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Abstract—Poisson processes are commonly used models for describing
discrete arrival phenomena arising, for example, in photon-limited
scenarios in low-light and infrared imaging, astronomy, and nuclear
medicine applications. In this context, several recent efforts have
evaluated Poisson denoising methods that utilize contemporary sparse
modeling and dictionary learning techniques designed to exploit and
leverage (local) shared structure in the images being estimated. This paper
establishes a theoretical foundation for such procedures. Specifically,
we formulate sparse and structured dictionary-based Poisson denoising
methods as constrained maximum likelihood estimation strategies, and
establish performance bounds for their mean-square estimation error us-
ing the framework of complexity penalized maximum likelihood analyses.

I. INTRODUCTION

Across a broad range of engineering application domains, Poisson
processes have been utilized to describe discrete event or arrival
phenomena. For example, in a host of imaging applications (including
infrared and thermal imaging, night vision, astronomical imaging, and
nuclear medicine, to name a few) the random arrival of photons at
each detector in an array may be modeled using Poisson-distributed
random variables, with unknown rates or intensities. A fundamental
problem in these applications is that of estimating the unknown rates
associated with each of the sources, a task typically referred to as
Poisson denoising.

We consider here a denoising task along these lines. Suppose
that we are equipped with a collection of detectors, and that the
arrival of photons at each individual detector may be accurately
described by a Poisson process with some unknown (non-negative)
rate. At each detector we acquire a single integer-valued observation,
corresponding to the number of photons arriving at the detector
over some fixed (but not necessarily specified) time interval that
we assume to be the same across all detectors. It follows that the
observation at each detector is a Poisson-distributed random variable
whose parameter is the product of the underlying rate parameter of
the process and the length of the time interval (see, e.g., [1]). We
assume the Poisson processes giving rise to the observations at each
detector are mutually independent.

Suppose that there are a total of d detectors. For each ¢ € [d] where
[d] is shorthand for the set {1,2,...,d}, we denote the Poisson-
distributed observation at the ¢-th detector as ¥, and denote by x; its
unknown parameter. Letting Poi(y.|zy) = (x7)Y¢ exp(—z7)/(ye)!
denote the univariate Poisson probability mass function (pmf) defined
on nonnegative integers y¢ € No, we may write the joint pmf of the
d observations, defined on Ng, as
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where the product form on the right-hand side follows from our
independence assumption on the individual Poisson processes.

A. Exploiting Data Structure in Poisson Denoising Tasks

In the absence of any structural dependencies among the collection
of rates {7 }¢c[q), the Poisson denoising task is somewhat trivial —
in this case, classical estimation theoretic analyses establish that each
observation is itself the minimum variance unbiased estimator of its
underlying parameter (see, e.g., [2]). More interesting approaches
to the denoising task, then, seek to exploit some form of underlying
structure among the individual rates. Efforts along these lines include
[31, [4], which proposed and analyzed estimation strategies applicable
in scenarios where the collection of rates (appropriately arranged)
admits a simple representation in terms of a wavelet representation,
and [5], which also examined multiresolution representations of
the collection of rates. Along similar lines, the work [6] analyzed
estimation procedures tailored to signals that are sparse (or nearly
so) in any orthonormal basis, within the context of a compressed
sensing approach to the Poisson denoising problem.

A number of related efforts have examined Poisson denoising
tasks using data representations or bases that are learned from the
data themselves, in contrast to the efforts described above that
utilize fixed bases or representations. Such “data-driven” estimation
strategies include Poisson-specific extensions of classical methods
like principal component analysis and other matrix factorization
methods [7], [8], as well as application of contemporary ideas from
sparse dictionary learning [9]-[11] to Poisson-structured data [12].
‘We note, in particular, the recent works [13] and [14], which describe
estimation tasks employing models that may be described as sparse
or structured dictionary-based models; our effort here is motivated by
a desire to provide theoretical justification for these dictionary-based
techniques.

