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Abstract. In statistical estimation tasks arising for example in compressive sensing applications,
we are often equipped with prior knowledge about the object we wish to infer (e.g., smoothness, char-
acterized by the presence of only low-frequency components in the Fourier domain; a priori region
of interest knowledge; or shared features extracted from sets of training data similar to the signal
being acquired). This work investigates an estimation task where the goal is to estimate an un-
known signal (vector) from compressive measurements corrupted by additive pre-measurement noise
(“clutter”) as well as post-measurement noise, but where some (perhaps limited) prior knowledge on
the signal, clutter, and noise is available. We pose the overall problem as an optimization, whose
goal is to minimize the mean square error incurred in estimating the signal of interest, and derive a
tractable convex program for designing knowledge-enhanced compressive measurement operators in
such settings. We demonstrate, via simulation, the improvements of our proposed approach relative
to traditional CS techniques that obtain measurements using iid random sensing matrices.
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1. Introduction. This paper examines an experimental design problem arising
in statistical estimation tasks. Let x ∈ Rp denote our object of interest, and suppose
that we obtain n noisy measurements of x ∈ Rp according to the model

y = A(x + c) + w. (1.1)

Here, we may view A as an n × p “sensing matrix”, c as a p × 1 vector of pre-
measurement noise or “clutter,” and w as a n × 1 vector that represents additive
measurement noise. Investigations of this general model in settings where n < p are
at the heart of the literature in compressive sensing (CS), and much work has been
done on the development and analysis of sensing and inference procedures that aim
to estimate x from such noisy linear measurements in the case where x is sparse (i.e.,
when x has at most k � p nonzero or significant entries).

A canonical result in this domain is the following: let c = 0 and w ∼ N (0, In×n),
and suppose that A is a randomly generated matrix whose entries are iidN (0, 1/n). In
this case, sparse x having no more than k nonzero entries can be accurately estimated
from a collection of n = O(k log p) compressive measurements, in the sense that an
estimate x̂ can be obtained from {y,A} which satisfies ‖x − x̂‖22 ≤ const. kσ2 log p
with high probability (see, for example, [1]). Several works in the CS literature have
examined the effects of clutter in compressive measurements (i.e., the case c 6= 0),
but these investigations have typically been limited to the case where the clutter is
modeled as white Gaussian noise [2, 3, 4].

Here we focus on a knowledge-enhanced estimation problem associated with the
compressive measurements obtained via the model (1.1). Our aim is to estimate x,
and we assume that we are equipped with some additional prior knowledge about x, c,
and w. The prior knowledge about x could describe, for example, a small collection
of possible supports (locations where x takes its nonzero values) and their relative
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frequencies of occurrence, or correlation structure among the nonzeros of x. Likewise,
prior knowledge about c and w may identify the correlation structures or supports of
each. The question we address here is, how should we design the sensing matrix A to
take advantage of this prior knowledge?

The main contribution of this work is to demonstrate that knowledge-enhanced
sensing matrix designs can significantly outperform the more “traditional” iid ran-
dom sensing matrices in noisy compressive sensing estimation tasks. We formulate
the sensing matrix design task as an optimization, with the aim to minimize the
mean-square error (MSE) of the best possible estimator of x. We describe the prior
information on the quantities x, c, and w in terms of distributions with known first-
and second-order statistics, and show that, following a few modest simplifications,
the overall sensing matrix design task in this setting can be performed by solving
a tractable convex optimization (eqn. (4.1)) followed by simple matrix factorization.
We demonstrate the performance improvements resulting from our approach, relative
to traditional CS techniques using iid random sensing matrices, via simulation.

The remainder of this paper is organized as follows. Following a brief discussion
of our contribution in the context of existing work (below), we describe our overall
problem setting in Section 2. In Section 3 we derive our main result – a convex
program for “knowledge-enhanced” sensing matrix design. We provide experimental
validation of our approach in Section 5, and briefly discuss extensions in Section 6.

