a) Band Diagram at threshold.

At $N_{a}=10^{19}, \phi_{s}=2 \phi_{t}$ will increase over the 10^{16} case. Thus the substrate energy bands bend a little more. In addition, the band bending in the oxide increases because of a dependence an $2 d_{t}$, and $q V_{t}$ will increase as well.

b.)

$$
\begin{gathered}
V_{t}=2 \phi_{f}+\frac{t_{o x}}{\epsilon_{o x}} \sqrt{2 q \epsilon_{s_{i}} N_{a} \partial \theta_{f}} \\
\phi_{t}=k T \ln \frac{N_{a}}{N_{1}}=.42 \\
2 \phi_{f}=.84
\end{gathered}
$$

$$
\begin{aligned}
& V_{t}=, 84+\frac{400 \times 10^{-8} \mathrm{~mm}}{(3.9) 8.854 \times 10^{-4 \frac{5}{m}}} \sqrt{2\left(1.6 \times 10^{-19}(a, 1)(11.7) \varepsilon_{0}\left(10^{(2)} 1.84\right)\right.} \\
& V_{t}=2.77 V=.84+1.93 \\
& =\Delta \theta_{s}+\Delta \mathscr{D}_{0 x} \\
& \varepsilon_{0 x}=\frac{\Delta \phi_{0 x}}{\operatorname{tox}_{x}}=4.8 \times 10^{5} \frac{\mathrm{~V}}{\mathrm{~cm}}
\end{aligned}
$$

c.) $\quad V_{g}=5 \mathrm{~V}$

Beyond V_{t}, the surface potential remains clamped at $\theta_{s}=2 \varphi_{t}$, therefore all voltage above V_{t} is dropped across the oxide.

$$
\begin{gathered}
\varepsilon_{0 x}=\frac{\left(\Delta \phi_{0 x}\right)_{\text {threshold }}}{\text { tox }}+\frac{V_{g}-V_{t}}{t_{0 x}} \\
\varepsilon_{0 x}=\frac{1,93 \mathrm{~V}}{400 \mathrm{~A}}+\frac{5-2.12 \mathrm{~V}}{400 \mathrm{~A}} \\
\varepsilon_{0 x}=1,04 \times 10^{6} \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

(2.) a.) $C_{\Delta x}=\frac{\epsilon_{0 x}}{t_{0}}=1.15 \times 10^{-1} \frac{\mathrm{~F}}{\mathrm{~cm}^{2}}$
b.) position "a" p-type substrate

$$
\begin{aligned}
V_{t} & =2 \theta_{t}+\frac{t_{o x}}{\epsilon_{0 x}} \sqrt{2 q t_{s} N_{a} 2 \phi_{t}} \\
& =.84+\frac{3001}{l_{0 x}} \sqrt{2 q t_{s} ;\left(10^{17}\right)(-84)} \\
V_{t} & =2.29 \mathrm{~V}
\end{aligned}
$$

position "b" n-tipe sibstrare

$$
\begin{aligned}
& V_{t}=-2\left|\phi_{t}\right|-\frac{t_{t}}{\epsilon_{0}} \sqrt{2 q \epsilon_{s} \cdot N_{a} 2\left(\phi_{t}\right)} \\
& V_{t}=-2.29 \mathrm{~V}
\end{aligned}
$$

C.)

$$
\begin{gathered}
W_{\text {max }}=\sqrt{\frac{4 \epsilon_{s i} \mid\left(\phi_{1}\right)}{q 1}}=\sqrt{\frac{4(11 .))\left(8.54 \times 10 \frac{1.4 t}{m}\right)(.42)}{\left(1.6+10^{19}\right)\left(10^{17}\right)}} \\
\underline{W_{\text {max }}=.10 \mu m} \begin{array}{r}
\text { for both } n \text {-type } \\
\text { ap-type }
\end{array}
\end{gathered}
$$

d.)

The 1-side can supply elections to the p-region's inversion layer α Vice-Versa. Thus this is a transistorlike low fregulscy curve.