B. Our Approach

The sparse and structured dictionary-based models upon which our
analyses are based describe underlying data structure in terms of
matrix factorization models. To that end, we will find it useful here
to formulate our model so that the collection of d observations are
interpreted as elements of an m X n matrix (with d = mn) denoted
by Y, and having elements Y; ;, where for i € [m] and j € [n],
Yi ; is a Poisson random variable with rate X7 ;. Letting X* be the
m X n matrix with entries X ;, we overload (slightly) the notation

in (1), and write the joint pmf of the observations in this case as
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Our interest here is primarily on settings where the matrix X*
admits a dictionary-based factorization, so that X* = D*A*, where



D* € R™*P and A* € RP*™. Since such factorization models
are themselves fairly general, we restrict our attention here to two
specific settings — the first being when the matrix A* is sparse so that
only a small fraction of its elements are nonzero (along the lines of
models employed in dictionary learning efforts), and the second when
p, the number of columns of D* and rows of A", is small relative
to m and n (in which case X* admits a low-rank decomposition).
That said, the analytical approach we develop here is fairly general,
and thus may readily be extended to other factorization models (e.g.,
non-negative matrix factorization, structured dictionary models, etc.).

The estimation approaches we analyze here amount to constrained
maximum likelihood estimation procedures. Abstractly, we consider
a set X of candidate estimates X for X*, each of which admits a
factorization of the form X = DA. The elements of the factors D
and A may themselves be constrained to enforce the type of structure
that we assume present in X*. Formally, we construct sets D and A
and a set

X4 {X:DA :DeD, AeA max|X; ]| gxmax}
¥

where 0 < Xpax < 00 is a constant that describes the maximum rate
of the underlying processes (and whose specific role will become
evident in our analysis), and we consider estimates X of X*
constructed according to

X = arg )r(nelr)} —log p(Y|X) + X pen(X), 3)

where pen(X) is a non-negative penalty that quantifies the inherent
“complexity” of each estimate X € X, and A > 0 is a user-
specified regularization parameter. For both the low-rank and the
sparse dictionary based models we consider here, we describe the
construction of suitable sets D and .A, cast each corresponding
estimation procedure in terms of an optimization of the form (3)
(with appropriately constructed penalties), and derive mean-square
estimation error rates using analysis techniques motivated by those
employed in [5], [6], [15]-[21].

C. Related Efforts in Poisson Restoration

While our focus here is on Poisson denoising, we briefly note
several related efforts that examine restoration and deblurring meth-
ods for Poisson-distributed data [22]-[26]. These works employ
regularized maximum likelihood estimation strategies similar in form
to those we analyze in this effort. More recently, [27] proposed a
dictionary-based approach to the Poisson deblurring task.

D. Organization and Notation

The remainder of this paper is organized as follows. We present our
main theoretical results, stated in terms of the estimation procedures
proposed in [13], [14], in Section II, and provide proofs in Sec-
tion III. In Section IV we briefly discuss how our analytical approach
overcomes somewhat limiting minimum rate assumptions inherent in
several prior works that use penalized maximum likelihood methods
for Poisson denoising. In Section V, we conclude with a discussion
of potential extensions of our analysis.

A brief note on notation employed in the sequel — for a matrix
A, we denote its number of nonzero elements by ||A|o, the sum
of absolute values of its elements by ||A||1, and its dimension (the
product of its row and column dimensions) by dim(A.). For an integer
m € N, the notation 1,, denotes an all-ones length m column vector.

II. MAIN RESULTS

As noted above, our analyses here are motivated by recent efforts
( [13], [14]) that examine Poisson denoising tasks arising in imaging
problems and provide empirical evaluations of procedures that exploit
local shared structure in the rates being estimated. These prior works
each utilize “patch-level” structural models for the underlying image,
in which the shared structure arises in terms of factorizations of
matrices comprised of vectorized versions of small image patches.

The first procedure proposed in [13] is a non-local variant of a
principal component analysis (PCA) method. That approach uses
an initial clustering step designed to identify collections of similar
patches, then obtains estimates of the underlying rate functions of the
image by performing low-rank factorizations of patch-level matrix
representations of each data cluster. In terms of our model here,
the approximation step inherent to this approach may be described
by assuming the true matrix of rates X* € R™*™ giving rise
to independent Poisson-distributed observations Y in each data
cluster admits a decomposition of the form X* = D*A*, where
D* € R™*P and A* € RP*™ for some p < min(m,n).

