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Distilled Sensing: Adaptive Sampling for

Sparse Detection and Estimation
Jarvis Haupt, Rui Castro, and Robert Nowak

Abstract

Adaptive sampling results in significant improvements in the recovery of sparse signals in white Gaussian noise.

A sequential adaptive sampling-and-refinement procedure called Distilled Sensing (DS) is proposed and analyzed.

DS is a form of multi-stage experimental design and testing. Because of the adaptive nature of the data collection,

DS can detect and localize far weaker signals than possible from non-adaptive measurements. In particular, reliable

detection and localization (support estimation) using non-adaptive samples is possible only if the signal amplitudes

grow logarithmically with the problem dimension. Here it is shown that using adaptive sampling, reliable detection

is possible provided the amplitude exceeds a constant, and localization is possible when the amplitude exceeds any

arbitrarily slowly growing function of the dimension.

I. INTRODUCTION

In high dimensional multiple hypothesis testing problems the aim is to identify the subset of the hypotheses

that differ from the null distribution, or simply to decide if one or more of the hypotheses do not follow the null.

There is now a well developed theory and methodology for this problem, and the fundamental limitations in the

high dimensional setting are quite clear. However, most existing treatments of the problem assume a non-adaptive

measurement process. The question of how the limitations might differ under a more flexible, sequential adaptive

measurement process has not been addressed. This paper shows that this additional flexibility can yield surprising

and significant performance gains.

For concreteness let x = (x1, . . . , xp) ∈ Rp be an unknown sparse vector, such that most (or all) of its components

xi are equal to zero. The locations of the non-zero components are arbitrary. This vector is observed in additive

white Gaussian noise and we consider two problems:
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Localization: Infer the locations of the few non-zero components.

Detection: Decide whether x is the all-zero vector.

Given a single, non-adaptive noisy measurement of x, a common approach entails coordinate-wise thresholding of

the observed data at a given level, identifying the number and locations of entries for which the corresponding

observation exceeds the threshold. In such settings there are sharp asymptotic thresholds that the magnitude of the

non-zero components must exceed in order for the signal to be localizable and/or detectable. Such characterizations

have been given in various contexts in [1]–[3] for the localization problem and [4]–[6] for the detection problem.

A more thorough review of these sorts of characterizations is given in Section II.

In this paper we investigate these problems under a more flexible measurement process. Suppose we are able

to sequentially collect multiple noisy measurements of each component of x, and that the data so obtained can be

modeled as

yi,j = xi + γ
−1/2
i,j wi,j , i = 1, . . . , p, j = 1, . . . , k . (1)

In the above a total of k measurement steps is taken, j indexes the measurement step, wi,j
i.i.d.∼ N (0, 1) are zero-

mean Gaussian random variables with unit variance, and γi,j ≥ 0 quantifies the precision of each measurement.

When γi,j = 0 we adopt the convention that component xi was not observed at step j. The crucial feature of

this model is that it does not preclude sequentially adaptive measurements, where the γi,j can depend on past

observations {yi,ℓ}i∈{1,...,p},ℓ<j .

In practice, the precision for a measurement at location i at step j may be controlled, for example, by collecting

multiple independent samples and averaging to reduce the effective observation noise, the result of which would be

an observation described by the model (1). In this case, the parameters {γi,j} can be thought of as proportional to

the number of samples collected at location i at step j. For exposure-based sampling modalities common in many

imaging scenarios, the precision parameters {γi,j} can be interpreted as being proportional to the length of time

for which the component at location i is observed at step j.

In order to make fair comparisons to non-adaptive measurement processes, the total precision budget is limited

in the following way. Let R(p) be an increasing function of p, the dimension of the problem (that is, the number

of hypotheses under scrutiny). The precision parameters {γi,j} are required to satisfy

k∑
j=1

p∑
i=1

γi,j ≤ R(p) . (2)

For example, the usual non-adaptive, single measurement model corresponds to taking R(p) = p, k = 1, and

γi,1 = 1 for i = 1, . . . , p. This baseline can be compared with adaptive procedures by keeping R(p) = p, but

allowing k > 1 and variables {γi,j} satisfying (2).

The multiple measurement process (1) is applicable in many interesting and relevant scenarios. For example in

gene association and expression studies, two-stage approaches are gaining popularity (see [7]–[9] and references

therein): in the first stage a large number of genes is initially tested to identify a promising subset of them, and in the

second-stage these promising genes are subject to further testing. Such ideas have been extended to multiple-stage
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approaches; see, for example [10]. Similar two-stage approaches have also been examined in the signal processing

literature – see [11]. More broadly, sequential experimental design has been popular in other fields as well, such

as in computer vision where it is known as active vision [12], or in machine learning, where it is known as active

learning [13], [14]. These types of procedures can potentially impact other areas such as microarray-based studies

and astronomical surveying.

The main contribution of this paper is a theoretical analysis that reveals the significant gains that can be attained

using such sequential procedures. Our focus here is on a particular sequential, adaptive sampling procedure called

Distilled Sensing (DS). The idea behind DS is simple: use a portion of the precision budget to crudely measure all

components; eliminate a fraction of the components that appear least promising from further consideration after this

measurement; and iterate this procedure several times, at each step measuring only components retained after the

previous step. As mentioned above, similar procedures have been proposed in the context of experimental design.

However, to the best of our knowledge the quantification of performance gains had not been established prior to our

own initial work in [15], [16] and the results established in this paper. In this manuscript we significantly extend our

previous results by providing stronger results for the localization problem, and an entirely novel characterization of

the detection problem.

The sequential refinement that is inherent to the DS procedure is somewhat reminiscent of recently proposed

hierarchical and “conquer and divide” strategies for multiple hypothesis testing [17]–[19]. However, there are a

few important differences between the settings examined in those works and the problem being examined here.

Namely, the works [17]–[19] examine particular types of coarse-to-fine testing procedures which implicitly assume

some form of hierarchical structure among the signal components. On the other hand, as mentioned above, here

we consider signals for which the locations of the nonzero components are arbitrary. In addition, the works [17]–

[19] consider sequential testing from a single collection of non-adaptively collected measurements, while here we

examine a more flexible sequential adaptive measurement model.

This paper is organized as follows. Following a brief review of the fundamental limits of non-adaptive sampling for

detection and localization in Section II, our main result—that DS can reliably solve the localization and detection

problems for significantly weaker signals than what is possible using non-adaptive measurements—is stated in

Section III. A proof of the main result is given in Section IV. Simulation results demonstrating the theory are

provided in Section V, and conclusions and extensions are discussed in Section VI. A proof of the threshold for

localization from non-adaptive measurements and several auxiliary lemmas are provided in the appendices.

II. REVIEW OF NON-ADAPTIVE LOCALIZATION AND DETECTION OF SPARSE SIGNALS

In this section we review the known thresholds for localization and detection from non-adaptive measurements.

