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ABSTRACT 

 

Recent theoretical results in Compressive Sensing (CS) show that 

sparse (or compressible) signals can be accurately reconstructed 

from a reduced set of linear measurements in the form of 

projections onto random vectors.  The associated reconstruction 

consists of a nonlinear optimization that requires knowledge of the 

actual projection vectors.  This work demonstrates that random 

time samples of a data stream could be used to identify certain 

signal features, even when no time reference is available. Since 

random sampling suppresses aliasing, a small (sub-Nyquist) set of 

samples can represent high-bandwidth signals.  Simulations were 

carried out to explore the utility of such a procedure for detecting 

and classifying signals of interest. 

 

1. INTRODUCTION 

 

Common signal processing problems include detection and 

identification of features in data that is incompletely represented or 

reduced in some manner.  One such example is wide band 

processing with limited sample support, in which signals must be 

digitally represented at well below their Nyquist rate.  Several 

reduced-sampling techniques have been proposed, including non-

constant sampling [1,2,3], adaptive sampling [4,5], and 

compressive sensing [e.g., 6-12].  The latter of these approaches 

has recently generated significant interest in the signal processing 

community.   

While these methods all allow for significant reduction in the 

amount of sampled data, they require knowledge of sample times 

to preserve signal structures.  A natural question emerges about the 

possibility of detecting signals in randomly collected samples 

without time references. 

Certainly, signal structures can influence the probability 

distributions of randomly-sampled datasets, suggesting their 

histograms may be valuable for detecting and/or classifying 

signals.  Histogram methods have been effectively applied for 

feature detection in other contexts, including Facial recognition 

[13], handwriting analysis [14], and the recognition of randomly 

rotated objects [15]. 

The remainder of the paper is organized as follows. Section 2 

briefly discusses the influence of signal structure on probability 

densities.  In section 3, histogram analysis techniques are applied 

to random samplings of simulated data sets containing various 

structures. Section 4 is a brief illustration of an instantaneous 

histogram technique.  Conclusions are discussed in section 5. 
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2. PROBABILITY DENSITIES OF RANDOMLY-SAMPLED 

DATA  

 

The probability density function (PDF) Ps(x) for a data sequence 

consisting of a single sinusoid is illustrated in Figure 1.  It can be 

expressed by the projection of a circle onto the x axis, 

( ) ( ) ( )




 −∈−=

−

otherwise

AAxxA
xPs

,0

,,
1

22π  (1) 

where A is the tonal amplitude.  The PDF in Fig. 1 has a strong 

peak at the signal amplitude, indicating that a histogram of 

measured values would convey the signal amplitude in cases where 

a single signal dominates. 

 Note that Eq. 1 is independent of frequency, with one caveat; 

the frequency must be such that a large (or integral) number of 

cycles is contained in the data stream.  As long as this condition is 

satisfied, the PDF is not affected by frequency, which can be 

arbitrarily high.  Signal detection is therefore not bound by the 

Nyquist criterion.    

The Probability density for a data stream consisting of a sum 

of several components can be expressed as the convolution of the 

densities of the individual components.  An example with two CW 

components is shown in Fig. 2.  The resulting PDF peaks at the 

difference between the component amplitudes.  An edge in the 

curve appears at the sum of amplitudes.  Certainly, more signal 

components can be added in this fashion.  Structural features in the 

histograms will be more subtle and susceptible to noise and 

resolution limitations as more components are added.  Preliminary 

simulations indicate that three continuous wave signals can 

sometimes be resolved in quiet environments. 

 

 
Figure 2: Probability Density - Two CW components 
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Figure 1: Probability Density for a single CW tone 



 

Noise can be included as another component.  For zero-mean white 

Gaussian noise, the PDF is given by 
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where σ is the standard deviation.  Fig. 3 shows the two-

component PDF of Figure 2 convolved with Pn(x).  Note that the 

edges and peaks that indicate the component signal amplitudes still 

appear, but are significantly obscured, even though the signal-to-

noise ratio was small (σ = 0.1).  Preliminary simulations indicate 

that the signals are resolvable when the noise standard deviation σ 

is less than the smallest component signal amplitude. 

 

3. SIMULATIONS 

 

3.1. PDF estimation from histograms 

 

To investigate PDFs of randomly-sampled data sequences, a set of 

simulations was carried out.  A random selection of time instances 

t was generated.  A vector S(t) of simulated measurements was 

made by adding a Gaussian random noise vector N(t) to a signal 

describing the continuous wave (CW) components: 
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where  fn, An, and φn are the frequency, amplitude, and phase of the 

nth CW component, respectively. 

PDF estimates were constructed by generating fine-resolution 

histograms of the simulated measurements.  The histograms were 

then smoothed by convolution with a normalized smoothing 

kernel, as illustrated in Fig. 4. 