Both [13] and [14] also examine sparse dictionary-based denoising
methods along the lines of recent efforts in the dictionary learning
literature (see, e.g., [11]), which seek to model the image patches
as sparse linear combinations of columns of a learned dictionary
matrix. Here, this model assumes that the true rate matrix X" admits
a decomposition of the form D*A* where A™ is sparse (e.g., having
fewer than some kmax non zeros per column). Sparse dictionary-
based models may be interpreted as a natural extension of low-rank
models; the latter essentially fits the data to a single low-dimensional
linear subspace, while the former utilizes a union of linear subspaces.

Our main results establish mean square error guarantees for es-
timates for these tasks that are obtained via penalized maximum
likelihood estimation strategies. In order to state our results, we
need to first construct a set X of candidate reconstructions, with
appropriate penalties. To that end, we fix parameters Amax > 0, and
Xmax > 0, and X' > 1, let ¢ be a positive integer satisfying

18Amax 36Amax
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and let L be the smallest integer exceeding (max(m,n))?. Now, for
any positive integer p < min(m, n) we let X be the set of candidate
reconstructions of the form X = DA satisfying max; ;| X; ;| <
Xmax, where D € D are in R™*®+D and A € A are in RPHD 7,
so that each entry of D takes values on one of L uniformly-spaced
quantization levels in the range [—1, 1] and each element of A takes
on one of L possible uniformly spaced quantization levels in the
range [—Amax, Amax].

Our first result, stated here as a theorem, pertains to sparse
dictionary-based models.

Theorem IL.1. Ler the true rate matrix X* be m X n, where
max(m,n) > 3. Suppose X* satisfies the constraint max; ; X ; <
Xmax/2, and admits a dictionary-based decomposition of the form
D*A*, where the dictionary D* is m X p for p < n with entries
bounded in magnitude by 1, and the coefficient matrix A* is p X n
whose elements are bounded in magnitude by Amax. Let observations
Y of X* be acquired according to the model (2).

Form the set X as above, and let pen(X) = [q-dim(D) +(q+2)-
IA]lo] - log(max(m,n)). The estimate X = X(Y) = DA formed
using the solution of the penalized maximum likelihood problem

{D,A} = arg —logp(YDA) + A|Aflo, (5

min
DeD,AcA:DAEX



with A = X' - (q + 2) - log(max(m,n)) log(2) (and where X' is as
specified in the construction of X) satisfies
E[IX - X3 ]
mn

< N X (m(p +1)

mn

A*|lo+n
+ 1A o log(max(m,n)).
mn
Here, the expectation is with respect to the distribution of Y param-
eterized by the true rate matrix X*, and the notation = suppresses
leading (finite, positive) constants.

The salient take-away point here is that the average per-element
estimation error is upper bounded by a term that decays essentially
in proportion to the number of “degrees of freedom” in the model
divided by the number of observations. In other words, our result
here establishes that the estimation error exhibits characteristics of
the well-known parametric rate.

The result of Thm. II.1 also provides guidance on when dictionary-
based estimation procedures are viable. Consider, for example, a
setting where the true matrix A* in the dictionary-based decom-
position of X* has some kmax nonzero elements per column. Here,
Theorem II.1 establishes that the mean-square estimation error for
estimating X* decays in proportion to (p + 1)/n + (kmax + 1)/m,
ignoring leading constants and logarithmic factors. This result implies
natural conditions on the estimation task — that accurate estimation
is possible when the number of columns of X* exceeds (by a
multiplicative constant times a factor logarithmic in the dimension)
the number of true dictionary elements p, and the number of rows of
X* exceeds (by a multiplicative constant times a factor logarithmic in
the dimension) the number of non zeros in the sparse representation
of each column. This latter condition is reminiscent of conditions
arising in compressive sensing (see, e.g., [21], [28], [29]).

We obtain an analogous result for the case where the true rate
matrix X* admits a low-rank decomposition. We state the result here
as a corollary of Theorem II.1.

Corollary IL1. Suppose that max(m,n) > 3, and that the true
rate matrix X* € R™*™ admits a low-rank decomposition, so that
it may be written as X* = D* A", where D" is m x p and A™ is
p x n with p < min(m,n), and such that X[ ; < Xmax/2, Vi, j.
Let observations Y be acquired via the model (2). Form the set X
as above, and let pen(X) = [q - dim(D) + (¢ + 2) - dim(A)] -
log(max(m,n)).

