HW \#6 SOLUTIONS
(1.)

Pro \# 16.7 .
(a) $\phi(x)=\frac{1}{q}\left[E_{i}(\right.$ bulk $\left.)-E_{i}(x)\right]$

(b)

(c) Yes, Inside the semiconductor E_{F}, is porition independent.
(d)

(e)

$$
\begin{aligned}
n_{\text {Si-siO } \text { interface }} & =n_{i} e^{\xrightarrow[\left(E_{F}-E_{i}\right)_{\text {si-sio inderface. }}^{K T}]{ }} \\
& =n_{i} e^{0}=n_{i}+\quad \text { intrinsic). }
\end{aligned}
$$

(f)

$$
\begin{aligned}
=n_{i} e^{0} & =n_{i} \\
N_{D}=n_{i} e^{q} \frac{\left.E_{F}-E_{i}\right)_{\text {onk }}}{k T} & =n_{i} e^{\frac{0.29}{K T}}=7.45 \times 10^{14} \mathrm{em}^{-3} \&
\end{aligned}
$$

(g) $\phi_{s}=\frac{1}{2}\left[E_{i}\right.$ (buck) $-E_{i}($ (sukfoc $)=-0.29 \mathrm{~V} \longleftarrow$
(1)

$$
\begin{aligned}
& \phi_{S}=\frac{1}{2}\left[E_{i}(\text { bulk })-E_{B}\left(\operatorname{som} / k_{c}=\right)=-0.29\right. \\
& -V_{G}=\phi_{S}+\frac{k_{S}}{k_{0}} x_{0} \sqrt{\frac{2 q N_{D}}{k_{S} E_{0}}} \phi_{S} \Rightarrow V_{G}=-0.79 \mathrm{~V} \longleftarrow \\
& K_{0}=3.9, K_{S}=11.8
\end{aligned}
$$

16.7 continued
(1) $\Delta \phi_{o x}=V_{i}-\phi_{s}=-0.5, \mathrm{~V}$
(j)

$$
\begin{aligned}
\frac{C}{C_{0}} & =\frac{1}{1+\frac{k_{0} w}{k_{s} x_{0}}} ; w=\left[\frac{2 k_{s} t_{0}}{q N_{D}} \phi_{s}\right]^{1 / 2}=7.12 \times 10^{-5} \\
& =0.46 .
\end{aligned}
$$

Prob\#2.:-OC $C_{0}=1.92 \times 10^{-7} \frac{\mathrm{~F}}{\mathrm{~cm}^{2}}=\frac{K_{0} f_{0}}{x_{0}}$.

$$
\begin{aligned}
& L .0 @ C_{0}=1.92 \times 10 \mathrm{\operatorname{con}}{ }^{2}=\frac{3.9 \times 8.85 \times 10^{-14}}{1.92 \times 10^{-7}}=1.8 \times 10^{-6} \mathrm{em} 4 \\
& \Rightarrow x_{0}=\frac{k_{0} \epsilon_{0}}{C_{0}}=\frac{3}{}
\end{aligned}
$$

(b)
(C)

$$
\begin{array}{rl}
\Rightarrow \omega_{T}=1.81 \times 10^{-5} & c / n \\
\text { (d) } & V_{T}
\end{array}=2 \phi_{F}+\frac{k_{S} x_{0}}{k_{0}} \cdot \varepsilon_{S T}=2 \phi_{F}+\frac{k_{S} x_{0}}{k_{0}} \times \frac{4 \phi_{F}}{\omega_{T}} .
$$

(2) continued
(e) $f=100 \mathrm{kHz}, \rightarrow$ high frequency -

For MOS transistor high froqueng \& low frequency curve. t's name -
\rightarrow GV are for MOS transistor.
(f) Region $A \rightarrow$ Accumulation: Region $B \rightarrow$ depletion Region $C \rightarrow$ Inversion

Poob\#3:- Mos cap. $N_{A}=5 \times 10^{16} ; \quad x_{0}=300 \times 10^{-8} \mathrm{~cm}=3 \times 10^{-6} \mathrm{~cm}$.