Fig. 4a depicts the result of a simulation with two CW 

components, with amplitudes of 1 and 0.25. Fig. 4b is the same 

simulation, with a small amount Gaussian noise added, so that the 

CW components SNR’s become 20 and 8 dB. The consistency 

between the simulations in Fig. 4 and the analytical results in Figs 

2 and 3 supports the validity of this technique for estimating PDFs. 

 

 

 
3.2.   Perfomance characterization 

 

Given PDFs for noise and signal-plus-noise, a receiver 

operating characteristic (ROC) curve can be constructed to 

quantify the performance of a detector.  The ROC curve conveys 

the balance between detection and false alarm probabilities when 

an amplitude threshold α is used to define signal detection for each 

sample.  Since the noise and signal-plus-noise PDFs are symmetric 

about the origin, one-sided PDF curves can be used to compute the 

ROC value versus amplitude threshold: 
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where PD1 is the probability of detection and PFA1 is the 

probability of false alarm for a single sample.  Fig. 5 illustrates its 

construction for a CW white Gaussian noise with an SNR of 0 dB..   

 

 
 

Fig. 5:  Construction of a single-sample ROC 
curve from PDFs; CW in white Gaussian noise; 
SNR=0 dB. 

 

Generally, the presence of a signal will not be assessed from a 

single sample, but rather from a set of successive samples.  There 

are multiple ways of scoring such sets.  One approach is to 

histogram the set and compare the result with expected PDFs by 

cross correlation or other means.  A simpler approach is to assess 

each individual sample in the set and combine the results.  A 

detection is determined when more than m=n/2 samples exceed the 

Figure 3: PDF; Two CWs in white Gaussian noise (SNRs 
of  20 and 8 dB). 
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Figure 4: Estimating PDFs from fine-resolution histograms 



detection threshold.  Expressions for the probabilities of detection 

and false alarm can be written for such a detector [16]: 
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Figure 6 is a plot of the ROC curves for various sample set 

lengths between 1 and 100 samples.  As expected, the balance 

between detection and false alarm rates improves significantly with 

increasing n. 

 

     
 

Figure 6:  ROC curves for n-sample set for n = 1, 
10, 20, 40, 100 samples; SNR=0 dB  

 

 

3.3.   Modulated signals 

 

Fig. 7 illustrates the effect of modulation on the estimated PDF.  

Fig. 7a is an unmodulated unit-amplitude CW, with a PDF that 

peaks at +/- 1.  In Fig. 7b the frequency is swept in time, producing 

no noticeable difference in the estimated PDF.  This is expected, 

since Eq. 1 has no frequency dependence.   Similarly, Fig. 7c 

shows that phase modulations are not expected to affect the PDF.  

Amplitude modulations, however, had strong influence, as shown 

in Figs. 7d and 7e.   

 
3.4 Harmonically related signals 

 

Given a small set of CW components, the PDFs can be influenced 

by harmonic relationships.  Fig. 8 is an illustration of this effect.  

PDF estimates are constructed for a simulation like that of Fig.4b, 

except that the two component tones are given a harmonic 

relationship; the frequency one tone is exactly twice that of the 

other.  In this case, the two components line up in phase once per 

cycle of the low-frequency component.  Fig. 8 shows that the PDFs 

depend sensitively on the phase angle at which alignment occurs. 

The contrast in the shapes of the histograms between Fig. 4b 

and Fig. 8 reveal a strong sensitivity to the harmonic relationships.  

This implies that, while absolute frequency information is not 

conveyed, the histograms may allow for the detection of harmonic 

structure.  The observance of an asymmetric histogram, for 

example, may imply that some of the signal components are 

harmonically related, and originate from the same source.   

  

  

3.5.  Histogram detection of time-dependent features 

 

In a real system, a continuous randomly-sampled data stream 

would likely be processed in blocks, with successive histograms 

carrying time-dependent information about the data stream.  Events 

of interest might manifest themselves as detectable changes in the 

evolution of the histogram. 

Time series Probability Density 
 

 

a. Single CW (unit amplitude, 15 kHz) 

b. Linear FM Sweep 

c. Periodically phase shifted (-.73π) 

d. Amplitude modulated (between .25 and 1) 

e. Clipped at amplitude = 0.8 
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Figure 7: Modulated waveforms and their PDF’s 
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Figure 8: Estimated PDF’s ; 2 harmonically-related CW tones. 
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A simulated data stream was constructed as described in Table 1.  

The data stream included a pulsed CW in 0 dB of Gaussian noise.  

The data, originally sampled at 1 kHz, was randomly subsampled 

by a factor of 10.  The subsampled datastream was divided into 

time segments, each of which was histogrammed as illustrated in 

Fig. 9, to produce a time-evolving PDF estimate. 