The estimate X = X(Y) =DA formed using the solution of the
following penalized maximum likelihood problem

(D, A} =arg | min  _ —logp(Y[DA), (6)
satisfies
E||X* - X%
Efx-XiE (SRR PR
mn mn

where as above the expectation is with respect to the distribution of
Y parameterized by the true rate matrix X*, and the notation <
suppresses leading (finite) constants.

Note that in this case the penalty pen(X) is actually the same for
all X € X, as it depends only on the dimensions of the two factors,
which are the same for all candidates by construction of X. Thus,
the estimation approach here reduces to just a maximum likelihood
estimation over constrained sets. As above, the estimation error rate
exhibits characteristics of the parametric rate, as the low-rank model
here has O(p(m + n)) degrees of freedom.

III. PROOFS OF MAIN RESULTS

We write px; ; (-) as shorthand for the scalar Poisson pmf with rate
Xi,j, and we denote the multivariate Poisson pmf p(:|X) defined in
(2) (parameterized by the collection of rates {X; ;}i,;) by px(-).

Central to our analysis will be the aforementioned countable sets X
of candidate reconstructions of the unknown (non-negative) rate ma-
trix X*. We consider sets X' constructed as above, and assign to each
X € X anon-negative “penalty” quantity denoted by pen(X) (which
here will quantify the “complexity” of the corresponding estimate),
so that the collection of penalties satisfies the summability condition
erx 2-Pen(X) < 1. Note that this condition is just the Kraft-
McMillan inequality; in constructing penalties for elements of X we
will employ the well-known fact that the Kraft-McMillan inequality
is satisfied provided we may construct a uniquely decodable code for
the elements X € &’; see [30]. With this, we begin by establishing
a fundamental result, from which our results follow.

Lemma IIL.1. Suppose that the elements of the unknown non-
negative rate matrix X* are bounded in amplitude, so that for some
fixed Xinax > 0, we have 0 < X[ ; < Xmax/2 for all i € [m] and
j € [n]. Let X be a countable set of candidate solutions X satisfying
the uniform bound maxX;cim) jein]| Xi,j| < Xmax, with associated
non-negative penalties {pen(X)}xecx satisfying the Kraft-McMillan
inequality as stated above. Collect a total of mn independent
Poisson measurements Y = {Yi,j}ie[m],je[n], parameterized by X*,
according to the model (2). If there exists XT € X such that
X;rj — X[ ; >0 foralli € [m] and j € [n], then for any choice of
X' > 1, the complexity penalized maximum likelihood estimate

X = arg min {~logp (Y|X) +\'log(2) - pen(X)},  (7)
satisfies,
E[Ix" - X|3]

mn
4Xmax *
< = X - X+ M log(2) - pen(XF)] L)

where the expectation is taken with respect to the distribution of
Y ~ DPxX*.

Proof: Our proof utilizes a straight-forward extension of a result
stated and utilized in [5], [6] (based on the essential ideas of [18],
[19]), which we provide here without proof: for any_ A > 1 the
complexity regularized maximum likelihood solution X of the form
(7), obtained by optimizing over any countable set X" of candidates
having penalties {pen(X)}xex satisfying the Kraft-McMillan in-
equality, satisfies
—2Elog A(px+, pg) < min [K(px-,px) + A'log(2) - pen(X)] ,

&)
where the expectation is with respect to the distribution of Y ~ px=.
Here,

p(Y[X") .
K(px+,px) £ log<7 p(Y|X
(px-px) 2 Y X)) PYIX)

YeN X"
denotes the Kullback-Leibler divergence (or KL divergence)! of px

'Note that the KL divergence is only well-defined here for non-negative
X, when the corresponding Poisson pmf p(Y|X) is well-defined. We make
no specific constraint here that each X € X be non-negative, but without
loss of generality we may take K(px+,px) to be infinite also when X has
any non-negative entries. Further, note the KL divergence is infinite here if
for any 4,7, X; ; = 0 but X;j # 0 (i.e., when the distribution px, is not
absolutely continuous with respect to px).



from px =, and the quantity

Ax-rg) 2 S0 Vp(YIX5)  p(YIR)

YeNg X"

is the Hellinger Affinity between px~ and pg. Now, since the upper
bound in (9) holds for X € X which achieves the minimum, it holds
for all X € X. Considering, specifically, the estimator X € X, we
have

—2Elog A(px+,pg) < K(px=,px+)+ A log(2) - pen(X*). (10)

Specializing to the Poisson case, we use the results of Lemmas II1.2
and IIL.3 (in Section III-C) to obtain, respectively, a lower bound for
the left-hand side and an upper bound for the right-hand side of (10).
The result follows. |

Our main results of Section II follow from specializing this result
to each of the two structural models. We establish first a proof of the
sparse dictionary-based inference estimation procedure; the analogous
result for estimation in low-rank models follows as a simple corollary.