1.1. Connections with Prior Works. The work [5] proposed one of the first
approaches to design compressive sensing matrices given some prior signal knowledge.
That work considered noise-free settings and assumed knowledge of a dictionary in
which the signals being observed were sparse, and proposed a sensing matrix design
procedure whose aim is to reduce the coherence between the learned sensing matrix
and the known dictionary. Extensions of this idea aimed at designing both the dictio-
nary and the sensing matrix given a collection of training data were examined by [6].
The recent work [7] examined knowledge-enhanced CS design tasks assuming a Gaus-
sian mixture prior on the signal being acquired, and proposed a design criteria based
on coherence minimization between the learned sensing matrix and a dictionary com-
posed of eigenvectors of the mixture covariance matrices. Along these lines, the work
[8] examined sensing designs based on learned correlations in training data. We note
that none of these approaches utilize the statistical estimation theoretic formulation
we adopt here, nor do they explicitly treat the separation from clutter, as here.

Most closely related to our formulation here is the body of prior work on optimal
designs for space-time linear coding in MIMO applications – see, for example, [9],
which examined qualitatively similar estimation problems. Inclusion of the clutter
term here makes the overall problem significantly more challenging in the more general
settings we consider here (e.g., when signal and clutter cannot be simultaneously
decorrelated).

2. Problem Statement. As stated above, our ultimate inference goal is to
accurately estimate the vector x given measurements of the form (1.1). In this section
we describe our overall sensing matrix design methodology.

2.1. Quantifying Prior Information. In our approach here we will assume
that the vector x ∈ Rp that we wish to estimate is a random quantity drawn from an
mx-component mixture distribution (mx an integer). We do not assume full knowl-
edge of the distribution, but only that i-th mixture component has known weight πx,i
and is a p-dimensional zero-mean random vector with known p× p covariance matrix
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Σx,i, for i = 1, 2, . . . ,mx. Vectors drawn from a given mixture component (described
by a particular covariance matrix Σx,i) have common supports and share the same
correlation structure among their nonzero elements.

We note that the covariance matrices Σx,i are not assumed here to be full-rank.
On the contrary, rank-deficiency in any of the Σx,i amounts to a form of sparsity, as
random vectors x ∈ Rp drawn from a distribution with covariance matrix of rank r < p
inherently lie on a r-dimensional subspace of Rp. Thus, the formulation described
here can model various forms of sparsity and structure that have been studied in
the literature, including simple k-sparse vectors (the collection of Σx,i describe all
mx =

(
p
k

)
unique subsets of {1, 2, . . . , p} of cardinality k, and πi = 1/mx), block

sparsity, group sparsity (with potentially overlapping groups), tree sparsity, and so
on. It is worth noting that our model does not assume that vectors drawn from
different models be orthogonal, though that structure, if present, could easily be
captured by this formulation.

We use similar prior distributions on the clutter c and the additive measurement
noise w. In particular, we model the clutter c as a realization of an mc-component
mixture distribution whose i-th mixture component has weight πc,i and is a zero-mean
random vector with covariance matrix Σc,i, for i = 1, 2, . . . ,mc. Likewise, we can
model the noise w generally as a realization of an mw-component mixture distribution
whose i-th mixture component has weight πw,i and is a zero-mean random vector with
covariance matrix Σw,i, for i = 1, 2, . . . ,mw, though in the exposition that follows we
will consider w to be additive uncorrelated zero-mean noises with variance σ2. We
assume that the random quantities x, c, and w are uncorrelated.

2.2. Minimizing the Estimation MSE. Our aim here is to minimize the
mean-square error (MSE) associated with our estimate of the signal x. Let us denote
by x̂A = x̂A(y) an estimator of x, which is a function of the measurements y obtained
via (1.1) using a particular n × p sensing matrix A. The mean-square error of a

given x̂ is dMSE(x̂A)
∆
= Ex,c,w

[
‖x− x̂A(y)‖2

]
, where the subscript denotes that the

expectation is with respect to all of the random quantities. The criteria for optimal
design of the sensing matrix A in this case can be stated as an optimization – the
optimal choice of A, denoted by A∗, is

A∗ = arg min
A∈A

min
x̂A∈X

dMSE(x̂A), (2.1)

where A is a (possibly constrained) class of sensing matrices and X is the class of
possible estimators. In words, A∗ ∈ A is the sensing matrix yielding measurements
for which the MSE of the best possible estimator (from the class X ) is minimum.

It is worth noting that the presence of the measurement noise w is only relevant
when the sensing matrix A is constrained in some way – else, one could simply scale
each of the elements of A toward infinity, making the overall effect on w negligible
in the estimation task. Here our focus will be on energy-constrained designs A; in
particular, we choose A in (2.1) as A = {A : ‖A‖F = α} for some (specified) α > 0,
where the notation ‖ · ‖F denotes the matrix Frobenius norm.