As mentioned above, such thresholds have been established in a variety of problem settings [1]–[6]. Here we provide

a concise summary of the main ideas along with supporting proofs as needed, to facilitate comparison with our

main results concerning recovery from adaptive measurements which appear in the next section.
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The non-adaptive measurement model we will consider as the baseline for comparison is as follows. We have a

single observation of x in noise:

yi = xi + wi, i = 1, . . . , p , (3)

where wi
i.i.d.∼ N (0, 1). As noted above, this is a special case of our general setup (1) in which k = 1 and γi,1 = 1

for i = 1, . . . , p. This implies a precision budget R(p) =
∑p

i=1 γi,1 = p.

To describe the asymptotic (large p) thresholds for localization we need to introduce some terminology and

notation. The performance could be quantified in terms of error probabilities (e.g., probabilities of one or more

false-positive or false-negative events). However, aiming to control the error probabilities in the high-dimensional

setting (e.g,. using the Bonferoni threshold level
√
2 log p) is often too conservative and this has motivated alternative

criteria that are less restrictive, but capture the important requirements in many scientific applications. The so-called

False-discovery Rate [1] is perhaps the most commonly employed criterion, and our analysis is based on this sort

of approach. We define the false-discovery proportion (FDP) and non-discovery proportion (NDP) as follows.

Definition II.1. Let S := {i : xi ̸= 0} denote the signal support set and let Ŝ = Ŝ(y) denote an estimator of S.

The false-discovery proportion is

FDP(Ŝ) :=
|Ŝ\S|
|Ŝ|

.

In words, the FDP of Ŝ is the ratio of the number of components falsely declared as non-zero to the total number

of components declared non-zero. The non-discovery proportion is

NDP(Ŝ) :=
|S\Ŝ|
|S|

.

In words, the NDP of Ŝ is the ratio of the number of non-zero components missed to the number of actual non-zero

components.

Note that the expectation of the FDP is the well-known False-discovery Rate (FDR). As an alternative to the

NDP one could also consider the False Non-discovery Proportion (FNP), as suggested in [20], [21], defined as

|S\Ŝ|/(p− |Ŝ|). However, for very sparse signals (such that |S| ≪ p) the FNP is not very sensitive, being always

close to zero for any sparse support estimate.

In this paper we focus in particular on the scenario where xi ≥ 0 for all i ∈ {1, . . . , p}. We elaborate on possible

extensions in Section III. Under this assumption it is quite natural to focus on a specific class of estimators of S.

Definition II.2. A coordinate-wise thresholding procedure is an estimator of the following form:

Ŝτ (y) := {i ∈ {1, . . . , p} : yi ≥ τ} ,

where the threshold τ > 0 may depend implicitly on x, or on y itself.

The following result establishes the limits of localization using non-adaptive sampling. A proof is provided in

Appendix A.
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Theorem II.3. Assume x has p1−β , β ∈ (0, 1), non-zero components of amplitude
√
2r log p, r > 0, and

measurement model (3). There exists a coordinate-wise thresholding procedure that yields an estimator Ŝ = Ŝ(y)

such that if r > β, then as p→∞,

FDP(Ŝ) P→ 0 , NDP(Ŝ) P→ 0 ,

where P→ denotes convergence in probability. Moreover, if r < β, then there does not exist a coordinate-wise

thresholding procedure that can guarantee that both quantities above tend to 0 as p→∞.

We also refer the reader to recent related work in [3], which considered localization under similar error metrics

as those utilized here. There it was shown, using a random signal model and assuming observations in the form of

noisy independent random (Gaussian) linear combinations of the entries of x, that similar sharp asymptotics hold

for any recovery procedure [3, Thm. 5].

A related problem of signal detection was considered in [4]–[6]. In this case the goal is not to estimate the signal

support set, but simply test if a sparse signal is present or absent. More formally, testing the null hypothesis x = 0

versus a composite hypothesis, where x has p1−β non-zero components of amplitude µ(p). In this case it is possible

to show that for β > 1/2, it is necessary to have µ(p) > c(β)
√
log p with c(β) > 0, in order to simultaneously

drive to zero the probabilities of Type I and Type II errors as p→∞; see [4]–[6].

In summary, under the above non-adaptive sampling scheme, it is necessary that the signal magnitude scales like
√
log p for localization, and for detection (when β > 1/2).

III. MAIN RESULTS: ADAPTIVE LOCALIZATION AND DETECTION OF SPARSE SIGNALS

In this section we present the main results of our theoretical analysis of Distilled Sensing (DS). Algorithm 1

describes the DS measurement process. At each step of the process, we retain only the components with non-

negative observations. This means that when the number of non-zero components is very small, roughly half of the

components are eliminated from further consideration at each step. Consequently, if the precision budget allocated

at each step is slightly larger than 1/2 of that used in the preceding step, then the effective precision of the

measurements made at each step is increasing. In particular, if the budget for each step is 1/2 + c of the budget

at the previous step, for some small constant c > 0, then the precision of the measured components is increasing

exponentially. Therefore, the key is to show that the very crude thresholding at 0 at each step does not remove a

significant number of the non-zero components. One final observation is that because the number of components

measured decreases by a factor of roughly 1/2 at each step, the total number of measurements made by DS is

roughly 2p, a modest increase relative to the p measurements made in the non-adaptive setting.

Recall from above that for non-adaptive sampling, reliable detection and localization is only possible provided

the signal amplitude is Ω(
√
log p). In other words, the signal amplitude must exceed a constant (that depends on

the sparsity level) times
√
log p. The following theorem establishes that DS is capable of detecting and localizing

significantly weaker sparse signals. For the purposes of our investigation we assume that the non-zero components

are positive. It is trivial to extend the algorithm and its analysis to handle both positive and negative components



6

Algorithm 1: Distilled Sensing.

Input:

Number of observation steps: k;

Resource allocation sequence satisfying
∑k

j=1 Rj ≤ R(p);

Initialize:

Initial index set: I1 ←− {1, 2, . . . , p};

Distillation:

for j = 1 to k do

Allocate resources: γi,j =

 Rj/|Ij | i ∈ Ij

0 i /∈ Ij

;

Observe: yi,j = xi + γ
−1/2
i,j wi,j , i ∈ Ij ;

Refine: Ij+1 ←− {i ∈ Ij : yi,j > 0};

end

Output:

Final index set: Ik;

Distilled observations: yk = {yi,k : i ∈ Ik};

by simply repeating the entire process twice; once as described, and again with yi,j replaced with −yi,j in the

refinement step of Algorithm 1.

Theorem III.1. Assume x ≥ 0 with p1−β , β ∈ (0, 1), non-zero components of amplitude µ(p), and sequential

measurement model using Distilled Sensing with k = k(p) = max{⌈log2 log p⌉, 0} + 2, and precision budget

distributed over the measurement steps so that
∑k

j=1 Rj ≤ p, Rj+1/Rj ≥ δ > 1/2, and R1 = c1p and Rk = ck p

for some c1, ck ∈ (0, 1). Then the support set estimator constructed using the output of the DS algorithm

ŜDS := {i ∈ Ik : yi,k >
√
2/ck}

has the following properties:

(i) if µ(p)→∞ as a function of p, then as p→∞

FDP(ŜDS)
P→ 0 , NDP(ŜDS)

P→ 0 ,
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(ii) if µ(p) > max
{√

4/c1, 2
√

2/ck

}
(a constant) then

lim
p→∞

Pr(ŜDS = ∅) =

 1 , if x = 0

0 , if x ̸= 0
,

where ∅ is the empty set.