A. Proof of Theorem II.1

The proof of our first main result follows directly from Lemma III.1
above. First, note that each candidate estimate X = DA € X may
be described via a code, in which each element of D is encoded using
log(L) = qlog(max(m,n)) bits and each nonzero element of A is
encoded using log(dim(A)) bits to denote its location, and log(L)
bits for its amplitude. Thus, a total of ¢-dim(D)-log(max(m, n)) bits
suffice to encode D, and since log(dim(A)) < log(max(m,n)?),
matrices A having ||A||o nonzero entries can be described using no
more than ||Allo- (q+2)-log(max(m, n)) bits. Overall, this implies
we may choose pen(X) = ¢ - dim(D) - log(max(m,n)) + ||Alo -
(¢ + 2) - log(max(m,n)). Note that while constructing the codes
we did not care about the uniform bounded condition (i.e., that each
entry should be bounded by Xiax); in effect, we formed uniquely
decodable codes for a bigger set X’ such that X C X', so we always
have Sy o 27P" ) <o 2P <,

Now, consider a candidate reconstruction of the form Xg =
DoAg + 1n.(all) & DgAg, where Do and Ag are the
closest quantized surrogates of the true parameters D* and A*, and
0 < a < Amax is a quantity to be specified. Denote Dg = D*+Ap
and Ag = A"+ Aa, where Ap and A4 are the quantization error
matrices. Then, it is easy to see that

DoAg—-D*A* =1,,(al})+D*Aa+ApA*+ApAa. (11)

To satisfy the conditions of Lemma III.1, we must have that Xg
overestimates (element-wise) the true rate matrix, and that the right-
hand side of (11) be no larger than Xax/2. To that end, our aim
is to choose « so that the right side of (11) becomes element-wise
nonnegative, but no larger than Xmax/2. It is straightforward to see
that each entry of the matrices D*Aa and ApA™ is bounded in
magnitude by 2pAmax/L. Also, the elements of the matrix ApAa
are bounded in magnitude by 4pAmax/L? < 4pAmax/L. Thus, it
suffices to choose « as the smallest quantization level exceeding
8PpAmax/L to ensure the each element of the matrix on the right-
hand side of (11) is nonnegative. Since we choose « to be the higher
quantization level of 8pAmax/L, and the quantization levels for ele-
ments of A are of size 2Amax /L, we have that a < (8p+2)Amax/L.
In order for « to be a valid entry of A, it must be bounded by Amax,
which is true whenever L > (8p + 2).

We can now bound each entry of f)QAQ — D*A” as follows
(DeAg —D"A%);;
= (Im(aln)" +D*Aa+ ApA™ + ApAa)i;

(8]7 + 2)Amax 2pAmax 2pAmaX 4pAmax
<
- L + L + L + L
16pAmax 2Amax < 18pAmax
a L L - L ’

where the second inequality follows from bounds on the entries
of each matrix mentioned above and the last inequality is valid
for p > 1. This quantity is no larger than Xmax/2 whenever
L > 36pAmax/Xmax, and in this case, we ensure that Xg € X.

Now, note that || X* — Xgl Yicimjem)PeAq —
D*A%);; < 18p-(mn)-Amax/L, and if we now evaluate the oracle
bound (8) from Lemma III.1 at the candidate X which overestimates
X* (entry-wise), we have

E [IX* - X3]
mn
4Xmax * !/
S [IX" = Xqll1 + A'log(2) - pen(Xq)]
< 72pXmaxAmax + )\/ . 410g(2)xmax . Pen(XQ)
L mn

/ X
<\ - 810g(2)Xsmax - M7
mn

where the last line follows whenever [ > 188maxmnp (gince
A log(2)

pen(Xg) corresponds to a binary code having length greater than 0,
we have pen(Xgq) > 1).