3. Knowledge-enhanced Sensing Matrix Designs to Minimize MSE. It
is well-known from statistical estimation theory that, for the minimum MSE task
(MMSE) task described above, the optimal estimator of x is the conditional mean x
given the observations y; that is, x̂A,MMSE(y) = E [x|y]. Here, our prior knowledge
is limited to first- and second-order statistics of the signal, clutter, and noise, and
without full knowledge of the distributions we are unable to compute this estimator
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in closed form. Instead, we consider restricting the class of estimators X in (2.1) to
be the class of linear estimators of x, as described below.

Let us define the average signal covariance matrix Σx as Σx =
∑mx

i=1 πx,iΣx,i,
and similarly for Σc, and we assume that (Σx + Σc) is invertible.1 Further, as
alluded above, we make a standard assumption on the additive noise, that it be un-
correlated, and each element wi of w has the same variance; here, this amounts
to the choices mw = 1 and πw,1 = 1, thus Σw,1 = Σw = σ2In×n. In this
case, the linear MMSE estimator is just the Wiener Filter, easily shown here to be

x̂A,LMMSE(y) = ΣxA
′ (A (Σx + Σc) A′ + σ2In×n

)−1
y, where A′ denotes the matrix

transpose. It follows (after a bit of algebra) that Ex,c,w

[
‖x− x̂A,LMMSE(y)‖2

]
=

tr{Σx −ΣxA
′ (A (Σx + Σc) A′ + σ2In×n

)−1
AΣx}, where tr{·} denotes the matrix

trace (the sum of the diagonal elements). Thus, we can express our sensing matrix
design task as the optimization

A∗ = arg max
A∈A

tr
{

ΣxA
′ (A (Σx + Σc) A′ + σ2In×n

)−1
AΣx

}
. (3.1)

Now, we approximate the objective function by replacing the inverse term by its
linear approximation. That is, we use the fact that(

A (Σx + Σc) A′ + σ2In×n
)−1 ≈ 1

σ2

(
In×n −

1

σ2
A (Σx + Σc) A′

)
, (3.2)

which follows from truncating the power series expansion of the inverse, which is valid
when all eigenvalues of the matrix A (Σx + Σc) A′/σ2 are less than 1 in magnitude.
Equivalently, since A (Σx + Σc) A′ is symmetric and positive semidefinite (PSD) its
eigenvalues and singular values coincide, implying that the power series expansion is
valid if and only if

‖A (Σx + Σc) A′‖ < σ2, (3.3)

where the notation ‖ · ‖ denotes the spectral norm (the largest singular value) of the
matrix argument. For the purposes of the derivation here, the condition (3.3) is taken
as an assumption – it can later be verified for a particular solution A∗. Using this
approximation we can “complete the square,” and use the assumed invertibility of
(Σx + Σc), to obtain that (3.1) can be approximated by the optimization

A∗ = arg min
A∈A

∥∥∥∥(Σx + Σc)
1/2A′AΣx −

σ2

2
(Σx + Σc)

−1/2Σx

∥∥∥∥2

F

. (3.4)

4. Sensing Matrix Design by Convex Optimization. Note that the opti-
mization (3.4) is over A, but A appears only in its quadratic form A′A (since, in
particular, the constraint ‖A‖F = α for A ∈ A is equivalent to tr{A′A} = α2). This
suggests that rather than solve (3.4) directly, we instead solve the optimization over
the quadratic form, then “factor” the solution to obtain the optimal A∗. Specifically,
we define M = A′A, and as a first step to solving (3.4) we solve the following convex
optimization over the cone of symmetric PSD matrices M:

M∗ = arg min
M

∥∥∥∥(Σx + Σc)
1/2MΣx −

σ2

2
(Σx + Σc)

−1/2Σx

∥∥∥∥
F

s.t. tr(M) = α2; M � 0, symmetric. (4.1)

1Invertibility of (Σx + Σc) is a mild assumption, easily enforced in practice. In particular, if
(Σx + Σc) happens to be rank deficient (having, say, rank p̃ < p), we can simply restrict the action
of the sensing matrix to the p̃−dimensional subspace on which (Σx + Σc) is full-rank.
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Then, we perform an eigendecomposition of the symmetric PSD M∗ to obtain M∗ =
UΛU′, from which it follows that A∗ = Λ1/2U′.