The above theorem is stated in full generality, for a wide range of choices for the algorithm parameters c1, ck

and {Rj}kj=1. In particular the result holds with the following simple choices:

Rj = (0.75)j−1R1 , j = 2, . . . , k − 1 , (4)

Rk = R1 , (5)

and R1 chosen so that
∑k

j=1 Rj = p.

In words, this result states that DS successfully identifies the sparse signal support provided only that the signal

amplitude grows (arbitrarily slowly) as a function of the problem dimension p, while reliable signal detection requires

only that the signal amplitude exceed a constant. The result (ii) is entirely novel, and (i) improves on our initial result

in [16] which required µ(p) to grow faster than an arbitrary iteration of the logarithm (i.e., µ(p) ∼ log log . . . log p).

Comparison with the Ω(
√
log p) amplitude required for both tasks using non-adaptive sampling illustrates the

significant gains that are achieved through adaptivity. In particular note that with adaptive sampling we effectively

remove the dependence on the problem dimension p, that was unavoidable with non-adaptive sampling (embodied

by the factor
√
log p). Therefore DS is in essence overcoming the curse of dimensionality through the use of adaptive

sampling.

Although the main results in Theorem III.1 are stated in terms of asymptotic (high-dimensional) limits, the

key ingredients of its proof are bounds for finite-dimensional problems. Lemma IV.3, given in the next section,

characterizes the finite dimensional performance of DS. The finite-dimensional performance will be thoroughly

examined through numerical experiments in Section V. To illustrate how the results apply in finite dimensional

situations and to provide a bit of intuition about the algorithm, we consider the following example.

Example III.2. Let p = 214 and sparsity level s := |S| = 27. These choices of dimension and sparsity level are not

unreasonable in, for example, genomics testing problems. For this problem size, under the non-adaptive observation

model (3) the magnitude of the largest ‘noise-only’ component is about
√
2 log p = 4.4. The implies that the signal

strength µ needs to exceed this level in order to reliably distinguish the signal components from noise. Let us examine

the performance of the DS algorithm at this critical level. Assume the precision budget allocation proposed above

in (5) and let the number of steps k = ⌈log2 log p⌉ + 2 = 5, as prescribed in Theorem III.1. Each step of the DS

algorithm thresholds the observations at level 0, thereby removing 1/2 of the null (noise-only) components (because

the noise is symmetric about 0). After 4 steps about (p − s)/16 null components will remain (roughly 6% of the

original total). This progressive thinning of the null components means that a increasing fraction of the remaining

precision budget is allocated to signal (non-zero) components. For a signal strength of µ = 4.4 it is easy calculate
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the probability that a signal component survives each step. At the end of the process the probability that a signal

component is not removed about 0.84; in other words about 84% of the s signal components are retained. In other

words, the DS algorithm reduces the problem size by a factor of about 1/16 while retaining most all of the signal

components.

IV. ANALYSIS OF DISTILLED SENSING

In this section we prove the main result characterizing the performance of Distilled Sensing (DS), Theorem III.1.

We begin with three lemmas that quantify the finite sample behavior of DS.

A. Preliminary Lemmas

Lemma IV.1. Let {yi}mi=1 be independent random variables such that Pr(yi > 0) = 1/2. For any 0 < ε < 1/2,(
1

2
− ε

)
m ≤

∣∣∣{i ∈ {1, . . . ,m} : yi > 0}
∣∣∣ ≤ (1

2
+ ε

)
m,

with probability at least 1− 2 exp (−2mε2).

Proof: For any event A, let 1A be the indicator taking the value 1 if A is true and 0 otherwise. By Hoeffding’s

inequality, for any ε > 0

Pr

(∣∣∣∣∣
m∑
i=1

1{yi>0} −
m

2

∣∣∣∣∣ > mε

)
≤ 2 exp

(
−2mε2

)
.

Imposing the restriction ε < 1/2 guarantees that the corresponding fractions are bounded away from zero and one.

Lemma IV.2. Let {yi}mi=1
iid∼ N (µ, σ2), with σ > 0 and µ ≥ 2σ. Define ϵ = σ

µ
√
2π

< 1. Then

(1− ϵ)m ≤
∣∣∣{i ∈ {1, 2, . . . ,m} : yi > 0}

∣∣∣ ≤ m,

with probability at least 1− exp
(
− µm

4σ
√
2π

)
.

Proof: We will utilize the following standard bound on the Gaussian tail: for Z ∼ N (0, 1) and γ > 0,

1√
2πγ2

(
1− 1

γ2

)
exp(−γ2/2) ≤ Pr(Z > γ)

≤ 1√
2πγ2

exp(−γ2/2).

Let q = Pr(yi > 0), then it follows that

1− q ≤ σ

µ
√
2π

exp

(
− µ2

2σ2

)
.

Next we use the Binomial tail bound from [22]: for any 0 < b < E[
∑m

i=1 1{yi>0}] = mq,

Pr

(
m∑
i=1

1{yi>0} ≤ b

)
≤
(
m−mq

m− b

)m−b (mq

b

)b
.
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Note that ϵ > 1− q (or equivalently, 1− ϵ < q), so we can apply this result to
∑m

i=1 1{yi>0} with b = (1− ϵ)m

to obtain

Pr

(
m∑
i=1

1{yi>0} ≤ (1− ϵ)m

)

≤
(
1− q

ϵ

)ϵm(
q

1− ϵ

)(1−ϵ)m

≤ exp

(
−µ2ϵm

2σ2

)(
1

1− ϵ

)(1−ϵ)m

.

Now, to establish the stated result, it suffices to show

− µ2

2σ2
+

(
1− ϵ

ϵ

)
log

(
1

1− ϵ

)
≤ − µ

4ϵσ
√
2π

= − µ2

4σ2
,

which holds provided µ ≥ 2σ, since 0 < ϵ < 1 and
(
1−ϵ
ϵ

)
log
(

1
1−ϵ

)
≤ 1 for ϵ ∈ (0, 1).

These two lemmas allow us to quantify the output of the DS procedure. Refer to Algorithm 1 and define

sj := |S
∩
Ij | and zj := |Sc

∩
Ij |, the number of non-zero and zero components, respectively, present at the

beginning of step j, for j = 1, . . . , k. Let ε > 0, and for j = 1, . . . , k − 1 define

ϵ2j :=
s1 + (1/2 + ε)j−1z1

2πµ2Rj
, (6)

The output of the DS procedure is quantified in the following result.

