +

M∑
m=1

(ρ1
2
‖ωm − h‖22 +

ρ2
2
‖βm − b‖22

)
+
∑
i∈Dm

(
c1‖Biωm +Ciβm − sim − 1+ ξim‖

2
2 + η‖ξim‖1

)
s.t. ωm − h = 0, βm − b = 0, m = 1, ...,M, (7)

mininimize
h,b, ωm, βm,

sim≥0, ξim≥0, λ, µ

1

2
‖h‖22 +

M∑
m=1

∑
i∈Dm

(
c1‖Biωm +Ciβm − sim − 1+ ξim‖

2
2 + η‖ξim‖1

)

+

M∑
m=1

(ρ1
2
‖ωm − h‖22 + λT

m(ωm − h) +
ρ2
2
‖βm − b‖22 + µT

m(βm − b)
)
, (8)

To make the optimization amenable to decomposition on mul-
tiple (say M ) learning machines, we partition the data into subsets
{D1, ..., DM} where Dm ⊆ {1, ..., T} for m = 1, ...,M , and m
indexes the machines. We can then write down the equivalent prob-
lem as (7), where ρ1 and ρ2 act as constant step sizes for iteration
steps of our distributed algorithm. Vectors ωm and βm are local
variables of machine m which are enforced to be equal to global
variables h and b respectively. The addition of quadratic terms
‖ωm−h‖22 and ‖βm−b‖22 makes the subproblems associated with
the learning at each machine strictly convex.

Now, we let ω := {ω1, ...ωM}, β := {β1, ...βM}, λ :=
{λ1, ...λM} and µ := {µ1, ...µM}. An augmented Lagrangian
formulation of (7) is given by (8), where λ and µ are dual variables.
Notice that (8) is completely separable in ωm, βm, sim and ξim.
Our proposed solution approach for (8) corresponds to an iterative
approach that updates, in parallel, the local (machine dependent) pa-
rameters, then shares these updates with a centralized location who
updates global estimates. More specifically, each local machine up-
dates is values of ωm,βm, sm and ξm, then shares their local esti-
mates of ωm and βm with a central server. The central server uses
these to update h and b. The updated estimates are then broadcast
by the central server to each machine, who uses them to update their
own parameters in the next iteration. Overall, since (5) is a convex
problem, this ADMM-based approach is guaranteed to converge to
the global optimal solution in the limit, as the number of iterations
becomes large. The updates to be performed for each step of our
proposed d-ReLiC approach arise as solutions of subproblems of (8)
each of which has a simple closed form expression (we suppress the
details here due to space constraints).

4. NUMERICAL EXPERIMENT

We demonstrate the performance of d-ReLiC on a standard dataset.
Since the classifiers in our approach are additionally constrained to
be circularly shifted versions of each other, we expect the classifica-
tion accuracy to be lower than the analogous multiclass classification
approaches that impose no such constraints yet involve significantly
more storage and computations. Our experimental results suggest,
perhaps surprisingly, that the classification performance of our ap-
proach degrades only mildly as compared to the traditional strate-
gies, suggesting that our approach is a viable approach in large-scale
data classification problems where classifier storage space and test-
ing complexity are critical concerns. We set c1 = 0.5, η = 0.5

and ρ1 = ρ2 = 1 for all experiments. The selection matrix S is
fixed to select uniformly spaced rows of the identity matrix. The
data is randomly split across M = 10 processors for d-ReLiC. For
all these parameters, possibly better choices can be made through
cross-validation. We used LIBSVM toolbox [21] for MATLAB to
test the multiclass SVM schemes.

Extended Yale-B: This database [22] contains 2414 frontal-face
images of 38 individuals. We use the cropped and normalized face
images of size 192 × 168 that are captured under different illumi-
nations for our experiments. We use 29 randomly chosen images
for training and another 29 images for testing per class. We re-
duce the problem dimension by subsampling the vectorized images
by a factor of 8 which gives 4032 dimensional vectors and solve a
K = 10 class problem. The testing phase (of all test data points)
with d-ReLiC is 30× (6×) faster than the multiclass SVM for OvO
(OvA). We also note that the classifiers associated with d-ReLiC re-
quire only 10% of the storage space that is required by the multiclass
SVM classifiers. The overall comparison is summarized in Table 2.