$$
\begin{aligned}
C_{0}=\frac{k_{0} \varepsilon_{0}}{x_{0}}=1.15 \times 10^{-7} \mathrm{~F} / \mathrm{cm} .
\end{aligned} \quad \begin{aligned}
& Q_{F}=\frac{k_{T}}{Q_{1}} \operatorname{m} \frac{N_{0}}{n_{i}}=0.4 \\
& C_{P V}=\frac{C_{0}}{1+\frac{K_{0} \omega_{T}}{k_{S} x_{0}}}=4.44 \times 10^{-8} \mathrm{~F} / \mathrm{cm} . \\
& \omega_{T}=\left[\frac{2 k_{5} \epsilon_{0}}{q N_{A}} \cdot 2 \phi_{F}\right]^{1 / 2} \\
&=1.44 \times 10^{-5} \mathrm{~cm}
\end{aligned}
$$

Prob \#3. continued

$$
\begin{aligned}
& \text { (b) For GaAs, } \mathrm{K}_{s}=13.1 \text {. } \\
& \therefore C_{i n v}=\frac{C_{0}}{1+\frac{k_{0} \omega_{T}}{-k_{g} x_{0}}}=3.98 \times 10^{-8} \mathrm{Flcm} \\
& V_{T}=2 \phi_{F}+\frac{k_{S} x_{0}}{k_{0}} \sqrt{\frac{4_{1} N_{A}}{k_{S} t_{0}} \phi_{F}}=2.56 \mathrm{~V} \\
& \phi_{F}=\frac{-T}{q} \ln \frac{N_{A}}{\pi_{2}} \\
& =0.62 \mathrm{~V} \\
& W_{T}=\left[\frac{2 W_{s}+0}{2 N_{A}}: 2 \phi\right] \\
& =1.9 \times 10^{-5} \mathrm{~cm}
\end{aligned}
$$

(อ)

$$
\begin{aligned}
& x_{0}=6 \times 10^{-6} \mathrm{~cm} \cdot\left(S_{1}\right), \phi_{F}=0.4, \omega_{T}=144 \times 10^{-5} \mathrm{~cm} \\
& C_{0}=5 \cdot 75 \times 10^{-8} \\
& c_{i n v}=\frac{C_{0}}{1+\frac{K_{0} \omega_{T}}{K_{S} x_{0}}}=3^{12 \times 10^{-8}} \mathrm{Fl} \mathrm{~cm} \\
& V_{T}=2 \phi_{F}+\frac{K_{S} x_{0}}{K_{0}} \sqrt{\frac{4 Q^{N} V_{A}}{K_{5}} \phi_{F}}=2.8 \mathrm{~V}
\end{aligned}
$$

17.2
(a)

$$
\begin{aligned}
\phi_{\mathrm{F}} & =\frac{k T}{q} \ln \left(N_{\mathrm{A}} n_{\mathrm{i}}\right)=0.0259 \ln \left(10^{15} / 10^{10}\right)=0.298 \mathrm{~V} \\
V_{\mathrm{T}} & =2 \phi_{\mathrm{F}}+\frac{K_{\mathrm{S}} x_{0}}{K_{\mathrm{O}}} \sqrt{\frac{4 q N_{\mathrm{A}}}{K_{\mathrm{S}} \varepsilon_{0}} \phi_{\mathrm{F}}} \quad \ldots(17.1 \mathrm{a}) \\
& =(2)(0.298)+\frac{(11.8)\left(5 \times 10^{-6}\right)}{(3.9)}\left[\frac{(4)\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)(0.298)}{(11.8)\left(8.85 \times 10^{-14}\right)}\right]^{1 / 2} \\
V_{\mathrm{T}} & =0.800 \mathrm{~V}
\end{aligned}
$$

(b) In the square-law theory

$$
\begin{aligned}
& I_{\text {Dsat }}=\frac{Z \bar{\mu}_{\mathrm{N}} C_{0}}{2 L}\left(V_{\mathrm{G}}-V_{\mathrm{T}}\right)^{2} \\
& C_{0}=\frac{K_{0} \varepsilon_{0}}{x_{0}}=\frac{(3.9)\left(8.85 \times 10^{-14}\right)}{\left(5 \times 10^{-6}\right)}=6.90 \times 10^{-8} \mathrm{~F} / \mathrm{cm}^{2} \\
& I_{\text {Dsat }}=\frac{\left(5 \times 10^{-3}\right)(800)\left(6.9 \times 10^{-8}\right)(2-0.8)^{2}}{(2)\left(5 \times 10^{-4}\right)}=0.397 \mathrm{~mA}
\end{aligned}
$$

(c) In the bulk-charge theory we must first determine $V_{\text {Dsat }}$ ușing Eq.(17.29). We know ϕ_{F} and V_{T} from part (a), but must compute V_{W} before substituting into the V_{Dsat} expression.