Lemma IV.3. Let 0 < ε < 1/2 and assume that Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
, j = 1, . . . , k − 1. If |S| > 0,

then with probability at least

1−
k−1∑
j=1

exp

(
−s1

∏j−1
ℓ=1(1− ϵℓ)

2
√
2π

)

−2
k−1∑
j=1

exp (−2z1(1/2− ε)j−1ε2) ,

∏j−1
ℓ=1(1 − ϵℓ)s1 ≤ sj ≤ s1 and

(
1
2 − ε

)j−1
z1 ≤ zj ≤

(
1
2 + ε

)j−1
z1 for j = 2, . . . , k. If |S| = 0, then with

probability at least

1− 2

k−1∑
j=1

exp (−2z1(1/2− ε)j−1ε2) ,

(
1
2 − ε

)j−1
z1 ≤ zj ≤

(
1
2 + ε

)j−1
z1 for j = 2, . . . , k.

Proof: The results follow from Lemmas IV.1 and IV.2 and the union bound. First assume that s1 = |S| > 0.

Let σ2
j := |Ij |/Rj = (sj + zj)/Rj and ϵ̃j :=

σj

µ
√
2π

, j = 1, . . . , k.

The argument proceeds by conditioning on the output of all prior refinement steps; in particular, suppose that

(1− ϵ̃ℓ−1)sℓ−1 ≤ sℓ ≤ sℓ−1 and
(
1
2 − ε

)
zℓ−1 ≤ zℓ ≤

(
1
2 + ε

)
zℓ−1for ℓ = 1, . . . , j. Then apply Lemma IV.1 with
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m = zj , Lemma IV.2 with m = sj and σ2 = σ2
j , and the union bound to obtain that with probability at least

1− exp

(
− µsj

4σj

√
2π

)
− 2 exp (−2zjε2) , (7)

(1−ϵ̃j)sj ≤ sj+1 ≤ sj , and
(
1
2 − ε

)
zj ≤ zj+1 ≤

(
1
2 + ε

)
zj . Note that the condition Rj >

4
µ2

(
s1 + (1/2 + ε)j−1z1

)
and the assumptions on prior refinement steps ensure that µ > 2σj , which is required for Lemma IV.2. The condition

µ > 2σj also allows us to simplify probability bound (7), so that the event above occurs with probability at least

1− exp

(
− sj

2
√
2π

)
− 2 exp (−2zjε2).

Next, we can recursively apply the union bound and the bounds on sj and zj above to obtain for j = 1, . . . , k−1

ϵj =

√
s1 + (1/2 + ε)j−1z1

2πµ2Rj
≥ ϵ̃j =

σj

µ
√
2π

,

with probability at least

1−
k−1∑
j=1

exp

(
−s1

∏j−1
ℓ=1(1− ϵℓ)

2
√
2π

)

−
k−1∑
j=1

2 exp (−2z1(1/2− ε)j−1ε2) .

Note that the condition Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
implies that ϵj < 1. The first result follows directly. If

s1 = |S| = 0, then consider only zj , j = 1, . . . , k. The result follows again by the union bound. Note that for this

statement the condition on Rj is not required.

Now we examine the conditions Rj > 4
µ2

(
s1 + (1/2 + ε)j−1z1

)
, j = 1, . . . , k more closely. Define c :=

s1/[(1/2 + ε)k−1z1], in effect condensing several problem-specific parameters (s1, z1, and k) into a single scalar

parameter. Then the conditions on Rj are satisfied if

Rj >
4z1(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) .

Since z1 ≤ p, the following condition is sufficient

Rj >
4p(1/2 + ε)j−1

µ2
(c(1/2 + ε)k−j + 1) ,

and in particular the more stringent condition Rj >
4(c+1)p(1/2+ε)j−1

µ2 will suffice. It is now easy to see that if

s1 ≪ z1 (e.g., so that c ≤ 1), then the sufficient conditions become Rj >
8p
µ2 (1/2 + ε)j−1, j = 1, . . . , k. Thus, for

the sparse situations we consider, the precision allocated to each step must be just slightly greater than 1/2 of the

precision allocated in the previous step. We are now in position to prove the main theorem.

B. Proof of Theorem III.1

Throughout the proof, whenever asymptotic notation or limits are used it is always under the assumption that

p → ∞, and we use the standard notation f(p) = o(g(p)) to indicate that limp→∞ f(p)/g(p) = 0, for f(p) ≥ 0

and g(p) > 0. Also the quantities k := k(p), ε := ε(p) and µ := µ(p) are functions of p, but we do not denote this

explicitly for ease of notation. We let ε := p−1/3 throughout the proof.
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We begin by proving part (ii) of the theorem, which is concerned with detecting the presence or absence of a

sparse signal. Part (i), which pertains to identifying the locations of the non-zero components, then follows with a

slight modification.

Case 1 – Signal absent (S = ∅): This is the simplest scenario, but through its analysis we will develop tools

that will be useful when analyzing the case where the signal is present. Here, we have s1 = 0 and z1 = p, and the

number of indices retained at the end of the DS procedure |Ik| is equal to zk. Define the event

Γ =

{(
1

2
− ε

)k−1

p ≤ |Ik| ≤
(
1

2
+ ε

)k−1

p

}
.

The second part of Lemma IV.3 characterizes the probability of this event; in particular

Pr(Γ) ≥ 1− 2
k−1∑
j=1

exp

(
−2p

(
1

2
− ε

)j−1

ε2

)
.

Since k ≤ log2 log p+ 3, for large enough p we get that

Pr(Γ) ≥ 1− 2(k − 1) exp

(
−2p

(
1

2
− ε

)k−2

ε2

)

= 1− 2(k − 1) exp

(
−p
(
1

2

)k−3

(1− 2ε)k−2ε2

)

≥ 1− 2(log2 log p+ 2) exp

(
− p1/3

log p
(1− o(1))

)
where we used Lemma B.1 to conclude that (1 − 2ε)k−2 = 1 − o(1). It is clear that Pr(Γ) → 1. The rest of the

proof proceeds by conditioning on the event Γ. To avoid encumbering the notation we will often not explicitly the

conditioning, making sure this is clear from the context.

In this case we assume that S = ∅, therefore the output of the DS procedure consists of |Ik| i.i.d. Gaussian

random variables with zero mean and variance |Ik|/Rk = |Ik|/(ckp). Conditionally on Γ holding,

|Ik| ≤ p

(
1

2
+ ε

)k−1

= p
1

2

(
1

2

)k−2

(1 + 2ε)
k−1

≤ 1

2

p

log p
(1 + o(1)) ,

which follows from the fact that k ≥ log2 log p + 2, and using Lemma B.1. With this we conclude (with a slight

abuse of notation, as all the probabilities are conditional on Γ) that

Pr(ŜDS ̸= ∅ | Γ)

= Pr
(
∃i∈Ik : yi,k >

√
2/ck

)
≤ |Ik|Pr

(
N (0, |Ik|/ckp) >

√
2/ck

)
= |Ik|Pr

(
N (0, 1) >

√
2p/|Ik|

)
≤ pPr

(
N (0, 1) >

√
4 log p(1− o(1))

)
≤ p exp (−2 log p(1− o(1)))

= p−1+o(1) → 0 ,
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where the last inequality follows from the standard Gaussian tail bound. This together with Pr(Γ)→ 1 immediately

shows that when S = ∅ we have Pr(ŜDS ̸= ∅)→ 0.