Table 2: Performance of OvA/OvO schemes for d-ReLiC and SVM
over Extended Yale-B.

d-ReLiC (M=10) Multiclass SVM
OvA OvO OvA OvO

Success rate (%) 94.23 93.90 95.86 95.91
Classifier storage (kbits) 32.25 32.25 290.30 1451.52

Testing time (sec) 0.03 0.03 0.20 0.90

5. CONCLUSIONS

We introduced a novel multiclass classification method based on ef-
ficient use of a single recycled linear classifier, and described an
efficient distributed procedure for its solution that allows parallel
execution of updates, and is based on ADMM. Our initial simula-
tion results suggest that the proposed approach may sacrifice little
performance relative to existing multiclass classification strategies
employing multiple linear hyperplane classifiers, despite providing
sometimes significantly improved storage and computational com-
plexities, making it a potentially useful approach in large-scale data
settings. In addition to a more thorough performance evaluation,
other extensions we plan to address in future work include employ-
ing simultaneous optimization over selection matrix S, and extend-
ing our approach to kernel version of ReLiC.



6. REFERENCES

[1] S. Bay, “Combining nearest neighbor classifiers through mul-
tiple feature subsets,” in International Conference on Machine
Learning, 1998, pp. 37–45.

[2] I. Rish, “An empirical study of the naive bayes classifier,” in IJ-
CAI Workshop on Empirical Methods in Artificial Intelligence,
2001.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Eds., Clas-
sification and Regression Trees, Chapman and Hall, 1995.

[4] C. Bishop, Ed., Neural Networks for Pattern Recognition, Ox-
ford University Press, 1995.

[5] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, pp. 273–297, 1995.

[6] R. Rifkin and A. Klautau, “Parallel networks that learn to pro-
nounce English text,” Journal of Machine Learning Research,
pp. 101–141, 2004.

[7] T. Hastie and R. Tibshirani, “Classification by pairwise cou-
pling,” in Neural Information Processing Systems, 1998,
vol. 10.

[8] S. Kumar, J. Ghosh, and M. Crawford, “Hierarchical fusion
of multiple classifiers for hyperspectral data analysis,” Pattern
Analysis and Applications, vol. 5, pp. 210–220, 2002.

[9] Y. Chen, M. Crawford, and J. Ghosh, “Integrating support
vector machines in a hierarchical output space decomposition
framework,” in Geoscience and Remote Sensing Symposium,
2004.

[10] T. Dietterich and G. Bakiri, “Solving multiclass learning prob-
lems via error correcting output codes,” Journal of Artificial
Intelligence Research, vol. 39, pp. 1–38, 1995.

[11] E. Allwein, R. Schapire, and Y. Singer, “Reducing multiclass
to binary: A unifying approach for margin classifiers,” Journal
of Machine Learning Research, vol. 1, pp. 113–141, 2001.

[12] S. Escalera, O. Pujol, and P. Radeva, “Separability of ternary
codes for sparse designs of error correcting output codes,” Pat-
tern Recognition Letters, vol. 30, pp. 285–297, 2009.

[13] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J.
Lang, “Phoneme recognition using time-delay neural net-
works,” Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, vol. 37, no. 3, pp. 328–339, 1989.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[15] G-X. Yuan, C-H. Ho, and C-J. Lin, “Recent advances of large-
scale linear classification,” Proceedings of the IEEE, vol. 100,
no. 9, pp. 2584–2603, 2012.

[16] C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2,
pp. 121–167, 1998.

[17] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2011.

[18] J. A. K. Suykens and J. Vandewalle, “Least squares support
vector machine classifiers,” Neural Processing Letters, vol. 9,
no. 3, pp. 293–300, June 1999.

[19] J. A. K. Suykens, J. D. Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness
and sparse approximation,” Neurocomputing, vol. 48, no. 1-4,
pp. 85–105, 2002.

[20] R. Mall and J. A. K. Suykens, “Sparse reductions for fixed-size
least squares support vector machines on large scale data,” in
PAKDD (1), 2013, pp. 161–173.

[21] C-C. Chang and C-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, pp. 27:1–27:27, 2011.

[22] K.C. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces
for face recognition under variable lighting,” IEEE Trans. Pat-
tern Anal. Mach. Intelligence, vol. 27, no. 5, pp. 684–698,
2005.