It is worth noting that the matrix A∗ obtained as described above will be a square
(p×p) matrix, though our overall objective was to learn an n×p sensing matrix with
n < p. There are a few ways that our approach may be adapted to yield “proper” CS
matrices. First, we note that the constraint tr(M) = α2 has the effect of controlling
the rank of the solution A∗.2 In the event that α is “sufficiently small” the matrix
A∗ obtained as above will, in fact, be low rank; In this case, we can form our sensing
matrix using as many rows as the nonzero entries along the diagonal of Λ1/2.

Alternatively, we can view the square matrix A∗ as a form of “linear preprocess-
ing” for a “standard” iid random CS matrix, say C. In other words, we may form
our n× p measurement matrix Ǎ∗ as Ǎ∗ = CA∗. When the entries of C are drawn
from certain zero-mean distributions (e.g., Gaussian, symmetric Bernoulli) and have
variance 1/n per element, it can be easily shown that ‖Ǎ‖2F ≈ ‖A∗‖2F with high prob-
ability provided n ≥ const. · log p (this follows, for example, from a simple application
of the Johnson-Lindenstrauss Lemma to the columns of A∗). Thus, this construction
still satisfies our energy constraint (at least with high probability), and allows for
direct control over the number of measurements n regardless of the solution A∗. We
take this latter approach in the simulations in the following section.

5. Evaluation. We evaluate the performance of our proposed procedure on a
“spikes and sinusoids” problem motivated by early works in sparse separation. We
consider signals of size p = 75 and select as our signal model a subset of mx = 50
unit-norm columns of a p × p discrete cosine transform (DCT) matrix. From these,
we form a total of 50 rank-one models Σx,i, each being simply the outer product of
one of the sinusoid vectors with itself. Similarly, we form the clutter model using 50
unit-norm elements of the canonical basis, and form the rank-one models Σc,i. The
selected waveforms are assembled into an p× (mx +mc) dictionary D = [Dx Dc].

Then, for a subset of possible values of n we perform 1000 trials of the follow-
ing experiment. First, we select one model randomly from the set {Σx,i}mx

i=1 and
generate x as a zero-mean Gaussian random vector having this covariance matrix,
and we generate c similarly using one model selected randomly from {Σc,i}mc

i=1. We
then generate two sets of observations – the first set y1 is obtained using an n × p
measurement matrix A1 having iid N (0, α

2

np ) entries, while the second set y2 uses a

measurement matrix of the form A2 = CA∗ where C has iid N (0, 1
n ) elements. The

additive noise in each case is w ∼ N (0, σ2In×n), where σ2 = 0.001. We consider two
SNR settings, corresponding to α = 0.75 and α = 1. We obtain the estimates in
each case as x̂i = [Dx 0]

[
arg minβ ‖β‖1 s.t. ‖yi −AiDβ‖22 ≤ nσ2

]
, for i = 1, 2, and

for each value of n compute the empirical average squared error as an approximation
to Ex,c,w

[
‖x− x̂i‖22

]
for i = 1, 2.3 The empirical results, depicted in Figure 5.1,

show that our approach results in reduced estimation error compared to traditional
compressive sensing.

6. Conclusions. We have demonstrated that knowledge-enhanced compressive
sensing designs can outperform traditional iid random CS sensing matrices in estima-
tion problems where the signal to be estimated is corrupted by clutter prior to the

2Techniques that minimize the rank of symmetric PSD matrices using the trace – or more gener-
ally, minimizing the rank of matrices using the nuclear norm (sum of singular values) – have become
quite common in modern sparse estimation works; see, for example, [10, 11, 12, 13].

3All optimizations were performed using the cvx MATLAB package (http://cvxr.com/cvx/)
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Fig. 5.1: Estimation MSE comparison between traditional CS (dashed) and the pro-
posed approach (solid). Here, α = 0.75 in panel (a), and α = 1 in panel (b).

compressive measurement operation. Our proposed design approach follows from a
few simplifying assumptions, perhaps most notably (3.3), which qualitatively amounts
to a “low SNR” assumption.4 Future directions for this work include investigations of
the design problem we consider here in high SNR scenarios, as well as the development
of efficient algorithms for solving the optimization (4.1) for larger problem sizes.
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