Case 2 – Signal present (S ≠ ∅): The proof follows the same idea as in the previous case, although the argument

is a little more involved. Begin by applying Lemma IV.3 and constructing an event that occurs with probability

tending to one. Let Γ be the event

Γ =

{
z1

(
1

2
− ε

)k−1

≤ zk ≤ z1

(
1

2
+ ε

)k−1
}

∩ s1

k−1∏
j=1

(1− ϵj) ≤ sk ≤ s1

 ,

where ϵj is given by equation (6). Lemma IV.3 characterizes the probability of this event under a condition on Rj

that we will now verify. Note that this condition is equivalent to ϵ2j < 1/(8π) for all j = 1, . . . , k − 1. Instead of

showing exactly this we will show a stronger result that will be quite useful in a later stage of the proof. Recall that

Rj+1/Rj ≥ δ > 1/2, j = 1, . . . , k−2, and R1 = c1p by the assumptions of the theorem. Thus for j = 1, . . . , k−1

ϵ2j ≤
s1 +

(
1
2 + ε

)j−1
z1

2πµ2δj−1R1

≤ 1

2πµ2c1

(
s1
p
δ−(j−1) +

z1
p

(
δ

1
2 + ε

)−(j−1)
)

.

Clearly we have that ϵ21 ≤ 1
2πµ2c1

< 1/(8π) since by assumption µ >
√
4/c1. Now consider the case j > 1. Recall

that k ≤ log2 log p+ 3. Therefore if δ ≥ 1, then the term δ−(j−1) can be upper bounded by 1, otherwise

δ−(j−1) ≤ δ−(k−2)

≤ δ−(log2 log p+1)

= δ−1 (log p)
− log2 δ

≤ 2 log p , (8)

where the last step follows from δ > 1/2.

Now recall that s1 = p1−β , therefore

ϵ2j ≤ 1

2πµ2c1

(
p−βδ−(j−1) +

(
δ

1
2 + ε

)−(j−1)
)

≤ 1

2πµ2c1

(
2p−β log p+

(
δ

1
2 + ε

)−(j−1)
)

. (9)

Note that, since ε → 0 as p → ∞ we have that, for p large enough, δ/(1/2 + ε) > (δ + 1/2 + ε). Assume p is

large enough so that this is true, then

ϵ2j ≤ 1

2πµ2c1

(
2p−β log p+

(
δ +

1

2
+ ε

)−(j−1)
)

.
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Clearly since j ≤ k − 1 ≤ log2 log p + 2 we have that
(
δ + 1

2 + ε
)−(j−1)

= Ω
(
1/(log p)log2(δ+1/2+ϵ)

)
and so

the first of the additive terms in (9) is negligible for large p. Therefore for p sufficiently large, we have, for all

j = 1, . . . , k − 1

ϵ2j ≤
1

2πµ2c1

(
δ +

1

2

)−(j−1)

. (10)

Since by assumption µ >
√
4/c1, we conclude that, for all p sufficiently large, ϵ2j < 1/(8π) for all j = 1, . . . , k−1,

and so Rj >
4
µ2

(
s1 + (1/2 + ε)j−1z1

)
for j = 1, . . . , k − 1. Thus, applying Lemma IV.3 we have

Pr(Γ) ≥ 1−
k−1∑
j=1

exp

(
−s1

∏j−1
ℓ=1(1− ϵℓ)

2
√
2π

)

−2
k−1∑
j=1

exp (−2z1(1/2− ε)j−1ε2).

By a similar argument to that used in Case 1, it is straightforward to show that

2
k−1∑
j=1

exp (−2z1(1/2− ε)j−1ε2)→ 0 .

In addition,
k−1∑
j=1

exp

(
−s1

∏j−1
ℓ=1(1− ϵℓ)√
8π

)

≤ (k − 1) exp

(
−s1

∏k−2
ℓ=1 (1− ϵℓ)√
8π

)

≤ (k − 1) exp

−s1∏k−2
ℓ=1

(
1− (δ+1/2)−(ℓ−1)/2

µ
√
2πc1

)
√
8π


≤ (k − 1) exp

−s1∏k−2
ℓ=1

(
1− (δ+1/2)−(ℓ−1)/2

√
8π

)
√
8π

 ,

where in the last step we used the fact that µ >
√
4/c1. Finally note that from Lemma B.2 we know that

k−2∏
ℓ=1

(
1− 1√

8π

(
δ +

1

2

)−(ℓ−1)/2
)
→ L(δ) ,

where L(δ) > 0 hence

k−1∑
j=1

exp

(
−s1

∏j−1
ℓ=1(1− ϵℓ)√
8π

)

≤ (log2 log p+ 2) exp

(
−p1−β(L(δ) + o(1))√

8π

)
→ 0 . (11)

Therefore we conclude that the event Γ happens with probability converging to one.

We now proceed as before, by conditioning on event Γ. The output of the DS procedure consists of a total of

|Ik| = sk + zk independent Gaussian measurements with variance |Ik|/Rk, where sk of them have mean µ and the
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remaining zk have mean zero. We will show that the proposed thresholding procedure identifies only true non-zero

components (i.e., correctly rejects all the zero-valued components). In other words, with probability tending to

one, ŜDS = S ∩ Ik. For ease of notation, and without loss of generality, assume the yi,k ∼ N (µ, |Ik|/Rk) for

i ∈ {1, . . . , sk} and yi,k ∼ N (0, |Ik|/Rk) for i ∈ {sk + 1, . . . , |Ik|}. Then

Pr
(
ŜDS ̸= S ∩ Ik

∣∣∣ Γ
)

= Pr

(
sk∪
i=1

{
yi,k <

√
2/ck

}

or
|Ik|∪

i=sk+1

{
yi,k >

√
2/ck

} ∣∣∣∣ Γ
)

≤ sk Pr
(
N (µ, |Ik|/Rk) <

√
2/ck

)
+zk Pr

(
N (0, |Ik|/Rk) >

√
2/ck

)
.

Note that conditioned on the event Γ (using arguments similar to those in Case 1)

|Ik| = sk + zk

≤ s1 + z1

(
1

2
+ ε

)k−1

≤ p1−β +
p

2 log p
(1 + o(1))

≤ p

2 log p
(1 + o(1)) . (12)

Finally, taking into account that µ > 2
√

2/ck we conclude that

Pr
(
ŜDS ̸= S ∩ Ik

∣∣∣Γ)
≤ sk Pr

(
N (0, |Ik|/Rk) < −

√
2/ck

)
+zk Pr

(
N (0, |Ik|/Rk) >

√
2/ck

)
≤ sk Pr

(
N (0, 1) >

√
2p

|Ik|

)

+zk Pr

(
N (0, 1) >

√
2p

|Ik|

)

= |Ik|Pr

(
N (0, 1) >

√
2p

|Ik|

)
≤ pPr

(
N (0, 1) >

√
4 log p(1− o(1))

)
≤ p exp (−2 log p(1− o(1)))

= p−1+o(1) → 0 ,

where the last inequality follows from the standard Gaussian tail bound. Note again the slight abuse of notation,

as all the probabilities are conditioned on Γ. The above together with Pr(Γ) → 1, and the fact that |S ∩ Ik| =
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sk = L(δ)(1− o(1))s1 is bounded away from zero for large enough p immediately shows that Pr(ŜDS = ∅)→ 0,

concluding the proof of part (ii) of the theorem.