$$
\begin{aligned}
& W_{\mathrm{T}}=\left[\frac{2 K_{\mathrm{S}} \varepsilon_{0}}{q N_{\mathrm{A}}}\left(2 \phi_{\mathrm{F}}\right)\right]^{1 / 2}=\left[\frac{(2)(11.8)\left(8.85 \times 10^{-14}\right)(2)(0.298)}{\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)}\right]^{1 / 2}=0.882 \mu \mathrm{~m} \\
& V_{\mathrm{W}} \equiv \frac{q N_{\mathrm{A}} W_{\mathrm{T}}}{C_{\mathrm{O}}}=\frac{\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)\left(8.82 \times 10^{-5}\right)}{\left(6.90 \times 10^{-8}\right)}=0.205 \mathrm{~V}
\end{aligned}
$$

Noting that $V_{G}-V_{\mathrm{T}}=1.20 \mathrm{~V}$, substituting into Eq.(17.29) then gives

$$
V_{\text {Dsat }}=1.20-0.205\left\{\left[\frac{(1.20)}{(2)(0.298)}+\left(1+\frac{(0.205)}{(4)(0.298)}\right)^{2}\right]^{1 / 2}-\left[1+\frac{(0.205)}{(4)(0.298)}\right]\right\}
$$

or

$$
V_{\text {Dsat }}=1.06 \mathrm{~V} \quad \ldots \text { smaller than } V_{\text {Dsat }} \text { of square-law theory as expected }
$$

Now

$$
\frac{Z \bar{\mu}_{\mathrm{n}} C_{0}}{L}=\frac{\left(5 \times 10^{-3}\right)(800)\left(6.90 \times 10^{-8}\right)}{\left(5 \times 10^{-4}\right)}=5.52 \times 10^{-4} \mathrm{amps} / \mathrm{V}^{2}
$$

Finally, substituting into Eq.(17.28) gives I_{Dsat} if $V_{\mathrm{D}}=V_{\mathrm{Dsat}} \cdot$ Thus

$$
\begin{aligned}
& I_{\text {Dsat }}=\left(5.52 \times 10^{-4}\right)\left\{(1.20)(1.06)-\frac{(1.06)^{2}}{2}\right. \\
&\left.-\frac{4}{3}(0.205)(0.298)\left[\left(1+\frac{(1.06)}{(2)(0.298)}\right)^{3 / 2}-\left(1+\frac{(3)(1.06)}{(4)(0.298)}\right)\right]\right\}
\end{aligned}
$$

$$
I_{\text {Dsat }}=\mathbf{0 . 3 4 9 \mathrm { mA }} \quad \underset{\text { bulk charge result (smaller than the square-law result as }}{\text { expected) }}
$$

(d) Clearly here the device is biased below pinch-off. From Table 17.1 we note that both the square-law and bulk-charge theories reduce to the same result if $V_{\mathrm{D}}=0$.

$$
g_{\mathrm{d}}=\frac{Z \bar{\mu}_{\mathrm{n}} C_{\mathrm{o}}}{L}\left(V_{\mathrm{G}}-V_{\mathrm{T}}\right)=\left(5.52 \times 10^{-4}\right)(2-0.8)=0.662 \mathrm{mS}
$$

(e) In the square-law theory, $V_{\text {Dsat }}=V_{G}-V_{\mathrm{T}}$. Thus $V_{\text {Dsat }}=1.20 \mathrm{~V}$ and $V_{\mathrm{D}}=2 \mathrm{~V}$. Since $V_{D}>V_{\text {Dsat }}$, the device is saturation (above-pinch-off) biased, and from Table 17.1

$$
g_{\mathrm{m}}=\frac{Z \bar{\mu}_{\mathrm{n}} C_{\mathrm{o}}}{L}\left(V_{\mathrm{G}}-V_{\mathrm{T}}\right)=0.662 \mathrm{mS} \quad \text {..same as } g_{\mathrm{d}} \text { of part (d) }
$$

(f) In part (c) we calculated the bulk-charge $V_{\text {Dsat }}=1.06 \mathrm{~V}$. Since $V_{D}>V_{\text {Dsat }}$, the device is above-pinch-off biased, and from Table 17.1

$$
g_{\mathrm{m}}=\frac{Z \bar{\mu}_{\mathrm{n}} C_{\mathrm{o}}}{L} V_{\mathrm{Dsat}}=\left(5.52 \times 10^{-4}\right)(1.06)=0.585 \mathrm{mS}
$$