Ove~rall, then, the result f~0110ws since by construction, we have
dim(Dg) < mp+m, and ||Ag|lo < [|[A*||o+n, and the assumption
(4) implies

1 AIIlaX AIIlaX
LZmaX{Sp—&—Z 8 mnp 36p }

Mlog(2) 7 Kmax
B. Proof of Corollary 1.1

The proof of Corollary II.1 follows directly from the proof of
Theorem II.1 — in particular, by substituting ||A*||o = pn.
C. Useful Lemmata

The following lemmata are used in the proof of Lemma IIIL.1.
Lemma IIL2 (From [6]). For any two (non-negative) Poisson rate

matrices X® and X°, having entries uniformly bounded above by
Xmax, we have

1

4X |X* = X°||3% < =2 log A(pxea, pxo).-

Lemma IIL.3. For non-negative Poisson rate matrices X and xb
such that X® over-estimates X element-wise i.e., Xﬁj — X{fj >0
for all i € [m] and j € [n], we have K(pxa, pxs) < ||X® — X1

Proof: By independence and the definition of the KL divergence,

X7
Koom) = 3 [xzj log X80 1 x2, —xzj}
i€[m],j€[n] 0]
S > [Xf,j—qu,j] =X = X1,
i€[m],j€[n]
. . X¢
where the inequality follows from the fact that X', log < <
7
0 since Xﬁ i = X{fj (and following standard convention that
alog(a/0) = o0,0log(0/a) = 0 for a > 0). [



IV. DISCUSSION

It is worthwhile to explicitly point out a unique point in our
analysis — introducing the additional dimension in the model to ensure
that our class of candidate solutions contains an element that always
overestimates, element-wise, the rates in the true parameter matrix
X* — enables us to obtain estimation error rates without making
any assumptions on the minimum rate of the underlying Poisson
processes. This is a significant contrast with prior efforts employing
penalized maximum likelihood analyses (but with different structural
models) on Poisson-distributed data [5], [6], each of which prescribe
adopting an assumption that the rates associated with each Poisson-
distributed observation be strictly bounded away from 0.

Our extension here is an important advance, especially in the con-
text of extremely photon-limited scenarios. Indeed, in these settings
it is somewhat counter-intuitive (or at least, restrictive) to assume
that the rates be bounded away from zero, as it is precisely in these
scenarios when one might be most interested in estimating rates that
are very near zero. Further, classical analyses suggest that there may
be no fundamental reason why zero or nearly-zero rates become more
difficult to estimate. For instance, in the scalar Poisson rate estimation
problem, the Cramer-Rao lower bound for estimating a Poisson rate
parameter from n iid Poi(-|f) observations (achievable with the
sample average estimator) is 6/n, suggesting that the estimation
problem actually becomes easier as the rate decreases. The analytical
framework we develop here facilitates analysis of these important
low-rate cases under sparse and structured data model assumptions.

Finally, we note that Poisson models also find utility other appli-
cation domains beyond imaging. In networking tasks, for example,
Poisson processes are a natural choice to model arrival events, such
as packets arriving at each of a number of network routers our flows
across network links (see, e.g., [31]). Our techniques and analysis
here would extend directly to other application domains, as well.

V. CONCLUSIONS

In this paper we described a framework for quantifying the mean-
square error of constrained maximum likelihood Poisson denoising
strategies, in settings where the collection of underlying rates (ap-
propriately arranged) admits a low-rank or sparse dictionary-based
decomposition. We established that, in these cases, the mean-square
estimation error exhibits characteristics of the familiar parametric
rate, in that the error essentially takes the form of “degrees of
freedom” divided by “number of observations.” In analogy to related
analyses in [6], [21], our analysis can also be used to obtain error rates
for data adhering to models that are not exactly sparse, but instead are
characterized by coefficients whose ordered amplitudes decay (e.g., at
a polynomial rate). Finally, while our analysis here was formulated
in terms of matrix-structured data and factorization models, these
methods may be extended straightforwardly to encompass also sparse
and low-rank models for higher-order tensor structure data. We defer
in-depth investigations of these extensions to a future effort.
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