Part (i) of the theorem follows from the result proved above, since if µ is any positive diverging sequence in p

then a stronger version of Lemma B.2 applies. In particular, recall (10), and note that Lemma B.2 implies
k−1∏
ℓ=1

(1− ϵℓ) ≥
k−1∏
ℓ=1

(
1− 1

µ
√
2πc1

(
δ +

1

2

)− ℓ−1
2

)
→ 1 .

We have already established that the events Γ and {ŜDS ̸= S ∩ Ik} both hold (simultaneously) with probability

tending to one. Conditionally on these events we have

FDP(ŜDS) =
0

sk
= 0 ,

and

NDP(ŜDS) =
s1 − sk

s1
= 1− sk

s1
→ 0 ,

since from the definition of Γ we have

s1 ≥ sk ≥ s1

k−1∏
ℓ=1

(1− ϵℓ)→ s1 .

Therefore we conclude that both FDP(ŜDS) and NDP(ŜDS) converge in probability to zero as p→∞, concluding

the proof of the theorem.

V. NUMERICAL EXPERIMENTS

This section presents numerical experiments with Distilled Sensing (DS). The results demonstrate that the

asymptotic analysis predicts the performance in finite dimensional cases quite well. Furthermore, the experiments

suggest useful rules of thumb for implementing DS in practice.

There are two input parameters to the DS procedure; the number of distillation steps, k, and the distribution

of precision across the steps, {Rj}kj=1. Throughout our simulations we choose k = max{⌈log2 log p⌉, 0} + 2,

as prescribed in Theorem III.1. For the precision distribution, first recall the discussion following the proof of

Lemma IV.3. There it is argued that if the sparsity model is valid, a sufficient condition for the precision distribution

is Rj > R1(1/2 + ε)j−1, j = 1, . . . , k, with 0 < ε < 1/2. In words, the precision allocated to each step must be

greater than 1/2 the precision allocated in the previous step. In practice, we find that choosing Rj+1/Rj = 0.75

for j = 1, . . . , k − 2 provides good performance over the full SNR range of interest. Also, from the proof of the

main result (Theorem III.1) we see that the threshold for detection is inversely proportional to the square root of

the precision allocation in the first and last steps. Thus, we have found that allocating equal precision in the first

and last steps is beneficial. The intuition is that the first step is the most crucial in controlling the NDP and the

final step is most crucial in controlling the FDP. With this in mind, the precision allocation used throughout the

simulations follows the simple formulas (4) (5).

Figure 1 compares the FDP vs. NDP performance of the DS procedure to non-adaptive (single observation)

measurement at several signal-to-noise ratios (SNR = µ2). We consider signals of length p = 214 having
√
p = 128
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Fig. 1. FDP and NDP performance for DS (indicated with ∗) and non-adaptive sensing (indicated with •) at different SNRs. Smaller values

of FDP and NDP correspond to more accurate recovery (ie, exact support recovery occurs when NDP = FDP = 0). The results clearly show

that DS outperforms non-adaptive sensing for each SNR examined.

non-zero components with uniform amplitude with locations chosen uniformly at random. This choice of signal

dimension corresponds to k = 6 observation steps in the DS procedure. The choice of sparsity level β = 1/2

is somewhat arbitrary, and extensive experimentation was done for other sparsity levels. The range of FDP-NDP

operating points is surveyed by varying the threshold applied to the non-adaptive measurements and the output of

the DS procedure for each of 1000 trials, corresponding to different realizations of randomly-generated signal and

additive noise. Recall that largest squared magnitude in a realization of p i.i.d. N (0, 1) variables grows like 2 log p,

and in our experiment, 2 log p ≈ 20. Consequently, when the SNR = 20 we see that both DS and non-adaptive

measurements are highly successful, as expected. Another SNR level of interest is 8, since in this case this happens

to approximately satisfy the condition µ =
√
2/c1 =

√
2p/R1, which according to the Theorem III.1 is a critical

level for detection using DS. The simulations show that DS remains highly successful at this level while the non-

adaptive results are poor. Finally, when the SNR = 2, we see that DS still yields useful results. For example, at
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Fig. 2. FDR and NDR vs. SNR comparison. The solid, dashed, and dash-dot lines correspond to signals of length p = 214, 217, and 220,

respectively, having ⌊p1/2⌋ non-zero entries. At each value of SNR and for each method (DS and non-adaptive sampling), thresholds were

selected to achieve FDR = 0.05. Lower values of NDR correspond to more accurate recovery; DS clearly outperforms non-adaptive sensing

over the entire SNR range and shows much less dependence on the signal dimension p.

FDP = 0.05, the DS procedure has an average NDP of roughly 80% (i.e., 20% of the true components are still

detected, on average). This demonstrates the approximate log p extension of the SNR range provided by DS. Note

the gap in the FDP values of the DS results (roughly from 0.75 to 1). The gap arises because the the output of DS

has a higher SNR and is much less sparse than the original signal, and so arbitrarily large FDP values cannot be

achieved by any choice of threshold. Large FDP values are, of course, of little interest in practice. We also remark

on the structured patterns observed in cases of high NDP and low FDP (in upper left of figures for SNR = 2

and SNR = 8). The visually structured ‘curves’ of NDP-FDP pairs arise when the total number of discoveries is

small, and hence the FDP values are restricted to certain rational numbers. For example, if just 3 components are

discovered, then the number of false-discoveries can only take the values 0, 1/3, 2/3, and 1.

Figure 2 compares the performance of non-adaptive sensing and the DS procedure in terms of the false-discovery

rate (FDR) and the non-discovery rate (NDR), which are the average FDP and NDP, respectively. We consider three

different cases, corresponding to signals of length p = 214, 217, and 220, (the solid, dashed, and dash-dot lines,

respectively) where for each case the number of non-zero signal components is ⌊p1/2⌋. The precision allocation and

number of observation steps are chosen as described above (here, k = 6 for each of the three cases). For each value

of SNR, 500 independent experiments were performed for DS and non-adaptive sampling, and in each, thresholds

were selected so that the FDRs were fixed at approximately 0.05. The resulting average FDRs and NDRs for each

SNR level are shown. The results show that not only does DS achieve significantly lower NDRs than non-adaptive

sampling over the entire SNR range, its performance also exhibits much less dependence on the signal dimension

p.