      The inserted pulsed signal is clearly observable in statistics 

obtained from the PDF.   The variance V and Kurtosis K are given 

by: 
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 In Fig. 9, the signal’s presence is clear in the variance and kurtosis 

plots.  In this example, there’s very little difference in character 

between the variance and kurtosis, suggesting that the variance is 

adequate for detecting CWs.  Fig. 10 depicts an example in which 

the kurtosis outperformed the variance.  In this case the RF 

background is non-Gaussian.  In general, the effectiveness of 

higher order statistics like kurtosis will depend on the character of 

the signal and noise.     

 

    
 

Fig. 9:  Time-evolution of PDF estimate for simulation in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

       
 

 Figure 10:  Time-evolution of PDF estimate for 
simulation in Table 2; A pulsed tone in a 
nongaussian RF background. 

 

 

4. INSTANTANEOUS FREQUENCY HISTOGRAMS 

 

In section 3, histogram analysis was applied to random samples 

from a real-valued data stream.  The histograms, under the right 

conditions,  allowed for detection of signals and estimation of their 

amplitudes, but provided no information about carrier frequency or 

bandwidth.  A question that emerges is whether other information 

can be obtained by sampling different representations of the RF 

data.  A representation of current interest is the instantaneous 

frequency, which conveys spectral information.   One way of 

measuring the instantaneous frequency to separate the RF signal 

into two paths, time-delay one, and compare the phases of 

corresponding quadrature samples [17].  Collections of random 

instances of such measurements can be histogrammed to extract 

information on spectral content.  
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Figure 11:  Instantaneous-frequency histogram for 
a 20 KHz CW tone in Gaussian noise (SNR=10 
dB).  The peak location correctly indicates the 
signal’s frequency.  

 

Table 1:  Simulation 1 parameters 

 

Data stream time duration:   1 sec 

Total number of random samples:  3 x 104 

Number of time segments:   100 

RF background:           Gaussian Noise 

Signal (pulsed): 

       Frequency:    354 kHz 

       Level:                      0 dB RE noise background 

       Pulsed:                  4 cycles; duty cycle=0.3  

Table 2:  Simulation 2  parameters 

 

Data stream time duration:   1 sec 

Total number of random samples:  3 x 104 

Number of time segments:   100 

RF background:           Gaussian Noise  

+ 20 dB SNR CW 

interferor  @  676 

kHz  

Signal  (pulsed): 

       Frequency:      354 kHz 

       Level:                     20 dB RE Gaussian 

noise background 



 
Figure 11 is a smoothed histogram of 10000 random realizations of 

the instantaneous frequency for a signal containing a 20 kHz tone 

in white Gaussian Noise with an SNR of 10 dB.  The peak in the 

histogram indicates the tonal frequency.  Fig. 12 shows a 

histogram–versus-time plot for a frequency-swept signal with an 

SNR of 0 dB.  The particular example is a base-banded 55 MHz-

bandwidth chirp, as is generated by Phillips Research Laboratory’s 

Pilot Mk3 Radar [18].  The frequency sweep of the signal is clear.  

These preliminary observations suggest that signals can be 

identified in instantaneous frequency histograms when significant 

amounts of noise are present.  The instantaneous-frequency 

samples were collected at 12 MHz.  Since each sample involves a 

comparison of two IQ samples, the implied Shannon-Nyquist limit 

is 24 MHz.  This is well below the signal’s 55 MHz bandwidth, 

implying a sub-Nyquist representation. 

 

 5. CONCLUSIONS 

 

Preliminary simulations indicate that simple histograms of 

randomly-sampled data can provide important information about 

signal structure.  This could lead to the development of practical 

tools for detection and classification when sample support is 

limited.  

Simulations were carried out to explore the influence of signal 

structures on measured histograms.  The histograms were clearly 

influenced by amplitude variations, clipping, and the presence of 

multiple CW components. Coherence between components 

introduced an observable asymmetry that depended on the phase 

relationship of the components. Pulsed CW components had 

measurable effect on the second moment histograms, which 

exhibited identifiable features even in the presence of significant 

noise.  Histograms of other signal attributes may reveal more 

information about signal structure; for example, instantaneous 

phase histograms carry information about spectral content.   

In the simulations, histograms were constructed from random 

samplings, with effective sample rates well below the Nyquist 

limit.  A relevant question is how much effective compression can 

be realized, while preserving structures of interest. 

Future work will focus on histogram estimation techniques, 

and will examine other signal attributes such as instantaneous 

phase and higher derivatives of instantaneous frequency.  We also 

plan to quantify the effects of noise and interference to determine 

the practicality and limitations of the proposed methods. 
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Figure 12:  Instantaneous-frequency histogram vs. 
time for a 0-55 MHz chirp white Gaussian noise 
(SNR=0 dB).  The mean sample rate was 12MHz. 

0 1 0 

60 
MHz 