Figure 3 provides another comparison of the performance of DS and the non-adaptive procedure, across several

values of the ambient signal dimension p. We consider four different settings, corresponding to signals of length
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Fig. 3. FDP and NDP performance for DS (indicated with ∗) and non-adaptive sensing (indicated with •) for different values of the signal

dimension. DS shows little dependence on the increasing ambient signal dimension across 9 orders of magnitude, while the non-adaptive sensing

procedure degrades markedly. This demonstrates the effectiveness of DS at mitigating the “curse of dimensionality”.

p = 211, 214, 217 and 220. In each case the number of non-zero signal components is fixed to be m = 128. The

precision allocation and number of observation steps are chosen as in the previous to simulation settings. Here, the

number of refinement steps k = 5 for p = 211 and k = 6 for p = 214, 217, and 220. The SNR in each case is fixed

by the choice µ2 = 8. As above, we examine the range of FDP-NDP operating points by varying the threshold

applied to the non-adaptive measurements and the output of the DS procedure, for each of 1000 trials. The results

clearly demonstrate that DS shows much less dependence on the ambient signal dimension, as its performance

is relatively unchanged across 9 orders of magnitude. The non-adaptive procedure, on the other hand, degrades

markedly as the dimension of the signal increases. This demonstrates the ability of adaptive sampling to mitigate

the “curse of dimensionality” in these sparse testing problems.



19

VI. CONCLUDING REMARKS

There has been a tremendous interest in high-dimensional testing and detection problems in recent years. A

well-developed theory exists for such problems when using a single, non-adaptive observation model [1], [2],

[4]–[6]. However, in practice and theory, multistage adaptive designs have shown promise [7]–[10]. This paper

quantifies the improvements such methods can achieve. We proposed and analyzed a specific multistage design

called Distilled Sensing (DS), and established that DS is capable of detecting and localizing much weaker sparse

signals than non-adaptive methods. The main result shows that adaptivity allows reliable detection and localization

at a signal-to-noise ratio (SNR) that is roughly log p lower than the minimum required by non-adaptive methods,

where p is the problem dimension. To put this in context, suppose one is interested in screening p = 20, 000

genes, then log p ≈ 10. Thus, the gains can be quite significant in problem sizes of practical interest, which is why

experimentalists often do employ similar methods.

An additional point worthy of future investigation is the development of lower bounds, characterizing the minimum

amplitude µ(p) below which signal detection and localization are impossible for any sensing procedure (including

adaptive sensing). In general, lower bounds are difficult to devise for sequential experimental design settings, with

a few notable exceptions [23], [24]. Here, our results establish that significant improvements are achievable using

adaptivity, although we relegate any general claims of optimality for adaptive sensing procedures to future work.

There are several possible extensions to DS. One is to consider even sparser signal models, where the number

of nonzero entries is significantly smaller than p1−β for β ∈ (0, 1), as considered here. In particular, the same

asymptotic results stated here follow also for signals whose sparsity levels are as small as a constant times

log log log p. Indeed, making this choice of s1 in (9) leads to the same bound on the ϵ2j given in (10), and this

choice is also sufficient to ensure that (11) holds as well. In addition, for this choice of s1 the same bound is

obtained in (12), and the rest of the proof goes through as stated. Another extension is to use DS with alternate

measurement models. For example, each measurement could be a linear combination of the entries of x, rather

than direct measurements of individual components. If the linear combinations are non-adaptive, this leads to a

regression model commonly studied in the Lasso and Compressed Sensing literature—see, for example, [25], [26].

However, sequentially tuning the linear combinations leads to an adaptive version of the regression model which

can be shown to provide significant improvements, as well [27].

APPENDIX A

THRESHOLDS FOR NON-ADAPTIVE RECOVERY

In this section we give a proof of Theorem II.3. We will proceed by considering two cases separately: (i) r > β

and (ii) r < β. The analysis of the phase transition point r = β is interesting, but it is beyond the scope of this

paper. Begin by noticing that in the setting of the theorem the minimax optimal support estimation procedure to

control the false and non-discovery proportions is a simple coordinate-wise thresholding procedure of the form

Ŝ = {i : yi > τ} ,
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where τ ≥ 0 can be chosen appropriately. A formal proof of this optimality can be done by noting that the class

of hypothesis is invariant under permutations (see [4], [5] for details).

Case (i) r > β: In this case the signal support can be accurately identified from the observations, in the sense

that FDP(Ŝ) and NDP(Ŝ) both converge in probability to zero. For this case we will take τ = τ(p) =
√
2α log p,

where β < α < r.

Begin by defining Dz and Ms to be the number of retained non-signal components and the number of missed

signal components, respectively. Formally

Dz =

p∑
i=1

1{yi>τ, xi=0} ,

and

Ms =

p∑
i=1

1{yi≤τ, xi ̸=0} .

Note that Dz is binomially distributed, that is Dz ∼ Bin(p(1− p−β), qz), where qz = Pr(yi > τ) when i is such

that xi = 0. By noticing that τ > 0 and using a standard Gaussian tail bound we have that

qz ≤
1√
2πτ2

exp

(
−τ2

2

)
=

1√
4πα log p

p−α.

In a similar fashion note that Ms ∼ Bin(p1−β , qs), where qs = Pr(yi ≤ τ) when i is such that xi =
√
2r log p.

Let Z ∼ N (0, 1) be an auxiliary random variable. Then

qs = Pr(Z +
√
2r log p ≤ τ)

= Pr(Z ≤ τ −
√

2r log p)

= Pr(Z >
√

2 log p(
√
r −
√
α)) ,

And so, using the Gaussian tail bound we have

qs ≤
1√

4π log p(
√
r −
√
α)

p−(
√
r−

√
α)2 .

We are ready to show that both FDP(Ŝ) and NDP(Ŝ) converge in probability to zero. Begin by noticing that

NDP(Ŝ) = Ms/p
1−β . By definition NDP(Ŝ) P→ 0 means that for all fixed ϵ > 0,

Pr(|NDP(Ŝ)| > ϵ)→ 0 ,

as p→∞. Noting that NDP(Ŝ) is non-negative, this can be easily established using Markov’s inequality.

Pr(NDP(Ŝ) > ϵ) = Pr

(
Ms

p1−β
≥ ϵ

)
= Pr(Ms > ϵp1−β)

≤ E[Ms]

ϵp1−β

=
p1−βqs
ϵp1−β

=
qs
ϵ
→ 0 ,
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as p→∞ as clearly qs converges to zero (since r > α). For the false discovery proportion the reasoning is similar.

Note that the number of correct discoveries is p1−β −Ms. Taking this into account we have

FDP(Ŝ) = Dz

p1−β −Ms +Dz
.

Let ϵ > 0. Then

Pr(FDP(Ŝ) > ϵ)

= Pr

(
Dz

p1−β −Ms +Dz
> ϵ

)
= Pr

(
(1− ϵ)

Dz

p1−β
+ ϵ

Ms

p1−β
> ϵ

)

≤
E
[
(1− ϵ) Dz

p1−β + ϵ Ms

p1−β

]
ϵ

=
1− ϵ

ϵ

p(1− p−β)qz
p1−β

+ qs

≤ 1− ϵ

ϵ
pβ(1− p−β)

1√
4πα log p

p−α

+
1√

4π log p(
√
r −
√
α)

p−(
√
r−

√
α)2 ,

where the last line clearly converges to zero as p → ∞, since β < α < r. Therefore we conclude that FDP(Ŝ)

converges to zero in probability.

Case (ii) r < β: In this case we will show that no thresholding procedure can simultaneously control the false

and non-discovery proportions. Begin by noting that the smaller τ is, the easier it is to control the non-discovery

proportion. In what follows we will identify an upper-bound on τ necessary for the control of the non-discovery

rate. Note that if τ = τ(p) =
√
2r log p then qs = 1/2, and therefore

NDP(Ŝ) = Ms

p1−β

a.s.→ 1/2 ,

as p → ∞, by the law of large numbers. Therefore a necessary, albeit insufficient, condition for NDP(Ŝ) P→ 0 is

that for all but finitely many p

τ <
√
2r log p . (13)

Similarly, note that the larger τ is, the easier it is to control the false discovery rate. In the same spirit of the above

derivation we will identify a lower-bound for τ that must necessarily hold in order to control the false-discovery

rate. Recall the previous derivation, where we showed that, for any ϵ > 0

Pr(FDP(Ŝ) > ϵ) = Pr

(
(1− ϵ)

Dz

p1−β
+ ϵ

Ms

p1−β
≥ ϵ

)
≥ Pr

(
(1− ϵ)

Dz

p1−β
≥ ϵ

)
= Pr

(
Dz

p1−β
≥ ϵ

1− ϵ

)
,
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where the last inequality follows trivially given that Ms ≥ 0 and, without loss of generality, we assume that ϵ < 1.

This means that FDP(Ŝ) converges in probability to zero only if Dz

p1−β also converges in probability to zero. Namely,

for any ϵ > 0 we must have limp→∞ Pr(Dz/p
1−β > ϵ) = 0. In what follows take τ =

√
2r log p. Let ϵ > 0 and

note that

Pr

(
Dz

p1−β
> ϵ

)
= Pr(Dz > ϵp1−β)

= Pr(Dz − E[Dz] > ϵp1−β − E[Dz])

= Pr(Dz − E[Dz] > ϵp1−β − p(1− p−β)qz) .

Define a = ϵp1−β − p(1− p−β)qz . Note that by the Gaussian tail bound, we have

1√
4πr log p

(
1− 1

2r log p

)
p−r ≤ qz ≤

1√
4πr log p

p−r ,

or equivalently,

qz =
1− o(1)√
4πr log p

p−r.

Given this it is straightforward to see that

a = ϵp1−β − (1− o(1))
p(1− p−β)√
4πr log p

p−r

= ϵp1−β − (1− o(1))
p1−r

√
4πr log p

= p1−r

(
ϵpr−β − 1− o(1)√

4πr log p

)
= − p1−r

√
4πr log p

(1− o(1)) ,

where in the last step we use the assumption that β > r. Therefore a→ −∞ as p goes to infinity. Let p0(ϵ) ∈ N

be such that a < 0 for all p ≥ p0(ϵ). Then

Pr(Dz/p
1−β > ϵ) = Pr(Dz − E[Dz] > a)

= 1− Pr(Dz − E[Dz] ≤ a)

≥ 1− Pr(|Dz − E[Dz]| ≥ −a)

≥ 1− Var(Dz)

(−a)2
,

where Var(Dz) = p(1 − p−β)qz(1 − qz) is the variance of Dz and the last step uses Chebyshev’s inequality.

Recalling that p ≥ p0(ϵ) we can examine the last term in the above expression easily.

1− Var(Dz)

(−a)2
= 1− (1− qz)

p(1− p−β)qz
a2

= 1− (1− o(1))
pqz
a2

= 1− (1− o(1))
p1−r

√
4πr log p

4πr log p

p2−2r

= 1− (1− o(1))

√
4πr log p

p1−r
→ 1 ,
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as p→∞. Therefore we conclude that, for τ =
√
2r log p, Dz/p

1−β does not converge in probability to zero, and

therefore FDP(Ŝ) also does not converge to zero.

The above result means that a necessary condition for the convergence of FDP(Ŝ) to zero is that for all but

finitely many p

τ >
√
2r log p .

This, together with (13) shows that there is no thresholding procedure capable of controlling both the false-discovery

and non-discovery proportions when r < β as we wanted to show, concluding the proof.

APPENDIX B

AUXILIARY MATERIAL

Lemma B.1. Let 0 ≤ f(p) ≤ 1/2 and g(p) ≥ 0 be any sequences in p such that limp→∞ f(p)g(p) = 0. Then

lim
p→∞

(1 + f(p))
g(p)

= lim
p→∞

(1− f(p))
g(p)

= 1 .

Proof: To establish that limp→∞(1 + f(p))g(p) = 1 note that

1 ≤ (1 + f(p))g(p)

= exp (g(p) log(1 + f(p)))

≤ exp (g(p)f(p)) ,

where the last inequality follows from log(1 + x) ≤ x for all x ≥ 0. As g(p)f(p) → 0 we conclude that

limp→∞(1 + f(p))g(p) = 1.

The second part of the result is established in a similar fashion. Note that

log (1− f(p)) = − log

(
1

1− f(p)

)
= log

(
1 +

f(p)

1− f(p)

)
≥ − f(p)

1− f(p)
≥ −2f(p)

where the last inequality relies on the fact that f(p) ≤ 1/2. Using this fact we have that

1 ≥ (1− f(p))g(p)

= exp (g(p) log(1− f(p)))

≥ exp (−2f(p)g(p)) .

Taking into account that g(p)f(p)→ 0 establishes the desired result.

Lemma B.2. Let k = k(p) be a positive integer sequence in p, and let g = g(p) be a positive nondecreasing

sequence in p. For some fixed a > 1 let ϵj = ϵj(p) ≤ a−j/g(p). If g(p) > a−1(1 + η), for some fixed η > 0, then

lim
p→∞

k(p)∏
j=1

(1− ϵj(p)) > 0.
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If, in addition, g(p) is any positive monotone diverging sequence in p, then

lim
p→∞

k(p)∏
j=1

(1− ϵj(p)) = 1.

Proof: Note that

log

k(p)∏
j=1

(1− ϵj(p))

 ≥
k(p)∑
j=1

log

(
1− a−j

g(p)

)

= −
k(p)∑
j=1

log

(
1 +

a−j/g(p)

1− a−j/g(p)

)

≥ −
k(p)∑
j=1

a−j/g(p)

1− a−j/g(p)

≥ −1
1− a−1/g(p)

k(p)∑
j=1

a−j/g(p)

=
−1

g(p)− a−1

k(p)∑
j=1

a−j .

Now, using the formula for the sum of a geometric series, we have

log

k(p)∏
j=1

(1− ϵj(p))

 ≥ −1
g(p)− a−1

[
a−1(1− a−k(p))

1− a−1

]
,

from which it follows that
k(p)∏
j=1

(1− ϵj(p)) ≥ exp

(
−1

g(p)− a−1

[
a−1(1− a−k(p))

1− a−1

])
.

Now, assuming only that g(p) > a−1(1 + η), for some fixed η > 0 it is easy to see that

lim
p→∞

k(p)∏
j=1

(1− ϵj(p)) > 0,

and if g(p)→∞ as p→∞ we have

lim
p→∞

k(p)∏
j=1

(1− ϵj(p)) = 1,

as claimed.
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